1
|
James C, Pemberton JM, Navarro P, Knott S. Evaluating regional heritability mapping methods for identifying QTLs in a wild population of Soay sheep. Heredity (Edinb) 2025:10.1038/s41437-025-00770-0. [PMID: 40410366 DOI: 10.1038/s41437-025-00770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/25/2025] Open
Abstract
The study of complex traits and their genetic underpinnings is crucial for understanding the evolutionary processes and mechanisms that shape natural populations. Regional heritability mapping (RHM) is a method for estimating the heritability of genomic segments that may contain both common and rare variants affecting a complex trait. This research is important because it advances our ability to detect genetic loci that contribute to phenotypic variation, even those that might be missed by traditional methods such as genome-wide association studies (GWAS). Here, we compare three RHM methods: SNP-RHM, which uses genomic relationship matrices (GRMs) based on SNP genotypes; Hap-RHM, which utilizes GRMs based on haplotypes; and SNHap-RHM, which integrates both SNP-based and haplotype-based GRMs jointly. These methods were applied to data from a wild population of sheep, focusing on the analysis of eleven polygenic traits. The results were compared with findings from previous GWAS to assess how RHM performed at identifying both known and novel associated loci. We found that while the inclusion of the regional matrix did not account for significant variation in all regions associated with trait variation as identified by GWAS, it did uncover several regions that were not previously linked to trait variation. This suggests that RHM methods can provide additional insights into the genetic architecture of complex traits, highlighting regions of the genome that may be overlooked by GWAS alone. This study underscores the importance of using complementary approaches to fully understand the genetic basis of complex traits in natural populations.
Collapse
Affiliation(s)
- Caelinn James
- Institute of Ecology and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK.
- Scotland's Rural College (SRUC), The Roslin Institute Building, Midlothian, UK.
| | - Josephine M Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Pau Navarro
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Sara Knott
- Institute of Ecology and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Spetter MJ, Utsumi SA, Armstrong EM, Rodríguez Almeida FA, Ross PJ, Macon L, Jara E, Cox A, Perea AR, Funk M, Redd M, Cibils AF, Spiegal SA, Estell RE. Genetic Diversity, Admixture, and Selection Signatures in a Rarámuri Criollo Cattle Population Introduced to the Southwestern United States. Int J Mol Sci 2025; 26:4649. [PMID: 40429794 PMCID: PMC12112442 DOI: 10.3390/ijms26104649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/03/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Rarámuri Criollo (RC) cattle have been raised by the isolated Tarahumara communities of Chihuahua, Mexico, for nearly 500 years, mostly under natural selection and minimal management. RC cattle were introduced to the United States Department of Agriculture-Agricultural Research Service Jornada Experimental Range (RCJER) in 2005 to begin evaluations of beef production performance and their adaptation to the harsh ecological and climatic conditions of the Northern Chihuahuan Desert. While this research unveiled crucial information on their phenotypic plasticity and adaptation, the genetic diversity and structure of the RCJER population remains poorly understood. This study analyzed the genetic diversity, population structure, ancestral composition, and selection signatures of the RCJER herd using a ~64 K SNP array. The RCJER herd exhibits moderate genetic diversity and low population stratification with no evident clustering, suggesting a shared genetic background among different subfamilies. Admixture analysis revealed the RCJER herd represents a distinctive genetic pool within the Criollo cattle breeds, with significant Iberian ancestry. Selection signatures identified candidate genes and quantitative trait loci (QTL) for traits associated with milk composition, growth, meat and carcass, reproduction, metabolic homeostasis, health, and coat color. The RCJER population represents a distinctive genetic resource adapted to harsh environmental conditions while maintaining productive and reproductive attributes. These findings are crucial to ensuring the long-term genetic conservation of the RCJER and their strategic expansion into locally adapted beef production systems in the USA.
Collapse
Affiliation(s)
- Maximiliano J. Spetter
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (S.A.U.); (A.C.); (A.R.P.); (M.F.)
| | - Santiago A. Utsumi
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (S.A.U.); (A.C.); (A.R.P.); (M.F.)
| | - Eileen M. Armstrong
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de la República, Montevideo 10129, Uruguay; (E.M.A.); (E.J.)
| | | | - Pablo J. Ross
- Inguran LLC Dba STgenetics, Navasota, TX 77868, USA;
| | - Lara Macon
- USDA Agricultural Research Service Jornada Experimental Range, Las Cruces, NM 88003, USA; (L.M.); (S.A.S.)
| | - Eugenio Jara
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de la República, Montevideo 10129, Uruguay; (E.M.A.); (E.J.)
| | - Andrew Cox
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (S.A.U.); (A.C.); (A.R.P.); (M.F.)
| | - Andrés R. Perea
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (S.A.U.); (A.C.); (A.R.P.); (M.F.)
| | - Micah Funk
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (S.A.U.); (A.C.); (A.R.P.); (M.F.)
| | - Matthew Redd
- Dugout Ranch/Canyonlands Research Center, The Nature Conservancy, Monticello, UT 84535, USA;
| | - Andrés F. Cibils
- USDA Southern Plains Climate Hub, Oklahoma and Central Plains Agricultural Research Center, El Reno, OK 73036, USA;
| | - Sheri A. Spiegal
- USDA Agricultural Research Service Jornada Experimental Range, Las Cruces, NM 88003, USA; (L.M.); (S.A.S.)
| | - Richard E. Estell
- USDA Agricultural Research Service Jornada Experimental Range, Las Cruces, NM 88003, USA; (L.M.); (S.A.S.)
| |
Collapse
|
3
|
Ristanic M, Zorc M, Glavinic U, Stevanovic J, Blagojevic J, Maletic M, Stanimirovic Z. Genome-Wide Analysis of Milk Production Traits and Selection Signatures in Serbian Holstein-Friesian Cattle. Animals (Basel) 2024; 14:669. [PMID: 38473054 DOI: 10.3390/ani14050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
To improve the genomic evaluation of milk-related traits in Holstein-Friesian (HF) cattle it is essential to identify the associated candidate genes. Novel SNP-based analyses, such as the genetic mapping of inherited diseases, GWAS, and genomic selection, have led to a new era of research. The aim of this study was to analyze the association of each individual SNP in Serbian HF cattle with milk production traits and inbreeding levels. The SNP 60 K chip Axiom Bovine BovMDv3 was deployed for the genotyping of 334 HF cows. The obtained genomic results, together with the collected phenotypic data, were used for a GWAS. Moreover, the identification of ROH segments was performed and served for inbreeding coefficient evaluation and ROH island detection. Using a GWAS, a polymorphism, rs110619097 (located in the intron of the CTNNA3 gene), was detected to be significantly (p < 0.01) associated with the milk protein concentration in the first lactation (adjusted to 305 days). The average genomic inbreeding value (FROH) was 0.079. ROH islands were discovered in proximity to genes associated with milk production traits and genomic regions under selection pressure for other economically important traits of dairy cattle. The findings of this pilot study provide useful information for a better understanding of the genetic architecture of milk production traits in Serbian HF dairy cows and can be used to improve lactation performances in Serbian HF cattle breeding programs.
