1
|
Long NS, Wells JE, Berry ED, Legako JF, Woerner DR, Loneragan GH, Broadway PR, Carroll JA, Sanchez NCB, Fernando SC, Bacon CM, Helmuth CL, Smock TM, Manahan JL, Hoffman AA, Hales KE. Metaphylactic antimicrobial effects on occurrences of antimicrobial resistance in Salmonella enterica, Escherichia coli and Enterococcus spp. measured longitudinally from feedlot arrival to harvest in high-risk beef cattle. J Appl Microbiol 2022; 133:1940-1955. [PMID: 35766106 PMCID: PMC9546201 DOI: 10.1111/jam.15691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
AIMS Our objective was to determine how injectable antimicrobials affected populations of Salmonella enterica, Escherichia coli and Enterococcus spp. in feedlot cattle. METHODS AND RESULTS Two arrival date blocks of high-risk crossbred beef cattle (n = 249; mean BW = 244 kg) were randomly assigned one of four antimicrobial treatments administered on day 0: sterile saline control (CON), tulathromycin (TUL), ceftiofur (CEF) or florfenicol (FLR). Faecal samples were collected on days 0, 28, 56, 112, 182 and study end (day 252 for block 1 and day 242 for block 2). Hide swabs and subiliac lymph nodes were collected the day before and the day of harvest. Samples were cultured for antimicrobial-resistant Salmonella, Escherichia coli and Enterococcus spp. The effect of treatment varied by day across all targeted bacterial populations (p ≤ 0.01) except total E. coli. Total E. coli counts were greatest on days 112, 182 and study end (p ≤ 0.01). Tulathromycin resulted in greater counts and prevalence of Salmonella from faeces than CON at study end (p ≤ 0.01). Tulathromycin and CEF yielded greater Salmonella hide prevalence and greater counts of 128ERYR E. coli at study end than CON (p ≤ 0.01). No faecal Salmonella resistant to tetracyclines or third-generation cephalosporins were detected. Ceftiofur was associated with greater counts of 8ERYR Enterococcus spp. at study end (p ≤ 0.03). By the day before harvest, antimicrobial use did not increase prevalence or counts for all other bacterial populations compared with CON (p ≥ 0.13). CONCLUSIONS Antimicrobial resistance (AMR) in feedlot cattle is not caused solely by using a metaphylactic antimicrobial on arrival, but more likely a multitude of environmental and management factors.
Collapse
Affiliation(s)
- Nathan S. Long
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| | - James E. Wells
- USDA‐ARSU.S. Meat Animal Research Center, Clay CenterNebraskaUSA
| | - Elaine D. Berry
- USDA‐ARSU.S. Meat Animal Research Center, Clay CenterNebraskaUSA
| | - Jerrad F. Legako
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| | - Dale R. Woerner
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| | - Guy H. Loneragan
- Texas Tech UniversitySchool of Veterinary MedicineAmarilloTexasUSA
| | | | | | | | - Samodha C. Fernando
- Department of Animal ScienceUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Carley M. Bacon
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| | - Cory L. Helmuth
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| | - Taylor M. Smock
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| | - Jeff L. Manahan
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| | - Ashley A. Hoffman
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| | - Kristin E. Hales
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| |
Collapse
|
2
|
Xia X, Yang L, Ling Y, Yu J, Ding H. Emergence and Mechanism of Resistance of Tulathromycin Against Mycoplasma hyopneumoniae in a PK/PD Model and the Fitness Costs of 23S rRNA Mutants. Front Vet Sci 2022; 9:801800. [PMID: 35224081 PMCID: PMC8873822 DOI: 10.3389/fvets.2022.801800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Macrolides are widely used in diseases caused by Mycoplasma spp. The new semi-synthetic macrolide antibiotic tulathromycin is currently in wide use for the treatment of respiratory diseases of livestock. The objective of this study was to evaluate the antibacterial effect of tulathromycin against Mycoplasma hyopneumoniae using an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model to reveal mechanisms of antibiotic resistance and to evaluate the fitness of drug-resistant strains. In this study, high performance liquid chromatography-tandem mass spectrometry was used to determine drug concentrations for the in vitro model after dosing. The peak concentrations were in the range 0.3125–20 μg/mL (1 × MIC-64 × MIC). The ratio of the area under the concentration-time curve (AUC) over 72 h divided by the MIC (AUC72h/MIC) had the highest correlation with the antibacterial effect of tulathromycin against M. hyopneumoniae. Tulathromycin also showed concentration-dependent antimicrobial effects and promoted the emergence of drug-resistant bacteria after being cultured for 168 h and most were mutations in 23S rRNA at site A2058G (E.coli numbering) and only a single isolate was an A2058T (E.coli numbering) mutant. In the presence of reserpine, we determined the MIC of tulathromycin, tilmicosin, tiamulin and tylosin against these drug-resistant bacteria and the strains with efflux pump mechanisms were found among the strains resistant to tilmicosin. Gene expression analysis indicated that the ABC and MATE transporter efflux pump genes RS01935, RS02670, RS01115, RS01970, RS02395 and RS03540 (MATE family efflux transporter) were up-regulated in the three strains (P < 0.05 or P < 0.01). These investigations provide guidance for clinical administration of tulathromycin and elucidate the mechanism and fitness cost of drug resistance in M. hyopneumoniae.
Collapse
|
3
|
Formation of the Resistance of Campylobacter jejuni to Macrolide Antibiotics. Bull Exp Biol Med 2020; 169:351-356. [PMID: 32748135 DOI: 10.1007/s10517-020-04885-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 10/23/2022]
Abstract
The tendency to the formation of macrolide resistance in campylobacteriosis pathogens is considered as a serious threat to public health due to ubiquity of campylobacter strains resistant to a wide range of antibiotics, primarily fluoroquinolones and tetracyclines. To assess the prevalence of resistant Campylobacter spp., we performed screening for macrolide sensitivity among 40 Campylobacter jejuni strains isolated from raw milk, poultry product, and washings from the equipment of the poultry processing plants. Phenotypic resistance to erythromycin, the most popular antibiotic for the treatment of campylobacteriosis, was revealed in 27.5% C. jejuni strains; 10% strains were resistant to azithromycin. The search and selection for gene markers of Campylobacter resistance to macrolides was performed. It was found that the resistance of C. jejuni to erythromycin is realized mainly via synthesis of proteins that protect ribosomes (the presence of coding sequences was detected in 45% of the studied strains) and the transmembrane pump mechanism (efflux pump CmeABC genes were found in 36% isolates); both mechanisms are transmissible. Chromosomal mutations in the 23S rRNA sequence detected in 18% strains seem to play a less significant role.
Collapse
|
4
|
Shen Z, Wang Y, Zhang Q, Shen J. Antimicrobial Resistance in Campylobacter spp. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0013-2017. [PMID: 29623873 PMCID: PMC11633568 DOI: 10.1128/microbiolspec.arba-0013-2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 01/07/2023] Open
Abstract
Campylobacter is a major foodborne pathogen and has become increasingly resistant to clinically important antimicrobials. To cope with the selection pressure from antimicrobial use in both veterinary and human medicine, Campylobacter has developed multiple mechanisms for antibiotic resistance, including modification or mutation of antimicrobial targets, modification or inactivation of antibiotics, and reduced drug accumulation by drug efflux pumps. Some of these mechanisms confer resistance to a specific class of antimicrobials, while others give rise to multidrug resistance. Notably, new antibiotic resistance mechanisms continuously emerge in Campylobacter, and some examples include the recently discovered multidrug resistance genomic islands harboring multiple genes involved in the resistance to aminoglycosides and macrolides, a novel Cfr(C) conferring resistance to phenicols and other drugs, and a potent multidrug efflux pump CmeABC variant (RE-CmeABC) that shows a significantly enhanced function in multidrug resistance and is associated with exceedingly high-level resistance to fluoroquinolones. These newly emerged resistance mechanisms are horizontally transferable and greatly facilitate the adaptation of Campylobacter in the food-producing environments where antibiotics are frequently used. In this article, we will discuss how Campylobacter resists the action of various classes of antimicrobials, with an emphasis on newly discovered mechanisms.
