1
|
Adeva-Andany MM, Adeva-Contreras L, Carneiro-Freire N, Ameneiros-Rodríguez E, Vila-Altesor M, Calvo-Castro I. The impact of high altitude (hypobaric hypoxia) on insulin resistance in humans. J Physiol Biochem 2025; 81:35-55. [PMID: 40019670 DOI: 10.1007/s13105-025-01069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
Exposure to hypobaric hypoxia (high altitude) diminishes systemic tissue oxygenation. Tissue hypoxia induces insulin resistance and a metabolic switch that reduces oxidative phosphorylation and glucose storage while enhancing glycolysis. Similarly to hypobaric hypoxia, insulin resistance develops in normal humans undergoing normobaric hypoxia and in patients with obstructive sleep apnea. Following acute exposure to high altitude, insulin resistance returns to baseline values upon returning to sea level or when compensatory mechanisms restore tissue oxygenation. However, insulin resistance persists in subjects unable to achieve sufficient oxygen delivery to tissues. Likewise, long-term residents at high altitude develop persistent insulin resistance when compensatory mechanisms do not attain adequate tissue oxygenation. Among these subjects, insulin resistance may cause clinical complications, such as hypertriglyceridemia, reduced HDL-c, visceral obesity, metabolic dysfunction-associated steatotic liver disease, essential hypertension, type 2 diabetes, subclinical vascular injury, cardiovascular disease, and kidney disease. Impaired tissue oxygenation allows the stabilization of hypoxia-inducible factor-1 (HIF-1), a transcription factor that modulates the transcriptional activity of a number of genes to coordinate the physiological responses to tissue hypoxia. Among them, HIF-1 downregulates PPARG, that codes peroxisome proliferator-activated receptor-gamma (PPAR-γ) and PPARGCA, that codes PPAR-γ coactivator-1α, in order to enable insulin resistance and the metabolic switch from oxidative phosphorylation toward glycolysis.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, Ferrol, 15406, Spain.
| | - Lucia Adeva-Contreras
- School of Medicine, Santiago de Compostela University, Santiago de Compostela, Galicia, Spain
| | - Natalia Carneiro-Freire
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, Ferrol, 15406, Spain
| | - Eva Ameneiros-Rodríguez
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, Ferrol, 15406, Spain
| | - Matilde Vila-Altesor
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, Ferrol, 15406, Spain
| | - Isabel Calvo-Castro
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, Ferrol, 15406, Spain
| |
Collapse
|
2
|
Behrendt T, Quisilima JI, Bielitzki R, Behrens M, Glazachev OS, Brigadski T, Leßmann V, Schega L. Brain-Derived neurotrophic factor and inflammatory biomarkers are unaffected by acute and chronic intermittent hypoxic-hyperoxic exposure in geriatric patients: a randomized controlled trial. Ann Med 2024; 56:2304650. [PMID: 38253008 PMCID: PMC10810628 DOI: 10.1080/07853890.2024.2304650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Animal and human studies have shown that exposure to hypoxia can increase brain-derived neurotrophic factor (BDNF) protein transcription and reduce systematic inflammatory cytokine response. Therefore, the aim of this study was to investigate the acute and chronic effects of intermittent hypoxic-hyperoxic exposure (IHHE) prior to aerobic exercise on BDNF, interleukin-6 (IL-6), and C-reactive protein (CRP) blood levels in geriatric patients. PATIENTS AND METHODS Twenty-five geriatric patients (83.1 ± 5.0 yrs, 71.1 ± 10.0 kg, 1.8 ± 0.9 m) participated in a placebo-controlled, single-blinded trial and were randomly assigned to either an intervention (IG) or control group (CG) performing an aerobic cycling training (17 sessions, 20 min·session-1, 3 sessions·week-1). Prior to aerobic cycling exercise, the IG was additionally exposed to IHHE for 30 min, whereas the CG received continuous normoxic air. Blood samples were taken immediately before (pre-exercise) and 10 min (post-exercise) after the first session as well as 48 h (post-training) after the last session to determine serum (BDNFS) and plasma BDNF (BDNFP), IL-6, and CRP levels. Intervention effects were analyzed using a 2 x 2 analysis of covariance with repeated measures. Results were interpreted based on effect sizes with a medium effect considered as meaningful (ηp2 ≥ 0.06, d ≥ 0.5). RESULTS CRP was moderately higher (d = 0.51) in the CG compared to the IG at baseline. IHHE had no acute effect on BDNFS (ηp2 = 0.01), BDNFP (ηp2 < 0.01), BDNF serum/plasma-ratio (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 = 0.04). After