Collapse
Affiliation(s)
- Marko Ristanic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Minja Zorc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1000 Ljubljana, Slovenia
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Jevrosima Stevanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Jovan Blagojevic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Milan Maletic
- Department of Reproduction, Fertility and Artificial Insemination, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Friedrich J, Bailey RI, Talenti A, Chaudhry U, Ali Q, Obishakin EF, Ezeasor C, Powell J, Hanotte O, Tijjani A, Marshall K, Prendergast J, Wiener P. Mapping restricted introgression across the genomes of admixed indigenous African cattle breeds. Genet Sel Evol 2023; 55:91. [PMID: 38097935 PMCID: PMC10722721 DOI: 10.1186/s12711-023-00861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The genomes of indigenous African cattle are composed of components with Middle Eastern (taurine) and South Asian (indicine) origins, providing a valuable model to study hybridization and to identify genetic barriers to gene flow. In this study, we analysed indigenous African cattle breeds as models of hybrid zones, considering taurine and indicine samples as ancestors. In a genomic cline analysis of whole-genome sequence data, we considered over 8 million variants from 144 animals, which allows for fine-mapping of potential genomic incompatibilities at high resolution across the genome. RESULTS We identified several thousand variants that had significantly steep clines ('SCV') across the whole genome, indicating restricted introgression. Some of the SCV were clustered into extended regions, with the longest on chromosome 7, spanning 725 kb and including 27 genes. We found that variants with a high phenotypic impact (e.g. indels, intra-genic and missense variants) likely represent greater genetic barriers to gene flow. Furthermore, our findings provide evidence that a large proportion of breed differentiation in African cattle could be linked to genomic incompatibilities and reproductive isolation. Functional evaluation of genes with SCV suggest that mitonuclear incompatibilities and genes associated with fitness (e.g. resistance to paratuberculosis) could account for restricted gene flow in indigenous African cattle. CONCLUSIONS To our knowledge, this is the first time genomic cline analysis has been applied to identify restricted introgression in the genomes of indigenous African cattle and the results provide extended insights into mechanisms (e.g. genomic incompatibilities) contributing to hybrid differentiation. These results have important implications for our understanding of genetic incompatibilities and reproductive isolation and provide important insights into the impact of cross-breeding cattle with the aim of producing offspring that are both hardy and productive.
Collapse
Affiliation(s)
- Juliane Friedrich
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Richard I Bailey
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
| | - Andrea Talenti
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Umer Chaudhry
- School of Veterinary Medicine, St. George's University, St. George's, Caribbean, Grenada
| | - Qasim Ali
- Department of Parasitology, The University of Agriculture Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Emmanuel F Obishakin
- Biotechnology Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Chukwunonso Ezeasor
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Jessica Powell
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Midlothian, UK
| | | | - Karen Marshall
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
| | - James Prendergast
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pamela Wiener
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| |
Collapse
|
5
|
Matsumoto H, Kimura S, Saito R, Takeichi M, Kashimura A, Inenaga T. Causative alleles for chondrodysplastic dwarfism, factor XI deficiency, and factor XIII deficiency in the Kumamoto sub-breed of Japanese Brown cattle. Anim Sci J 2023; 94:e13882. [PMID: 37909240 DOI: 10.1111/asj.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023]
Abstract
Japanese Brown cattle are the second most popular Wagyu breed, and the Kumamoto sub-breed shows better daily gain and carcass weight. One of the breeding objectives for this sub-breed is to reduce genetic defects. Chondrodysplastic dwarfism and factor VIII deficiency have been identified as genetic diseases in the Kumamoto sub-breed. Previously, we detected individuals in the Kumamoto sub-breed with causative alleles of genetic diseases identified in Japanese Black cattle. In the current study, 11 mutations responsible for genetic diseases in the Wagyu breeds were analyzed to evaluate the risk of genetic diseases in the Kumamoto sub-breed. Genotyping revealed the causative mutations of chondrodysplastic dwarfism, factor XI deficiency, and factor XIII deficiency and suggested the appearance of affected animals in this sub-breed. DNA testing for these diseases is needed to prevent economic loses in beef production using the Kumamoto sub-breed.
Collapse
Affiliation(s)
- Hirokazu Matsumoto
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Satoshi Kimura
- Course of Agricultural Sciences, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Ryo Saito
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Makoto Takeichi
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Atsushi Kashimura
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Toshiaki Inenaga
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| |
Collapse
|
6
|
Zhang H, Chinoy A, Mousavi P, Beeler A, Louie K, Collier C, Mishina Y. Elevated WNT signaling and compromised Hedgehog signaling due to Evc2 loss of function contribute to the abnormal molar patterning. FRONTIERS IN DENTAL MEDICINE 2022; 3:876015. [PMID: 38606060 PMCID: PMC11007741 DOI: 10.3389/fdmed.2022.876015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Ellis-van Creveld (EVC) syndrome is an autosomal recessive chondrodysplasia. The affected individuals bear a series of skeleton defects, congenital heart septum anomalies, midfacial defects, and dental defects. Previous studies using Evc or Evc2 mutant mice have characterized the pathological mechanism leading to various types of congenital defects. Some patients with EVC have supernumerary tooth; however, it is not known yet if there are supernumerary tooth formed in Evc or Evc2 mutant mice, and if yes, what is the pathological mechanism associated. In the present study, we used Evc2 mutant mice and analyze the pattern of molars in Evc2 mutant mice at various stages. Our studies demonstrate that Evc2 loss of function within the dental mesenchymal cells leads to abnormal molar patterning, and that the most anterior molar in the Evc2 mutant mandible represents a supernumerary tooth. Finally, we provide evidence supporting the idea that both compromised Hedgehog signaling and elevated WNT signaling due to Evc2 loss of function contributes to the supernumerary tooth formation.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Afriti Chinoy
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Paymon Mousavi
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Aubrey Beeler
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Ke’ale Louie
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Crystal Collier
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Genome-wide association analyses of osteochondrosis in Belgian Warmbloods reveal candidate genes associated with chondrocyte development. J Equine Vet Sci 2022; 111:103870. [DOI: 10.1016/j.jevs.2022.103870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/09/2021] [Accepted: 01/17/2022] [Indexed: 01/22/2023]
|
8
|
Direct and indirect contributions of molecular genetics to farm animal welfare: a review. Anim Health Res Rev 2021; 22:177-186. [PMID: 34842522 DOI: 10.1017/s1466252321000104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Since domestication, farm animals have played a key role to increase the prosperity of humankind, while animal welfare (AW) is debated even today. This paper aims to comprehensively review the contributions of developing molecular genetics to farm animal welfare (FAW) and to raise awareness among both scientists and farmers about AW. Welfare is a complex trait affected by genetic structure and environmental factors. Therefore, the best welfare status can be achieved not only to enhance environmental factors such as management and feeding practices, but also the genetic structure of animals must be improved. In this regard, advances in molecular genetics have made great contributions to improve the genetic structure of farm animals, which has increased AW. Today, by sequencing and/or molecular markers, genetic diseases may be detected and eliminated in local herds. Additionally, genes related to diseases or adaptations are investigated by molecular techniques, and the frequencies of desired genotypes are increased in farm animals to keep welfare at an optimized level. Furthermore, stress on animals can be reduced with DNA extraction from stool and feather samples which reduces physical contact between animals and veterinarians. Together with molecular genetics, advances in genome editing tools and biotechnology are promising to improve FAW in the future.