Collapse
Affiliation(s)
- Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Integrated Genomic and Proteomic Analyses of High-level Chloramphenicol Resistance in Campylobacter jejuni. Sci Rep 2017; 7:16973. [PMID: 29209085 PMCID: PMC5716995 DOI: 10.1038/s41598-017-17321-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/15/2017] [Indexed: 12/02/2022] Open
Abstract
Campylobacter jejuni is a major zoonotic pathogen, and its resistance to antibiotics is of great concern for public health. However, few studies have investigated the global changes of the entire organism with respect to antibiotic resistance. Here, we provide mechanistic insights into high-level resistance to chloramphenicol in C. jejuni, using integrated genomic and proteomic analyses. We identified 27 single nucleotide polymorphisms (SNPs) as well as an efflux pump cmeB mutation that conferred modest resistance. We determined two radical S-adenosylmethionine (SAM) enzymes, one each from an SNP gene and a differentially expressed protein. Validation of major metabolic pathways demonstrated alterations in oxidative phosphorylation and ABC transporters, suggesting energy accumulation and increase in methionine import. Collectively, our data revealed a novel rRNA methylation mechanism by a radical SAM superfamily enzyme, indicating that two resistance mechanisms existed in Campylobacter. This work provided a systems biology perspective on understanding the antibiotic resistance mechanisms in bacteria.
Collapse
|
6
|
Antibiotic resistance trends and mechanisms in the foodborne pathogen,Campylobacter. Anim Health Res Rev 2017; 18:87-98. [DOI: 10.1017/s1466252317000135] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractCampylobacteris a major foodborne pathogen and is commonly present in food producing animals. This pathogenic organism is highly adaptable and has become increasingly resistant to various antibiotics. Recently, both the Centers for Disease Control and Prevention and the World Health Organization have designated antibiotic-resistantCampylobacteras a serious threat to public health. For the past decade, multiple mechanisms conferring resistance to clinically important antibiotics have been described inCampylobacter, and new resistance mechanisms constantly emerge in the pathogen. Some of the recent examples include theerm(B)gene conferring macrolide resistance, thecfr(C)genes mediating resistance to florfenicol and other antimicrobials, and a functionally enhanced variant of the multidrug resistance efflux pump, CmeABC. The continued emergence of new resistance mechanisms illustrates the extraordinary adaptability ofCampylobacterto antibiotic selection pressure and demonstrate the need for innovative strategies to control antibiotic-resistantCampylobacter. In this review, we will briefly summarize the trends of antibiotic resistance inCampylobacterand discuss the mechanisms of resistance to antibiotics used for animal production and important for clinical therapy in humans. A special emphasis will be given to the newly discovered antibiotic resistance.
Collapse
|
7
|
Dissemination of erm(B) and its associated multidrug-resistance genomic islands in Campylobacter from 2013 to 2015. Vet Microbiol 2017; 204:20-24. [PMID: 28532801 DOI: 10.1016/j.vetmic.2017.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 11/21/2022]
Abstract
A total of 1372 Campylobacter isolates (1107 Campylobacter coli and 265 Campylobacter jejuni) were obtained from 3462 samples collected from slaughterhouses and farms in three representative regions of China (Shandong, Guangdong, and Shanghai) over three successive years (2013-2015). Of these, 84 (84/1372, 6.1%) were erm(B)-positive, and all 84 positive isolates were identified as C. coli (83 chicken isolates and one swine isolate). The prevalence of erm(B) in Campylobacter isolates was compared amongst the different regions and between the three years investigated. The rates of erm(B)-positive Campylobacter in Guangdong increased remarkably over the experimental period (3.8% to 22.8%), while their higher rates observed in Shanghai (4.4%) and Shandong (2.4%) occurred in 2015 and 2014. Further, 72 erm(B)-positive isolates were associated with the type V and VI multidrug-resistance genomic islands (MDRGIs), which have previously only been identified in human Campylobacter isolates, while one isolate of chicken origin contained the type II MDRGI, which has previously been detected in swine isolates. Expansion of the erm(B) in Campylobacter with similar PFGE and MLST type from chicken isolates from Shanghai and Guangdong to human isolates identified previously in Shanghai was also observed. The findings in this study confirmed previously observed trend of dissemination of erm(B) and MDRGIs in zoonotic Campylobacter isolates and provide new insights into the prevalence of erm(B)-positive Campylobacter isolates in chickens and swine from three representative regions of China over a consecutive 3-year period.