the 6-week intervention, an interaction was found for BDNF serum/plasma-ratio (ηp2 = 0.06) but not for BDNFS (ηp2 = 0.04), BDNFP (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 < 0.01). BDNF serum/plasma-ratio increased from pre-exercise to post-training (d = 0.67) in the CG compared to the IG (d = 0.51). A main effect of time was found for BDNFP (ηp2 = 0.09) but not for BDNFS (ηp2 = 0.02). Within-group post-hoc analyses revealed a training-related reduction in BDNFP in the IG and CG by 46.1% (d = 0.73) and 24.7% (d = 0.57), respectively. CONCLUSION The addition of 30 min IHHE prior to 20 min aerobic cycling seems not to be effective to increase BDNFS and BDNFP or to reduce IL-6 and CRP levels in geriatric patients after a 6-week intervention.The study was retrospectively registered at drks.de (DRKS-ID: DRKS00025130).
Collapse
Affiliation(s)
- Tom Behrendt
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jessica Ibanez Quisilima
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Oleg S. Glazachev
- Department of Human Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, Medical Faculty, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Lutz Schega
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
3
|
Shepherd AI, James TJ, Gould AAM, Mayes H, Neal R, Shute J, Tipton MJ, Massey H, Saynor ZL, Perissiou M, Montgomery H, Sturgess C, Makaronidis J, Murray AJ, Grocott MPW, Cummings M, Young-Min S, Rennell-Smyth J, McNarry MA, Mackintosh KA, Dent H, Robson SC, Corbett J. Impact of nocturnal hypoxia on glycaemic control, appetite, gut microbiota and inflammation in adults with type 2 diabetes mellitus: A single-blind cross-over trial. J Physiol 2024; 602:5835-5854. [PMID: 38769692 DOI: 10.1113/jp285322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
High altitude residents have a lower incidence of type 2 diabetes mellitus (T2DM). Therefore, we examined the effect of repeated overnight normobaric hypoxic exposure on glycaemic control, appetite, gut microbiota and inflammation in adults with T2DM. Thirteen adults with T2DM [glycated haemoglobin (HbA1c): 61.1 ± 14.1 mmol mol-1; aged 64.2 ± 9.4 years; four female] completed a single-blind, randomised, sham-controlled, cross-over study for 10 nights, sleeping when exposed to hypoxia (fractional inspired O2 [F I O 2 ${{F}_{{\mathrm{I}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ] = 0.155; ∼2500 m simulated altitude) or normoxic conditions (F I O 2 ${{F}_{{\mathrm{I}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ = 0.209) in a randomised order. Outcome measures included: fasted plasma [glucose]; [hypoxia inducible factor-1α]; [interleukin-6]; [tumour necrosis factor-α]; [interleukin-10]; [heat shock protein 70]; [butyric acid]; peak plasma [glucose] and insulin sensitivity following a 2 h oral glucose tolerance test; body composition; appetite indices ([leptin], [acyl ghrelin], [peptide YY], [glucagon-like peptide-1]); and gut microbiota diversity and abundance [16S rRNA amplicon sequencing]. During intervention periods, accelerometers measured physical activity, sleep duration and efficiency, whereas continuous glucose monitors were used to assess estimated HbA1c and glucose management indicator and time in target range. Overnight hypoxia was not associated with changes in any outcome measure (P > 0.05 with small effect sizes) except fasting insulin sensitivity and gut microbiota alpha diversity, which exhibited trends (P = 0.10; P = 0.08 respectively) for a medium beneficial effect (d = 0.49; d = 0.59 respectively). Ten nights of overnight moderate hypoxic exposure did not significantly affect glycaemic control, gut microbiome, appetite, or inflammation in adults with T2DM. However, the intervention was well tolerated and a medium effect-size for improved insulin sensitivity and reduced alpha diversity warrants further investigation. KEY POINTS: Living at altitude lowers the incidence of type 2 diabetes mellitus (T2DM). Animal studies suggest that exposure to hypoxia may lead to weight loss and suppressed appetite. In a single-blind, randomised sham-controlled, cross-over trial, we assessed the effects of 10 nights of hypoxia (fractional inspired O2 ∼0.155) on glucose homeostasis, appetite, gut microbiota, inflammatory stress ([interleukin-6]; [tumour necrosis factor-α]; [interleukin-10]) and hypoxic stress ([hypoxia inducible factor 1α]; heat shock protein 70]) in 13 adults with T2DM. Appetite and inflammatory markers were unchanged following hypoxic exposure, but an increased insulin sensitivity and reduced gut microbiota alpha diversity were associated with a medium effect-size and statistical trends, which warrant further investigation using a definitive large randomised controlled trial. Hypoxic exposure may represent a viable therapeutic intervention in people with T2DM and particularly those unable or unwilling to exercise because barriers to uptake and adherence may be lower than for other lifestyle interventions (e.g. diet and exercise).