Collapse
|
9
|
Molecular and Cellular Pathogenesis of Ellis-van Creveld Syndrome: Lessons from Targeted and Natural Mutations in Animal Models. J Dev Biol 2020; 8:jdb8040025. [PMID: 33050204 PMCID: PMC7711556 DOI: 10.3390/jdb8040025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023] Open
Abstract
Ellis-van Creveld syndrome (EVC; MIM ID #225500) is a rare congenital disease with an occurrence of 1 in 60,000. It is characterized by remarkable skeletal dysplasia, such as short limbs, ribs and polydactyly, and orofacial anomalies. With two of three patients first noted as being offspring of consanguineous marriage, this autosomal recessive disease results from mutations in one of two causative genes: EVC or EVC2/LIMBIN. The recent identification and manipulation of genetic homologs in animals has deepened our understanding beyond human case studies and provided critical insight into disease pathogenesis. This review highlights the utility of animal-based studies of EVC by summarizing: (1) molecular biology of EVC and EVC2/LIMBIN, (2) human disease signs, (3) dysplastic limb development, (4) craniofacial anomalies, (5) tooth anomalies, (6) tracheal cartilage abnormalities, and (7) EVC-like disorders in non-human species.
Collapse
|
10
|
Häfliger IM, Letko A, Murgiano L, Drögemüller C. De novo stop-lost germline mutation in FGFR3 causes severe chondrodysplasia in the progeny of a Holstein bull. Anim Genet 2020; 51:466-469. [PMID: 32239744 DOI: 10.1111/age.12934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 11/27/2022]
Abstract
Fifteen cases of chondrodysplasia characterized by disproportionate dwarfism occurred in the progeny of a single Holstein bull. A de novo mutation event in the germline of the sire was suspected as cause. Whole-genome sequencing revealed a single protein-changing variant in the stop codon of FGFR3 gene on chromosome 6. Sanger sequencing of EDTA blood proved that this variant occurred de novo and segregates perfectly with the observed phenotype in the affected cattle family. FGFR3 is an important regulator gene in bone formation owing to its key role in the bone elongation induced by FGFR3-dimers. The detected paternally inherited stop-lost variant in FGFR3 is predicted to add 93 additional amino acids to the protein's C-terminus. This study provides a second example of a dominant FGFR3 stop-lost variant as a pathogenic mutation of a severe form of chondrodysplasia. Even though FGFR3 is known to be associated with dwarfism and growth disorders in human and sheep, this study is the first to describe FGFR3-associated chondrodysplasia in cattle.
Collapse
Affiliation(s)
- I M Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - A Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - L Murgiano
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland.,Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, Liège, 4000, Belgium.,Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| |
Collapse
|
11
|
Kulkarni AK, Louie KW, Yatabe M, Ruellas ACDO, Mochida Y, Cevidanes LHS, Mishina Y, Zhang H. A Ciliary Protein EVC2/LIMBIN Plays a Critical Role in the Skull Base for Mid-Facial Development. Front Physiol 2018; 9:1484. [PMID: 30410447 PMCID: PMC6210651 DOI: 10.3389/fphys.2018.01484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/01/2018] [Indexed: 11/26/2022] Open
Abstract
Ellis-van Creveld (EvC) syndrome is an autosomal recessive chondrodysplastic disorder. Affected patients present a wide spectrum of symptoms including short stature, postaxial polydactyly, and dental abnormalities. We previously disrupted Evc2, one of the causative genes for EvC syndrome, in mice using a neural crest-specific, Cre-mediated approach (i.e., P0-Cre, referred to as Evc2 P0 mutants). Despite the fact that P0-Cre predominantly targets the mid-facial region, we reported that many mid-facial defects identified in Evc2 global mutants are not present in Evc2 P0 mutants at postnatal day 8 (P8). In the current study, we used multiple Cre lines (P0-Cre and Wnt1-Cre, respectively), to specifically delete Evc2 in neural crest-derived tissues and compared the resulting mid-facial defects at multiple time points (P8 and P28, respectively). While both Cre lines indistinguishably targeted the mid-facial region, they differentially targeted the anterior portion of the skull base. By comprehensively analyzing the shapes of conditional mutant skulls, we detected differentially affected mid-facial defects in Evc2 P0 mutants and Evc2 Wnt1 mutants. Micro-CT analysis of the skull base further revealed that the Evc2 mutation leads to a differentially affected skull base, caused by premature closure of the intersphenoid synchondrosis (presphenoidal synchondrosis), which limited the elongation of the anterior skull base during the postnatal development of the skull. Given the importance of the skull base in mid-facial bone development, our results suggest that loss of function of Evc2 within the skull base secondarily leads to many aspects of the mid-facial defects developed by the EvC syndrome.
Collapse
Affiliation(s)
- Anshul K Kulkarni
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Ke'ale W Louie
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Marilia Yatabe
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | | | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, United States
| | - Lucia H S Cevidanes
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Honghao Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Veitschegger K, Wilson LAB, Nussberger B, Camenisch G, Keller LF, Wroe S, Sánchez-Villagra MR. Resurrecting Darwin's Niata - anatomical, biomechanical, genetic, and morphometric studies of morphological novelty in cattle. Sci Rep 2018; 8:9129. [PMID: 29904085 PMCID: PMC6002398 DOI: 10.1038/s41598-018-27384-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/29/2018] [Indexed: 01/18/2023] Open
Abstract
The Niata was a cattle variety from South America that figured prominently in writings on evolution by Charles Darwin. Its shortened head and other aspects of its unusual morphology have been subject of unsettled discussions since Darwin’s time. Here, we examine the anatomy, cranial shape, skull biomechanics, and population genetics of the Niata. Our results show that the Niata was a viable variety of cattle and exhibited anatomical differences to known chondrodysplastic forms. In cranial shape and genetic analysis, the Niata occupies an isolated position clearly separated from other cattle. Computational biomechanical model comparison reveals that the shorter face of the Niata resulted in a restricted distribution and lower magnitude of stress during biting. Morphological and genetic data illustrate the acquisition of novelty in the domestication process and confirm the distinct nature of the Niata cattle, validating Darwin’s view that it was a true breed.