Collapse
|
8
|
Tang Y, Dai L, Sahin O, Wu Z, Liu M, Zhang Q. Emergence of a plasmid-borne multidrug resistance gene cfr(C) in foodborne pathogen Campylobacter. J Antimicrob Chemother 2017; 72:1581-1588. [DOI: 10.1093/jac/dkx023] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/15/2017] [Indexed: 12/22/2022] Open
|
9
|
Gomes C, Martínez-Puchol S, Ruiz-Roldán L, Pons MJ, Del Valle Mendoza J, Ruiz J. Development and characterisation of highly antibiotic resistant Bartonella bacilliformis mutants. Sci Rep 2016; 6:33584. [PMID: 27667026 PMCID: PMC5035977 DOI: 10.1038/srep33584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/31/2016] [Indexed: 01/31/2023] Open
Abstract
The objective was to develop and characterise in vitro Bartonella bacilliformis antibiotic resistant mutants. Three B. bacilliformis strains were plated 35 or 40 times with azithromycin, chloramphenicol, ciprofloxacin or rifampicin discs. Resistance-stability was assessed performing 5 serial passages without antibiotic pressure. MICs were determined with/without Phe-Arg-β-Napthylamide and artesunate. Target alterations were screened in the 23S rRNA, rplD, rplV, gyrA, gyrB, parC, parE and rpoB genes. Chloramphenicol and ciprofloxacin resistance were the most difficult and easiest (>37.3 and 10.6 passages) to be selected, respectively. All mutants but one selected with chloramphenicol achieved high resistance levels. All rifampicin, one azithromycin and one ciprofloxacin mutants did not totally revert when cultured without antibiotic pressure. Azithromycin resistance was related to L4 substitutions Gln-66 → Lys or Gly-70 → Arg; L4 deletion Δ62–65 (Lys-Met-Tyr-Lys) or L22 insertion 83::Val-Ser-Glu-Ala-His-Val-Gly-Lys-Ser; in two chloramphenicol-resistant mutants the 23S rRNA mutation G2372A was detected. GyrA Ala-91 → Val and Asp-95 → Gly and GyrB Glu474 → Lys were detected in ciprofloxacin-resistant mutants. RpoB substitutions Gln-527 → Arg, His-540 → Tyr and Ser-545 → Phe plus Ser-588 → Tyr were detected in rifampicin-resistant mutants. In 5 mutants the effect of efflux pumps on resistance was observed. Antibiotic resistance was mainly related to target mutations and overexpression of efflux pumps, which might underlie microbiological failures during treatments.