Collapse
Affiliation(s)
- Anthony I Shepherd
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Thomas J James
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Alex A M Gould
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Harry Mayes
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Rebecca Neal
- Department of Rehabilitation and Sport Sciences, Bournemouth University, Poole, UK
| | - Janis Shute
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Michael J Tipton
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Heather Massey
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Zoe L Saynor
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Maria Perissiou
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Hugh Montgomery
- Centre for Human Health and Performance, Dept Medicine, University College London, London, UK
| | - Connie Sturgess
- Centre for Human Health and Performance, Dept Medicine, University College London, London, UK
| | - Janine Makaronidis
- Centre for Obesity Research, University College London, London, UK
- National Institute for Health and Care Research, University College London Hospitals Biomedical Research Centre, London, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michael P W Grocott
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton & University of Southampton, Southampton, UK
| | - Michael Cummings
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Steven Young-Min
- Rheumatology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Janet Rennell-Smyth
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Patient and public involvement member
| | - Melitta A McNarry
- School of Biological Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Kelly A Mackintosh
- School of Biological Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Hannah Dent
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Institute of Life Sciences and Healthcare, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Samuel C Robson
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, School of Sport and Exercise Sciences, Swansea University, Swansea, UK
- Institute of Life Sciences and Healthcare, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Jo Corbett
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
4
|
Corbett J, Tipton MJ, Perissiou M, James T, Young JS, Newman A, Cummings M, Montgomery H, Grocott MPW, Shepherd AI. Effect of different levels of acute hypoxia on subsequent oral glucose tolerance in males with overweight: A balanced cross-over pilot feasibility study. Physiol Rep 2023; 11:e15623. [PMID: 37144546 PMCID: PMC10161207 DOI: 10.14814/phy2.15623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 05/06/2023] Open
Abstract
Previous research has shown that ≤60 min hypoxic exposure improves subsequent glycaemic control, but the optimal level of hypoxia is unknown and data are lacking from individuals with overweight. We undertook a cross-over pilot feasibility study investigating the effect of 60-min prior resting exposure to different inspired oxygen fractions (CON FI O2 = 0.209; HIGH FI O2 = 0.155; VHIGH FI O2 = 0.125) on glycaemic control, insulin sensitivity, and oxidative stress during a subsequent oral glucose tolerance test (OGTT) in males with overweight (mean (SD) BMI = 27.6 (1.3) kg/m2 ; n = 12). Feasibility was defined by exceeding predefined withdrawal criteria for peripheral blood oxygen saturation (SpO2 ), partial pressure of end-tidal oxygen or carbon dioxide and acute mountain sickness (AMS), and dyspnoea symptomology. Hypoxia reduced SpO2 in a stepwise manner (CON = 97(1)%; HIGH = 91(1)%; VHIGH = 81(3)%, p < 0.001), but did not affect peak plasma glucose concentration (CON = 7.5(1.8) mmol∙L-1 ; HIGH = 7.7(1.1) mmol∙L-1 ; VHIGH = 7.7(1.1) mmol∙L-1 ; p = 0.777; η2 = 0.013), plasma glucose area under the curve, insulin sensitivity, or metabolic clearance rate of glucose (p > 0.05). We observed no between-conditions differences in oxidative stress (p > 0.05), but dyspnoea and AMS symptoms increased in VHIGH (p < 0.05), with one participant meeting the withdrawal criteria. Acute HIGH or VHIGH exposure prior to an OGTT does not influence glucose homeostasis in males with overweight, but VHIGH is associated with adverse symptomology and reduced feasibility.