Collapse
Affiliation(s)
- Kristof Veitschegger
- Palaeontological Institute and Museum, University of Zurich, Karl Schmid-Strasse 4, 8006, Zurich, Switzerland
| | - Laura A B Wilson
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Beatrice Nussberger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Glauco Camenisch
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Zoological Museum, University of Zurich, Karl Schmid-Strasse 4, 8006, Zurich, Switzerland
| | - Stephen Wroe
- Department of Zoology, School of Environmental and Rural Sciences, University of New England, Armidale, NSW, 2351, Australia
| | - Marcelo R Sánchez-Villagra
- Palaeontological Institute and Museum, University of Zurich, Karl Schmid-Strasse 4, 8006, Zurich, Switzerland.
| |
Collapse
|
13
|
Kwon EK, Louie K, Kulkarni A, Yatabe M, Ruellas ACDO, Snider TN, Mochida Y, Cevidanes LHS, Mishina Y, Zhang H. The Role of Ellis-Van Creveld 2(EVC2) in Mice During Cranial Bone Development. Anat Rec (Hoboken) 2017; 301:46-55. [PMID: 28950429 DOI: 10.1002/ar.23692] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 11/09/2022]
Abstract
EvC syndrome is a type of autosomal-recessive chondrodysplasia. Previous case studies in patients suggest abnormal craniofacial development, in addition to dwarfism and tooth abnormalities. To investigate how craniofacial development is affected in EvC patients, surface models were generated from micro-CT scans of control mice, Evc2 global mutant mice and Evc2 neural crest-specific mutant mice. The anatomic landmarks were placed on the surface model to assess the morphological abnormalities in the Evc2 mutants. Through analyzing the linear and angular measurements between landmarks, we identified a smaller overall skull, shorter nasal bone, shorter frontal bone, and shorter cranial base in the Evc2 global mutants. By comparing neural crest-specific Evc2 mutants with control mice, we demonstrated that the abnormalities within the mid-facial regions are not accounted for by the Evc2 mutation within these regions. Additionally, we also identified disproportionate length to width ratios in the Evc2 mutants at all levels from anterior to posterior of the skull. Overall, this study demonstrates a more comprehensive analysis on the craniofacial morphological abnormalities in EvC syndrome and provides the developmental insight to appreciate the impact of Evc2 mutation within the neural crest cells on multiple aspects of skull deformities. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 301:46-55, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Edwin K Kwon
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan.,Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Michigan
| | - Ke'ale Louie
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan
| | - Anshul Kulkarni
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan
| | - Marilia Yatabe
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Michigan
| | | | - Taylor N Snider
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan.,Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Michigan
| | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts
| | - Lucia H S Cevidanes
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Michigan
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan
| | - Honghao Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan
| |
Collapse
|
14
|
Boegheim IJM, Leegwater PAJ, van Lith HA, Back W. Current insights into the molecular genetic basis of dwarfism in livestock. Vet J 2017; 224:64-75. [PMID: 28697878 DOI: 10.1016/j.tvjl.2017.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 05/03/2017] [Accepted: 05/26/2017] [Indexed: 11/29/2022]
Abstract
Impairment of bone growth at a young age leads to dwarfism in adulthood. Dwarfism can be categorised as either proportionate, an overall size reduction without changes in body proportions, or disproportionate, a size reduction in one or more limbs, with changes in body proportions. Many forms of dwarfism are inherited and result from structural disruptions or disrupted signalling pathways. Hormonal disruptions are evident in Brooksville miniature Brahman cattle and Z-linked dwarfism in chickens, caused by mutations in GH1 and GHR. Furthermore, mutations in IHH are the underlying cause of creeper achondroplasia in chickens. Belgian blue cattle display proportionate dwarfism caused by a mutation in RNF11, while American Angus cattle dwarfism is caused by a mutation in PRKG2. Mutations in EVC2 are associated with dwarfism in Japanese brown cattle and Tyrolean grey cattle. Fleckvieh dwarfism is caused by mutations in the GON4L gene. Mutations in COL10A1 and COL2A1 cause dwarfism in pigs and Holstein cattle, both associated with structural disruptions, while several mutations in ACAN are associated with bulldog-type dwarfism in Dexter cattle and dwarfism in American miniature horses. In other equine breeds, such as Shetland ponies and Friesian horses, dwarfism is caused by mutations in SHOX and B4GALT7. In Texel sheep, chondrodysplasia is associated with a deletion in SLC13A1. This review discusses genes known to be involved in these and other forms of dwarfism in livestock.
Collapse
Affiliation(s)
- Iris J M Boegheim
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112-114, NL-3584 CM Utrecht, The Netherlands
| | - Peter A J Leegwater
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands
| | - Hein A van Lith
- Division of Animal Welfare and Laboratory Animal Science, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, NL-3584 CM Utrecht, The Netherlands; Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Universiteitsweg 100, NL-3584 CG Utrecht, The Netherlands
| | - Willem Back
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112-114, NL-3584 CM Utrecht, The Netherlands.
| |
Collapse
|
15
|
Ciepłoch A, Rutkowska K, Oprządek J, Poławska E. Genetic disorders in beef cattle: a review. Genes Genomics 2017; 39:461-471. [PMID: 28458779 PMCID: PMC5387086 DOI: 10.1007/s13258-017-0525-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/18/2017] [Indexed: 01/31/2023]
Abstract
The main purpose of present review is to describe and organize autosomal recessive disorders (arachnomelia, syndactylism, osteopetrosis, dwarfism, crooked tail syndrome, muscular hyperplasia, glycogen storage disease, protoporphyria), which occur among beef cattle, and methods that can be applied to detect these defects. Prevalence of adverse alleles in beef breeds happens due to human activity—selections of favorable features, e.g. developed muscle tissue. Unfortunately, carriers of autosomal recessive diseases are often characterized by these attributes. Fast and effective identification of individuals, that may carry faulty genes, can prevent economical losses.