Collapse
Affiliation(s)
- Cláudia Gomes
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Sandra Martínez-Puchol
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Lidia Ruiz-Roldán
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Maria J Pons
- School of Medicine, Research Center and Innovation of the Health Sciences Faculty, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru
| | - Juana Del Valle Mendoza
- School of Medicine, Research Center and Innovation of the Health Sciences Faculty, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru.,Instituto de Investigación Nutricional, Lima, Peru
| | - Joaquim Ruiz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Dinos GP, Athanassopoulos CM, Missiri DA, Giannopoulou PC, Vlachogiannis IA, Papadopoulos GE, Papaioannou D, Kalpaxis DL. Chloramphenicol Derivatives as Antibacterial and Anticancer Agents: Historic Problems and Current Solutions. Antibiotics (Basel) 2016; 5:antibiotics5020020. [PMID: 27271676 PMCID: PMC4929435 DOI: 10.3390/antibiotics5020020] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 12/19/2022] Open
Abstract
Chloramphenicol (CAM) is the D-threo isomer of a small molecule, consisting of a p-nitrobenzene ring connected to a dichloroacetyl tail through a 2-amino-1,3-propanediol moiety. CAM displays a broad-spectrum bacteriostatic activity by specifically inhibiting the bacterial protein synthesis. In certain but important cases, it also exhibits bactericidal activity, namely against the three most common causes of meningitis, Haemophilus influenzae, Streptococcus pneumoniae and Neisseria meningitidis. Resistance to CAM has been frequently reported and ascribed to a variety of mechanisms. However, the most important concerns that limit its clinical utility relate to side effects such as neurotoxicity and hematologic disorders. In this review, we present previous and current efforts to synthesize CAM derivatives with improved pharmacological properties. In addition, we highlight potentially broader roles of these derivatives in investigating the plasticity of the ribosomal catalytic center, the main target of CAM.
Collapse
Affiliation(s)
- George P Dinos
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece.
| | | | - Dionissia A Missiri
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece.
| | | | - Ioannis A Vlachogiannis
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece.
| | - Georgios E Papadopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26, GR-41221 Larissa, Greece.
| | - Dionissios Papaioannou
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece.
| | - Dimitrios L Kalpaxis
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece.
| |
Collapse
|
11
|
Florez-Cuadrado D, Ugarte-Ruiz M, Quesada A, Palomo G, Domínguez L, Porrero MC. Description of an erm(B)-carrying Campylobacter coli isolate in Europe. J Antimicrob Chemother 2015; 71:841-3. [PMID: 26604242 DOI: 10.1093/jac/dkv383] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Diego Florez-Cuadrado
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - María Ugarte-Ruiz
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Alberto Quesada
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Gonzalo Palomo
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Lucas Domínguez
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - M Concepción Porrero
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Li H, Xia X, Li X, Naren G, Fu Q, Wang Y, Wu C, Ding S, Zhang S, Jiang H, Li J, Shen J. Untargeted metabolomic profiling of amphenicol-resistant Campylobacter jejuni by ultra-high-performance liquid chromatography-mass spectrometry. J Proteome Res 2014; 14:1060-8. [PMID: 25491530 DOI: 10.1021/pr501061d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Campylobacter jejuni, an important foodborne microorganism, poses severe and emergent threats to human health as antibiotic resistance becomes increasingly prevalent. The mechanisms of drug resistance are hard to decipher, and little is known at the metabolic level. Here we apply metabolomic profiling to discover metabolic changes associated with amphenicol (chloramphenicol and florfenicol) resistance mutations of Campylobacter jejuni. An optimized sample preparation method was combined with ultra-high-performance liquid chromatography-time-of-flight mass spectrometry (UHPLC-TOF/MS) and pattern recognition for the analysis of small-molecule biomarkers of drug resistance. UHPLC-triple quadrupole MS operated in multiple reaction monitoring mode was used for quantitative analysis of metabolic features from UHPLC-TOF/MS profiling. Up to 41 differential metabolites involved in glycerophospholipid metabolism, sphingolipid metabolism, and fatty acid metabolism were observed in a chloramphenicol-resistant mutant strain of Campylobacter jejuni. A panel of 40 features was identified in florfenicol-resistant mutants, demonstrating changes in glycerophospholipid metabolism, sphingolipid metabolism, and tryptophan metabolism. This study shows that the UHPLC-MS-based metabolomics platform is a promising and valuable tool to generate new insights into the drug-resistant mechanism of Campylobacter jejuni.
Collapse
Affiliation(s)
- Hui Li
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University , Beijing 100193, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|