Collapse
Affiliation(s)
- Jo Corbett
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Michael J Tipton
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Maria Perissiou
- Clinical, Health and Rehabilitation Team, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Thomas James
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
- Clinical, Health and Rehabilitation Team, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - John S Young
- National Horizons Centre, Teesside University, Middlesbrough, UK
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Alexander Newman
- National Horizons Centre, Teesside University, Middlesbrough, UK
| | - Michael Cummings
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Hugh Montgomery
- Centre for Sport Exercise and Health, Dept Medicine, University College London, London, UK
| | - Michael P W Grocott
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, UK
| | - Anthony I Shepherd
- Clinical, Health and Rehabilitation Team, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| |
Collapse
|
5
|
Eglin CM, Wright J, Shepherd AI, Massey H, Hollis S, Towse J, Young JS, Maley MJ, Bailey SJ, Wilkinson C, Montgomery H, Tipton MJ. Plasma biomarkers of endothelial function, inflammation and oxidative stress in individuals with non-freezing cold injury. Exp Physiol 2023; 108:448-464. [PMID: 36808666 PMCID: PMC10988512 DOI: 10.1113/ep090722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/03/2023] [Indexed: 02/22/2023]
Abstract
NEW FINDINGS What is the central question of this study? Are biomarkers of endothelial function, oxidative stress and inflammation altered by non-freezing cold injury (NFCI)? What is the main finding and its importance? Baseline plasma [interleukin-10] and [syndecan-1] were elevated in individuals with NFCI and cold-exposed control participants. Increased [endothelin-1] following thermal challenges might explain, in part, the increased pain/discomfort experienced with NFCI. Mild to moderate chronic NFCI does not appear to be associated with either oxidative stress or a pro-inflammatory state. Baseline [interleukin-10] and [syndecan-1] and post-heating [endothelin-1] are the most promising candidates for diagnosis of NFCI. ABSTRACT Plasma biomarkers of inflammation, oxidative stress, endothelial function and damage were examined in 16 individuals with chronic NFCI (NFCI) and matched control participants with (COLD, n = 17) or without (CON, n = 14) previous cold exposure. Venous blood samples were collected at baseline to assess plasma biomarkers of endothelial function (nitrate, nitrite and endothelin-1), inflammation [interleukin-6 (IL-6), interleukin-10 (IL-10), tumour necrosis factor alpha and E-selectin], oxidative stress [protein carbonyl, 4-hydroxy-2-nonenal (4-HNE), superoxide dismutase and nitrotyrosine) and endothelial damage [von Willebrand factor, syndecan-1 and tissue type plasminogen activator (TTPA)]. Immediately after whole-body heating and separately, foot cooling, blood samples were taken for measurement of plasma [nitrate], [nitrite], [endothelin-1], [IL-6], [4-HNE] and [TTPA]. At baseline, [IL-10] and [syndecan-1] were increased in NFCI (P < 0.001 and P = 0.015, respectively) and COLD (P = 0.033 and P = 0.030, respectively) compared with CON participants. The [4-HNE] was elevated in CON compared with both NFCI (P = 0.002) and COLD (P < 0.001). [Endothelin-1] was elevated in NFCI compared with COLD (P < 0.001) post-heating. The [4-HNE] was lower in NFCI compared with CON post-heating (P = 0.032) and lower than both COLD (P = 0.02) and CON (P = 0.015) post-cooling. No between-group differences were seen for the other biomarkers. Mild to moderate chronic NFCI does not appear to be associated with a pro-inflammatory state or oxidative stress. Baseline [IL-10] and [syndecan-1] and post-heating [endothelin-1] are the most promising candidates for diagnosing NFCI, but it is likely that a combination of tests will be required.