Collapse
Affiliation(s)
- Aleksandra Ciepłoch
- Department of Animal Improvement, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Karolina Rutkowska
- Department of Animal Improvement, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Jolanta Oprządek
- Department of Animal Improvement, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Ewa Poławska
- Department of Animal Improvement, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| |
Collapse
|
16
|
Zhang H, Takeda H, Tsuji T, Kamiya N, Kunieda T, Mochida Y, Mishina Y. Loss of Function of Evc2 in Dental Mesenchyme Leads to Hypomorphic Enamel. J Dent Res 2017; 96:421-429. [PMID: 28081373 DOI: 10.1177/0022034516683674] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ellis-van Creveld (EvC) syndrome is an autosomal-recessive skeletal dysplasia, characterized by short stature and postaxial polydactyly. A series of dental abnormalities, including hypomorphic enamel formation, has been reported in patients with EvC. Despite previous studies that attempted to uncover the mechanism leading to abnormal tooth development, little is known regarding how hypomorphic enamel is formed in patients with EvC. In the current study, using Evc2/ Limbin mutant mice we recently generated, we analyzed enamel formation in the mouse incisor. Consistent with symptoms in human patients, we observed that Evc2 mutant mice had smaller incisors with enamel hypoplasia. Histologic observations coupled with ameloblast marker analyses suggested that Evc2 mutant preameloblasts were capable of differentiating to secretory ameloblasts; this process, however, was apparently delayed, due to delayed odontoblast differentiation, mediated by a limited number of dental mesenchymal stem cells in Evc2 mutant mice. This concept was further supported by the observation that dental mesenchymal-specific deletion of Evc2 phenocopied the tooth abnormalities in Evc2 mutants. Overall, our findings suggest that mutations in Evc2 affect dental mesenchymal stem cell homeostasis, which further leads to hypomorphic enamel formation.
Collapse
Affiliation(s)
- H Zhang
- 1 Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - H Takeda
- 2 Unit of Animal Genomics, GIGA Research Center and Faculty of Veterinary Medicine, University of Liège, 1 Avenue de l'Hôpital, Liège, Belgium
| | - T Tsuji
- 3 Graduate School of Environmental and Life Science, Okayama University, Okayama City, Japan
| | - N Kamiya
- 1 Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Faculty of Budo and Sport Studies, Tenri University, Nara, Japan
| | - T Kunieda
- 3 Graduate School of Environmental and Life Science, Okayama University, Okayama City, Japan
| | - Y Mochida
- 4 Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Y Mishina
- 1 Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Zhang H, Kamiya N, Tsuji T, Takeda H, Scott G, Rajderkar S, Ray MK, Mochida Y, Allen B, Lefebvre V, Hung IH, Ornitz DM, Kunieda T, Mishina Y. Elevated Fibroblast Growth Factor Signaling Is Critical for the Pathogenesis of the Dwarfism in Evc2/Limbin Mutant Mice. PLoS Genet 2016; 12:e1006510. [PMID: 28027321 PMCID: PMC5189957 DOI: 10.1371/journal.pgen.1006510] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/29/2016] [Indexed: 02/07/2023] Open
Abstract
Ellis-van Creveld (EvC) syndrome is a skeletal dysplasia, characterized by short limbs, postaxial polydactyly, and dental abnormalities. EvC syndrome is also categorized as a ciliopathy because of ciliary localization of proteins encoded by the two causative genes, EVC and EVC2 (aka LIMBIN). While recent studies demonstrated important roles for EVC/EVC2 in Hedgehog signaling, there is still little known about the pathophysiological mechanisms underlying the skeletal dysplasia features of EvC patients, and in particular why limb development is affected, but not other aspects of organogenesis that also require Hedgehog signaling. In this report, we comprehensively analyze limb skeletogenesis in Evc2 mutant mice and in cell and tissue cultures derived from these mice. Both in vivo and in vitro data demonstrate elevated Fibroblast Growth Factor (FGF) signaling in Evc2 mutant growth plates, in addition to compromised but not abrogated Hedgehog-PTHrP feedback loop. Elevation of FGF signaling, mainly due to increased Fgf18 expression upon inactivation of Evc2 in the perichondrium, critically contributes to the pathogenesis of limb dwarfism. The limb dwarfism phenotype is partially rescued by inactivation of one allele of Fgf18 in the Evc2 mutant mice. Taken together, our data uncover a novel pathogenic mechanism to understand limb dwarfism in patients with Ellis-van Creveld syndrome.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan, United States of America
| | - Nobuhiro Kamiya
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan, United States of America
- Reproductive and Developmental Biology Laboratory (RDBL), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina, United States of America
| | - Takehito Tsuji
- Graduate School of Environmental and Life Science, Okayama University, Okayama City, Japan
| | - Haruko Takeda
- Reproductive and Developmental Biology Laboratory (RDBL), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina, United States of America
| | - Greg Scott
- Knock Out Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina, United States of America
| | - Sudha Rajderkar
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan, United States of America
| | - Manas K. Ray
- Knock Out Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina, United States of America
| | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Benjamin Allen
- School of Medicine, University of Michigan, Michigan, United States of America
| | - Veronique Lefebvre
- Department of Cellular & Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Irene H. Hung
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tetsuo Kunieda
- Graduate School of Environmental and Life Science, Okayama University, Okayama City, Japan
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan, United States of America
- Reproductive and Developmental Biology Laboratory (RDBL), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina, United States of America
- Knock Out Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
18
|
Casas E, Kehrli ME. A Review of Selected Genes with Known Effects on Performance and Health of Cattle. Front Vet Sci 2016; 3:113. [PMID: 28018909 PMCID: PMC5156656 DOI: 10.3389/fvets.2016.00113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/28/2016] [Indexed: 11/21/2022] Open
Abstract
There are genetic conditions that influence production in dairy and beef cattle. The objective of this review was to describe relevant genetic conditions that have been associated with productivity and health in cattle. Genes or genomic regions that have been identified as a candidate for the condition will be included, and the genetic basis of the condition will be defined. Genes and genetic conditions included in this review are bovine leukocyte adhesion deficiency, deficiency of the uridine monophosphate synthase, bovine chronic interstitial nephritis, horn development, myostatin, complex vertebral malformation, leptin, osteopetrosis, apoptosis peptide activating factor 1, chondrodysplastic dwarfism, caseins, calpastatin, umbilical hernia, lactoglobulin, citrullinemia, cholesterol deficiency, prions, thyroglobulin, diacylglycerol acyltransferase, syndactyly, maple syrup urine disease, slick hair, Factor XI deficiency, and μ-Calpain. This review is not meant to be comprehensive, and relevant information is provided to ascertain genetic markers associated with the conditions.