Collapse
Affiliation(s)
- Clare M. Eglin
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Jennifer Wright
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Anthony I. Shepherd
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Heather Massey
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Sarah Hollis
- Regional Occupational Health Team (ROHT) CatterickCatterick GarrisonUK
| | - Jonathan Towse
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - John S. Young
- National Horizons CentreTeesside UniversityMiddlesbroughUK
| | - Matthew J. Maley
- Environmental Ergonomics Research CentreLoughborough School of Design and Creative ArtsLoughborough UniversityLoughboroughUK
| | - Stephen J. Bailey
- National Centre for Sport and Exercise MedicineSchool of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Chris Wilkinson
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | | | - Michael J. Tipton
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
6
|
Hennis PJ, Cumpstey AF, O'Doherty AF, Fernandez BO, Gilbert-Kawai ET, Mitchell K, Moyses H, Cobb A, Meale P, Pöhnl H, Mythen MG, Grocott MPW, Levett DZH, Martin DS, Feelisch M. Dietary Nitrate Supplementation Does Not Alter Exercise Efficiency at High Altitude - Further Results From the Xtreme Alps Study. Front Physiol 2022; 13:827235. [PMID: 35295581 PMCID: PMC8918982 DOI: 10.3389/fphys.2022.827235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Nitrate supplementation in the form of beetroot juice (BRJ) ingestion has been shown to improve exercise tolerance during acute hypoxia, but its effect on exercise physiology remains unstudied during sustained terrestrial high altitude exposure. We hypothesized that performing exercise at high altitude would lower circulating nitrate and nitrite levels and that BRJ ingestion would reverse this phenomenon while concomitantly improving key determinants of aerobic exercise performance. Methods Twenty seven healthy volunteers (21 male) underwent a series of exercise tests at sea level (SL, London, 75 m) and again after 5-8 days at high altitude (HA, Capanna Regina Margherita or "Margherita Hut," 4,559 m). Using a double-blind protocol, participants were randomized to consume a beetroot/fruit juice beverage (three doses per day) with high levels of nitrate (∼0.18 mmol/kg/day) or a nitrate-depleted placebo (∼11.5 μmoles/kg/day) control drink, from 3 days prior to the exercise trials until completion. Submaximal constant work rate cycle tests were performed to determine exercise efficiency and a maximal incremental ramp exercise test was undertaken to measure aerobic capacity, using breath-by-breath pulmonary gas exchange measurements throughout. Concentrations of nitrate, nitrite and nitrosation products were quantified in plasma samples collected at 5 timepoints during the constant work rate tests. Linear mixed modeling was used to analyze data. Results At both SL and HA, plasma nitrate concentrations were elevated in the nitrate supplementation group compared to placebo (P < 0.001) but did not change throughout increasing exercise work rate. Delta exercise efficiency was not altered by altitude exposure (P = 0.072) or nitrate supplementation (P = 0.836). V̇O2peak decreased by 24% at high altitude (P < 0.001) and was lower in the nitrate-supplemented group at both sea level and high altitude compared to placebo (P = 0.041). Dietary nitrate supplementation did not alter other peak exercise variables or oxygen consumption at anaerobic threshold. Circulating nitrite and S-nitrosothiol levels unexpectedly rose in a few individuals right after cessation of exercise at high altitude. Conclusion Whilst regularly consumed during an 8 days expedition to terrestrial high altitude, nitrate supplementation did not alter exercise efficiency and other exercise physiological variables, except decreasing V̇O2peak. These results and those of others question the practical utility of BRJ consumption during prolonged altitude exposure.
Collapse
Affiliation(s)
- Philip J Hennis
- Centre for Altitude Space and Extreme Environment Medicine, University College London Hospital NIHR Biomedical Research Centre, Institute of Sport, Exercise and Health, London, United Kingdom.,SHAPE Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Andrew F Cumpstey
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Alasdair F O'Doherty
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Bernadette O Fernandez
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Edward T Gilbert-Kawai
- Centre for Altitude Space and Extreme Environment Medicine, University College London Hospital NIHR Biomedical Research Centre, Institute of Sport, Exercise and Health, London, United Kingdom
| | - Kay Mitchell
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Helen Moyses
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Alexandra Cobb
- Centre for Altitude Space and Extreme Environment Medicine, University College London Hospital NIHR Biomedical Research Centre, Institute of Sport, Exercise and Health, London, United Kingdom
| | - Paula Meale
- Centre for Altitude Space and Extreme Environment Medicine, University College London Hospital NIHR Biomedical Research Centre, Institute of Sport, Exercise and Health, London, United Kingdom
| | - Helmut Pöhnl
- AURAPA Würzungen GmbH, Bietigheim-Bissingen, Germany
| | - Monty G Mythen
- Centre for Altitude Space and Extreme Environment Medicine, University College London Hospital NIHR Biomedical Research Centre, Institute of Sport, Exercise and Health, London, United Kingdom
| | - Michael P W Grocott
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Denny Z H Levett
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Daniel S Martin
- Centre for Altitude Space and Extreme Environment Medicine, University College London Hospital NIHR Biomedical Research Centre, Institute of Sport, Exercise and Health, London, United Kingdom.,Peninsula Medical School, University of Plymouth, Plymouth, United Kingdom
| | - Martin Feelisch
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
7
|
O’Brien KA, Murray AJ, Simonson TS. Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation. Life (Basel) 2022; 12:437. [PMID: 35330188 PMCID: PMC8954738 DOI: 10.3390/life12030437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia triggers complex inter- and intracellular signals that regulate tissue oxygen (O2) homeostasis, adjusting convective O2 delivery and utilization (i.e., metabolism). Human populations have been exposed to high-altitude hypoxia for thousands of years and, in doing so, have undergone natural selection of multiple gene regions supporting adaptive traits. Some of the strongest selection signals identified in highland populations emanate from hypoxia-inducible factor (HIF) pathway genes. The HIF pathway is a master regulator of the cellular hypoxic response, but it is not the only regulatory pathway under positive selection. For instance, regions linked to the highly conserved Notch signaling pathway are also top targets, and this pathway is likely to play essential roles that confer hypoxia tolerance. Here, we explored the importance of the Notch pathway in mediating the cellular hypoxic response. We assessed transcriptional regulation of the Notch pathway, including close cross-talk with HIF signaling, and its involvement in the mediation of angiogenesis, cellular metabolism, inflammation, and oxidative stress, relating these functions to generational hypoxia adaptation.