Collapse
Affiliation(s)
- Eduardo Casas
- National Animal Disease Center, USDA, ARS, Ames, IA, USA
| | | |
Collapse
|
19
|
A frameshift mutation in MOCOS is associated with familial renal syndrome (xanthinuria) in Tyrolean Grey cattle. BMC Vet Res 2016; 12:276. [PMID: 27919260 PMCID: PMC5139135 DOI: 10.1186/s12917-016-0904-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/30/2016] [Indexed: 11/17/2022] Open
Abstract
Background Renal syndromes are occasionally reported in domestic animals. Two identical twin Tyrolean Grey calves exhibited weight loss, skeletal abnormalities and delayed development associated with kidney abnormalities and formation of uroliths. These signs resembled inherited renal tubular dysplasia found in Japanese Black cattle which is associated with mutations in the claudin 16 gene. Despite demonstrating striking phenotypic similarities, no obvious presence of pathogenic variants of this candidate gene were found. Therefore further analysis was required to decipher the genetic etiology of the condition. Results The family history of the cases suggested the possibility of an autosomal recessive inheritance. Homozygosity mapping combined with sequencing of the whole genome of one case detected two associated non-synonymous private coding variants: A homozygous missense variant in the uncharacterized KIAA2026 gene (g.39038055C > G; c.926C > G), located in a 15 Mb sized region of homozygosity on BTA 8; and a homozygous 1 bp deletion in the molybdenum cofactor sulfurase (MOCOS) gene (g.21222030delC; c.1881delG and c.1782delG), located in an 11 Mb region of homozygosity on BTA 24. Pathogenic variants in MOCOS have previously been associated with inherited metabolic syndromes and xanthinuria in different species including Japanese Black cattle. Genotyping of two additional clinically suspicious cases confirmed the association with the MOCOS variant, as both animals had a homozygous mutant genotype and did not show the variant KIAA2026 allele. The identified genomic deletion is predicted to be highly disruptive, creating a frameshift and premature termination of translation, resulting in severely truncated MOCOS proteins that lack two functionally essential domains. The variant MOCOS allele was absent from cattle of other breeds and approximately 4% carriers were detected among more than 1200 genotyped Tyrolean Grey cattle. Biochemical urolith analysis of one case revealed the presence of approximately 95% xanthine. Conclusions The identified MOCOS loss of function variant is highly likely to cause the renal syndrome in the affected animals. The results suggest that the phenotypic features of the renal syndrome were related to an early onset form of xanthinuria, which is highly likely to lead to the progressive defects. The identification of the candidate causative mutation thus enables selection against this pathogenic variant in Tyrolean Grey cattle. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0904-4) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Badri MK, Zhang H, Ohyama Y, Venkitapathi S, Alamoudi A, Kamiya N, Takeda H, Ray M, Scott G, Tsuji T, Kunieda T, Mishina Y, Mochida Y. Expression of Evc2 in craniofacial tissues and craniofacial bone defects in Evc2 knockout mouse. Arch Oral Biol 2016; 68:142-52. [PMID: 27164562 DOI: 10.1016/j.archoralbio.2016.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Our objectives were to determine the expression of EVC2 in craniofacial tissues and investigate the effect of Evc2 deficiency on craniofacial bones using Evc2 knockout (KO) mouse model. DESIGN Evc2 KO mice were generated by introducing a premature stop codon followed by the Internal Ribosomal Entry Site fused to β-galactosidase (LacZ). Samples from wild-type (WT), heterozygous (Het) and homozygous Evc2 KO mice were prepared. LacZ staining and immunohistochemistry (IHC) with anti-β-galactosidase, anti-EVC2 and anti-SOX9 antibodies were performed. The craniofacial bones were stained with alcian blue and alizarin red. RESULTS The LacZ activity in KO was mainly observed in the anterior parts of viscerocranium. The Evc2-expressing cells were identified in many cartilageous regions by IHC with anti-β-galactosidase antibody in KO and Het embryos. The endogenous EVC2 protein was observed in these areas in WT embryos. Double labeling with anti-SOX9 antibody showed that these cells were mainly chondrocytes. At adult stages, the expression of EVC2 was found in chondrocytes of nasal bones and spheno-occipital synchondrosis, and osteocytes and endothelial-like cells of the premaxilla and mandible. The skeletal double staining demonstrated that craniofacial bones, where the expression of EVC2 was observed, in KO had the morphological defects as compared to WT. CONCLUSION To our knowledge, our study was the first to identify the types of Evc2-expressing cells in craniofacial tissues. Consistent with the expression pattern, abnormal craniofacial bone morphology was found in the Evc2 KO mice, suggesting that EVC2 may be important during craniofacial growth and development.
Collapse
Affiliation(s)
- Mohammed K Badri
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, 700 Albany Street, Boston, MA 02118, USA; Department of Pediatric Dentistry and Orthodontics, College of Dentistry, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Honghao Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA
| | - Yoshio Ohyama
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, 700 Albany Street, Boston, MA 02118, USA
| | - Sundharamani Venkitapathi
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, 700 Albany Street, Boston, MA 02118, USA
| | - Ahmed Alamoudi
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, 700 Albany Street, Boston, MA 02118, USA
| | - Nobuhiro Kamiya
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA; Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27009, USA
| | - Haruko Takeda
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, 1 Avenue de l'Hôpital, 4000-Liège, Belgium
| | - Manas Ray
- Knock Out Core, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27009, USA
| | - Greg Scott
- Knock Out Core, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27009, USA
| | - Takehito Tsuji
- Graduate School of Environmental and Life Science, Okayama University, Okayama City, Japan
| | - Tetsuo Kunieda
- Graduate School of Environmental and Life Science, Okayama University, Okayama City, Japan
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA; Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27009, USA; Knock Out Core, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27009, USA
| | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, 700 Albany Street, Boston, MA 02118, USA.