Collapse
Affiliation(s)
- Katie A. O’Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Koufakis T, Mustafa OG, Zebekakis P, Kotsa K. Re: "Clinical Recommendations for High Altitude Exposure of Individuals with Pre-Existing Cardiovascular Conditions: A Joint Statement by the European Society of Cardiology, the Council on Hypertension of the European Society of Cardiology, the European Society of Hypertension, the International Society of Mountain Medicine, the Italian Society of Hypertension and the Italian Society of Mountain Medicine" by Parati et al. High Alt Med Biol 2021; 23:100-102. [PMID: 34935457 DOI: 10.1089/ham.2021.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Omar G Mustafa
- Department of Diabetes, King's College Hospital, London, United Kingdom
| | - Pantelis Zebekakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
9
|
Pooja, Sharma V, Meena RN, Ray K, Panjwani U, Varshney R, Sethy NK. TMT-Based Plasma Proteomics Reveals Dyslipidemia Among Lowlanders During Prolonged Stay at High Altitudes. Front Physiol 2021; 12:730601. [PMID: 34721061 PMCID: PMC8554329 DOI: 10.3389/fphys.2021.730601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/02/2021] [Indexed: 01/11/2023] Open
Abstract
Acute exposure to high altitude perturbs physiological parameters and induces an array of molecular changes in healthy lowlanders. However, activation of compensatory mechanisms and biological processes facilitates high altitude acclimatization. A large number of lowlanders stay at high altitude regions from weeks to months for work and professional commitments, and thus are vulnerable to altitude-associated disorders. Despite this, there is a scarcity of information for molecular changes associated with long-term stay at high altitudes. In the present study, we evaluated oxygen saturation (SpO2), heart rate (HR), and systolic and diastolic blood pressure (SBP and DBP) of lowlanders after short- (7 days, HA-D7) and long-term (3 months, HA-D150) stay at high altitudes, and used TMT-based proteomics studies to decipher plasma proteome alterations. We observed improvements in SpO2 levels after prolonged stay, while HR, SBP, and DBP remained elevated as compared with short-term stay. Plasma proteomics studies revealed higher levels of apolipoproteins APOB, APOCI, APOCIII, APOE, and APOL, and carbonic anhydrases (CA1 and CA2) during hypoxia exposure. Biological network analysis also identified profound alterations in lipoprotein-associated pathways like plasma lipoprotein assembly, VLDL clearance, chylomicron assembly, chylomicron remodeling, plasma lipoprotein clearance, and chylomicron clearance. In corroboration, lipid profiling revealed higher levels of total cholesterol (TC), triglycerides (TGs), low-density lipoprotein (LDL) for HA-D150 whereas high density lipoproteins (HDL) levels were lower as compared with HA-D7 and sea-level indicating dyslipidemia. We also observed higher levels of proinflammatory cytokines IL-6, TNFα, and CRP for HA-D150 along with oxidized LDL (oxLDL), suggesting vascular inflammation and proartherogenic propensity. These results demonstrate that long-term stay at high altitudes exacerbates dyslipidemia and associated disorders.
Collapse
Affiliation(s)
- Pooja
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, New Delhi, India
| | - Vandana Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, New Delhi, India
| | - Ram Niwas Meena
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, New Delhi, India
| | - Koushik Ray
- Neurophysiology Department, Defence Institute of Physiology and Allied Sciences, New Delhi, India
| | - Usha Panjwani
- Neurophysiology Department, Defence Institute of Physiology and Allied Sciences, New Delhi, India
| | - Rajeev Varshney
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, New Delhi, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, New Delhi, India
| |
Collapse
|
10
|
Arellano-Buendía AS, Castañeda-Lara LG, Loredo-Mendoza ML, García-Arroyo FE, Rojas-Morales P, Argüello-García R, Juárez-Rojas JG, Tapia E, Pedraza-Chaverri J, Sánchez-Lozada LG, Osorio-Alonso H. Effects of Allicin on Pathophysiological Mechanisms during the Progression of Nephropathy Associated to Diabetes. Antioxidants (Basel) 2020; 9:antiox9111134. [PMID: 33203103 PMCID: PMC7697950 DOI: 10.3390/antiox9111134] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
This study aimed to assess the impact of allicin on the course of diabetic nephropathy. Study groups included control, diabetes, and diabetes-treated rats. Allicin treatment (16 mg/kg day/p.o.) started after 1 month of diabetes onset and was administered for 30 days. In the diabetes group, the systolic blood pressure (SBP) increased, also, the oxidative stress and hypoxia in the kidney cortex were evidenced by alterations in the total antioxidant capacity as well as the expression of nuclear factor (erythroid-derived 2)-like 2/Kelch ECH associating protein 1 (Nrf2/Keap1), hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), erythropoietin (Epo) and its receptor (Epo-R). Moreover, diabetes increased nephrin, and kidney injury molecule-1 (KIM-1) expression that correlated with mesangial matrix, the fibrosis index and with the expression of connective tissue growth factor (CTGF), transforming growth factor-β1 (TGF-β1), and α-smooth muscle actin (α-SMA). The insulin levels and glucose transporter protein type-4 (GLUT4) expression were decreased; otherwise, insulin receptor substrates 1 and 2 (IRS-1 and IRS-2) expression was increased. Allicin increased Nrf2 expression and decreased SBP, Keap1, HIF-1α, and VEGF expression. Concurrently, nephrin, KIM-1, the mesangial matrix, fibrosis index, and the fibrotic proteins were decreased. Additionally, allicin decreased hyperglycemia, improved insulin levels, and prevented changes in (GLUT4) and IRSs expression induced by diabetes. In conclusion, our results demonstrate that allicin has the potential to help in the treatment of diabetic nephropathy. The cellular mechanisms underlying its effects mainly rely on the regulation of antioxidant, antifibrotic, and antidiabetic mechanisms, which can contribute towards delay in the progression of renal disease.