| |
Collapse
|
21
|
A frameshift mutation in GON4L is associated with proportionate dwarfism in Fleckvieh cattle. Genet Sel Evol 2016; 48:25. [PMID: 27036302 PMCID: PMC4818447 DOI: 10.1186/s12711-016-0207-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/17/2016] [Indexed: 01/10/2023] Open
Abstract
Background Low birth weight and postnatal growth restriction are the most evident symptoms of dwarfism. Accompanying skeletal aberrations may compromise the general condition and locomotion of affected individuals. Several paternal half-sibs with a low birth weight and a small size were born in 2013 in the Fleckvieh cattle population. Results Affected calves were strikingly underweight at birth in spite of a normal gestation length and had craniofacial abnormalities such as elongated narrow heads and brachygnathia inferior. In spite of a normal general condition, their growth remained restricted during rearing. We genotyped 27 affected and 10,454 unaffected animals at 44,672 single nucleotide polymorphisms and performed association tests followed by homozygosity mapping, which allowed us to map the locus responsible for growth failure to a 1.85-Mb segment on bovine chromosome 3. Analysis of whole-genome re-sequencing data from one affected and 289 unaffected animals revealed a 1-bp deletion (g.15079217delC, rs723240647) in the coding region of the GON4L gene that segregated with the dwarfism-associated haplotype. We showed that the deletion induces intron retention and premature termination of translation, which can lead to a severely truncated protein that lacks domains that are likely essential to normal protein function. The widespread use of an undetected carrier bull for artificial insemination has resulted in a tenfold increase in the frequency of the deleterious allele in the female population. Conclusions A frameshift mutation in GON4L is associated with autosomal recessive proportionate dwarfism in Fleckvieh cattle. The mutation has segregated in the population for more than 50 years without being recognized as a genetic disorder. However, the widespread use of an undetected carrier bull for artificial insemination caused a sudden accumulation of homozygous calves with dwarfism. Our findings provide the basis for genome-based mating strategies to avoid the inadvertent mating of carrier animals and thereby prevent the birth of homozygous calves with impaired growth. Electronic supplementary material The online version of this article (doi:10.1186/s12711-016-0207-z) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Wiedemar N, Riedi AK, Jagannathan V, Drögemüller C, Meylan M. Genetic Abnormalities in a Calf with Congenital Increased Muscular Tonus. J Vet Intern Med 2015; 29:1418-21. [PMID: 26289121 PMCID: PMC4858041 DOI: 10.1111/jvim.13599] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/06/2015] [Accepted: 07/21/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- N Wiedemar
- Institute of Genetics, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - A-K Riedi
- Clinic for Ruminants, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - V Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - C Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - M Meylan
- Clinic for Ruminants, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| |
Collapse
|
23
|
Zhang H, Takeda H, Tsuji T, Kamiya N, Rajderkar S, Louie K, Collier C, Scott G, Ray M, Mochida Y, Kaartinen V, Kunieda T, Mishina Y. Generation of Evc2/Limbin global and conditional KO mice and its roles during mineralized tissue formation. Genesis 2015. [PMID: 26219237 DOI: 10.1002/dvg.22879] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ellis-van Creveld (EvC) syndrome (OMIM 225500) is an autosomal recessive disease characterized with chondrodysplastic dwarfism in association with abnormalities in oral cavity. Ciliary proteins EVC and EVC2 have been identified as causative genes and they play an important role on Hedgehog signal transduction. We have also identified a causative gene LIMBIN for bovine chondrodysplastic dwarfism (bcd) that is later identified as the bovine ortholog of EVC2. Here, we report generation of conventional and conditional mutant Evc2/Limbin alleles that mimics mutations found in EvC patients and bcd cattle. Resulted homozygous mice showed no ciliary localization of EVC2 and EVC and displayed reduced Hedgehog signaling activity in association with skeletal and oral defects similar to the EvC patients. Cartilage-specific disruption of Evc2/Limbin resulted in similar but milder skeletal defects, whereas osteoblast-specific disruption did not cause overt changes in skeletal system. Neural crest-specific disruption of Evc2/Limbin resulted in defective incisor growth similar to that seen in conventional knockouts; however, differentiation of amelobolasts was relatively normal in the conditional knockouts. These results showcased functions of EVC2/LIMBIN during formation of mineralized tissues. Availability of the conditional allele for this gene should facilitate further detailed analyses of the role of EVC2/LIMBIN in pathogenesis of EvC syndrome. genesis 53:612-626, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan
| | - Haruko Takeda
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina.,Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, 1 Avenue De L'hôpital, Liège, Belgium
| | - Takehito Tsuji
- The Graduate School of Environment and Life Science, Okayama University, Okayama City, Japan
| | - Nobuhiro Kamiya
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan.,Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina.,Faculty of Budo and Sport Studies, Tenri University, Nara, Japan
| | - Sudha Rajderkar
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan
| | - Ke'Ale Louie
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan
| | - Crystal Collier
- College of Literature, Science and the Arts, University of Michigan, Michigan
| | - Greg Scott
- Knock out Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Manas Ray
- Knock out Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, 700 Albany Street, Boston, Massachusetts
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan
| | - Tetsuo Kunieda
- The Graduate School of Environment and Life Science, Okayama University, Okayama City, Japan
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan.,Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina.,Knock out Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
24
|
Muscatello LV, Benazzi C, Dittmer KE, Thompson KG, Murgiano L, Drögemüller C, Avallone G, Gentile A, Edwards JF, Piffer C, Bolcato M, Brunetti B. Ellis–van Creveld Syndrome in Grey Alpine Cattle. Vet Pathol 2015; 52:957-66. [DOI: 10.1177/0300985815588610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ellis–van Creveld (EvC) syndrome is a human autosomal recessive disorder caused by a mutation in either the EVC or EVC2 gene, and presents with short limbs, polydactyly, and ectodermal and heart defects. The aim of this study was to understand the pathologic basis by which deletions in the EVC2 gene lead to chondrodysplastic dwarfism and to describe the morphologic, immunohistochemical, and molecular hallmarks of EvC syndrome in cattle. Five Grey Alpine calves, with a known mutation in the EVC2 gene, were autopsied. Immunohistochemistry was performed on bone using antibodies to collagen II, collagen X, sonic hedgehog, fibroblast growth factor 2, and Ki67. Reverse transcription polymerase chain reaction was performed to analyze EVC1 and EVC2 gene expression. Autopsy revealed long bones that were severely reduced in length, as well as genital and heart defects. Collagen II was detected in control calves in the resting, proliferative, and hypertrophic zones and in the primary and secondary spongiosa, with a loss of labeling in the resting zone of 2 dwarfs. Collagen X was expressed in hypertrophic zone in the controls but was absent in the EvC cases. In affected calves and controls, sonic hedgehog labeled hypertrophic chondrocytes and primary and secondary spongiosa similarly. FGF2 was expressed in chondrocytes of all growth plate zones in the control calves but was lost in most EvC cases. The Ki67 index was lower in cases compared with controls. EVC and EVC2 transcripts were detected. Our data suggest that EvC syndrome of Grey Alpine cattle is a disorder of chondrocyte differentiation, with accelerated differentiation and premature hypertrophy of chondrocytes, and could be a spontaneous model for the equivalent human disease.
Collapse
Affiliation(s)
- L. V. Muscatello
- DIMEVET, University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| | - C. Benazzi
- DIMEVET, University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| | - K. E. Dittmer
- Institute of Veterinary, Animal, and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - K. G. Thompson
- Institute of Veterinary, Animal, and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - L. Murgiano
- Institute of Genetics, University of Bern, Bern, Switzerland
| | - C. Drögemüller
- Institute of Genetics, University of Bern, Bern, Switzerland
| | - G. Avallone
- DIMEVET, University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| | - A. Gentile
- DIMEVET, University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| | | | - C. Piffer
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - M. Bolcato
- DIMEVET, University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| | - B. Brunetti
- DIMEVET, University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| |
Collapse
|
25
|
Dittmer KE, Thompson KG. Approach to Investigating Congenital Skeletal Abnormalities in Livestock. Vet Pathol 2015; 52:851-61. [PMID: 25910781 DOI: 10.1177/0300985815579999] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Congenital skeletal abnormalities may be genetic, teratogenic, or nutritional in origin; distinguishing among these different causes is essential in the management of the disease but may be challenging. In some cases, teratogenic or nutritional causes of skeletal abnormalities may appear very similar to genetic causes. For example, chondrodysplasia associated with intrauterine zinc or manganese deficiency and mild forms of hereditary chondrodysplasia have very similar clinical features and histologic lesions. Therefore, historical data are essential in any attempt to distinguish genetic and acquired causes of skeletal lesions; as many animals as possible should be examined; and samples should be collected for future analysis, such as genetic testing. Acquired causes of defects often show substantial variation in presentation and may improve with time, while genetic causes frequently have a consistent presentation. If a disease is determined to be of genetic origin, a number of approaches may be used to detect mutations, each with advantages and disadvantages. These approaches include sequencing candidate genes, single-nucleotide polymorphism array with genomewide association studies, and exome or whole genome sequencing. Despite advances in technology and increased cost-effectiveness of these techniques, a good clinical history and description of the pathology and a reliable diagnosis are still key components of any investigation.
Collapse
Affiliation(s)
- K E Dittmer
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - K G Thompson
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
26
|
Peters M, Reber I, Jagannathan V, Raddatz B, Wohlsein P, Drögemüller C. DNA-based diagnosis of rare diseases in veterinary medicine: a 4.4 kb deletion of ITGB4 is associated with epidermolysis bullosa in Charolais cattle. BMC Vet Res 2015; 11:48. [PMID: 25890340 PMCID: PMC4351973 DOI: 10.1186/s12917-015-0366-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/23/2015] [Indexed: 11/16/2022] Open
Abstract
Background Rare diseases in livestock animals are traditionally poorly diagnosed. Other than clinical description and pathological examination, the underlying causes have, for the most part, remained unknown. A single case of congenital skin fragility in cattle was observed, necropsy, histological and ultrastructural examinations were carried out and whole genome sequencing was utilized to identify the causative mutation. Results A single purebred female Charolais calf with severe skin lesions was delivered full-term and died spontaneously after birth. The clinical and pathological findings exactly matched the gross description given by previous reports on epitheliogenesis imperfecta and epidermolysis bullosa (EB) in cattle. Histological and ultrastructural changes were consistent with EB junctionalis (EBJ). Genetic analysis revealed a previously unpublished ITGB4 loss-of-function mutation; the affected calf was homozygous for a 4.4 kb deletion involving exons 17 to 22, and the dam carried a single copy of the deletion indicating recessive inheritance. The homozygous mutant genotype did not occur in healthy controls of various breeds but some heterozygous carriers were found among Charolais cattle belonging to the affected herd. The mutant allele was absent in a representative sample of unrelated sires of the German Charolais population. Conclusion This is the first time in which a recessively inherited ITGB4 associated EBJ has been reported in cattle. The identification of heterozygous carriers is of importance in avoiding the transmission of this defect in future. Current DNA sequencing methods offer a powerful tool for understanding the genetic background of rare diseases in domestic animals having a reference genome sequence available. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0366-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Peters
- Chemisches und Veterinäruntersuchungsamt Westfalen, Zur Taubeneiche 10-12, 59821, Arnsberg, Germany.
| | - Irene Reber
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland.
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland.
| | - Barbara Raddatz
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland.
| |
Collapse
|
27
|
Murgiano L, Wiedemar N, Jagannathan V, Isling LK, Drögemüller C, Agerholm JS. Epidermolysis bullosa in Danish Hereford calves is caused by a deletion in LAMC2 gene. BMC Vet Res 2015; 11:23. [PMID: 25888738 PMCID: PMC4328060 DOI: 10.1186/s12917-015-0334-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/22/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Heritable forms of epidermolysis bullosa (EB) constitute a heterogeneous group of skin disorders of genetic aetiology that are characterised by skin and mucous membrane blistering and ulceration in response to even minor trauma. Here we report the occurrence of EB in three Danish Hereford cattle from one herd. RESULTS Two of the animals were necropsied and showed oral mucosal blistering, skin ulcerations and partly loss of horn on the claws. Lesions were histologically characterized by subepidermal blisters and ulcers. Analysis of the family tree indicated that inbreeding and the transmission of a single recessive mutation from a common ancestor could be causative. We performed whole genome sequencing of one affected calf and searched all coding DNA variants. Thereby, we detected a homozygous 2.4 kb deletion encompassing the first exon of the LAMC2 gene, encoding for laminin gamma 2 protein. This loss of function mutation completely removes the start codon of this gene and is therefore predicted to be completely disruptive. The deletion co-segregates with the EB phenotype in the family and absent in normal cattle of various breeds. Verifying the homozygous private variants present in candidate genes allowed us to quickly identify the causative mutation and contribute to the final diagnosis of junctional EB in Hereford cattle. CONCLUSIONS Our investigation confirms the known role of laminin gamma 2 in EB aetiology and shows the importance of whole genome sequencing in the analysis of rare diseases in livestock.
Collapse
Affiliation(s)
- Leonardo Murgiano
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3001, Bern, Switzerland.
| | - Natalie Wiedemar
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3001, Bern, Switzerland.
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3001, Bern, Switzerland.
| | - Louise K Isling
- Department of Veterinary Disease Biology, Section for Veterinary Pathology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 3, DK-1870, Frederiksberg C, Denmark.
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3001, Bern, Switzerland.
| | - Jørgen S Agerholm
- Department of Veterinary Disease Biology, Section for Veterinary Pathology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 3, DK-1870, Frederiksberg C, Denmark. .,Department of Large Animal Sciences, Section for Veterinary Reproduction and Obstetrics, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 68, DK-1870, Frederiksberg C, Denmark.
| |
Collapse
|
28
|
Dittmer KE, Thompson KG, Hassell C. Chondrodysplasia associated with summer drought in calves. N Z Vet J 2014; 63:174-6. [PMID: 25322677 DOI: 10.1080/00480169.2014.976852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- K E Dittmer
- a Institute of Veterinary, Animal and Biomedical Sciences, Massey University , Private Bag 11 222, Palmerston North 4442 , New Zealand
| | | | | |
Collapse
|