Collapse
Affiliation(s)
- Abraham Said Arellano-Buendía
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
| | - Luis Gerardo Castañeda-Lara
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
| | - María L. Loredo-Mendoza
- Histopathology Laboratory, Research Subdivision, School of Medicine, Universidad Panamericana, Donatello 43, Mexico City 03910, Mexico;
| | - Fernando E. García-Arroyo
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
| | - Pedro Rojas-Morales
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico;
| | - Juan G. Juárez-Rojas
- Department of Endocrinology, Instituto Nacional de Cardiología “Ignacio Chávez” México City 14080, Mexico;
| | - Edilia Tapia
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
| | - Horacio Osorio-Alonso
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
- Correspondence: or
| |
Collapse
|
11
|
Effects of acute and sub-acute hypobaric hypoxia on oxidative stress: a field study in the Alps. Eur J Appl Physiol 2020; 121:297-306. [PMID: 33057877 DOI: 10.1007/s00421-020-04527-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/06/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE High altitude results in lower barometric pressure and hence partial pressure of O2 decrease can lead to several molecular and cellular changes, such as generation of reactive oxygen species (ROS). Electron Paramagnetic Resonance technique was adopted in the field, to evaluate the effects of acute and sub-acute hypobaric hypoxia (HH) on ROS production by micro-invasive method. Biological biomarkers, indicators of oxidative stress, renal function and inflammation were investigated too. METHODS Fourteen lowlander subjects (mean age 27.3 ± 5.9 years) were exposed to HH at 3269 m s.l. ROS production, related oxidative damage to cellular components, systemic inflammatory response and renal function were determined through blood and urine profile performed at 1st, 2nd, 4th, 7th, and 14th days during sojourn. RESULTS Kinetics of changes during HH exposition showed out significant (range p < 0.05-0.0001) increases that at max corresponds to 38% for ROS production rate, 140% for protein carbonyl, 44% for lipid peroxidation, 42% for DNA damage, 200% for inflammatory cytokines and modifications in renal function (assessed by neopterin concentration: 48%). Conversely, antioxidant capacity significantly (p < 0.0001) decreased - 17% at max. CONCLUSION This 14 days in-field study describes changes of oxidative-stress biomarkers during HH exposure in lowlanders. The results show an overproduction of ROS and consequent oxidative damage to protein, lipids and DNA with a decrease in antioxidant capacity and the involvement of inflammatory status and a transient renal dysfunction. Exposure at high altitude induces a hypoxic condition during acute and sub-acute phases accompanied by molecular adaptation mechanism indicating acclimatization.
Collapse
|
12
|
Hattersley J, Wilson AJ, Gifford R, Facer-Childs J, Stoten O, Cobb R, Thake CD, Reynolds RM, Woods D, Imray C. A comparison of the metabolic effects of sustained strenuous activity in polar environments on men and women. Sci Rep 2020; 10:13912. [PMID: 32807833 PMCID: PMC7431584 DOI: 10.1038/s41598-020-70296-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/24/2020] [Indexed: 01/05/2023] Open
Abstract
This study investigates differences in pre- to post-expedition energy expenditure, substrate utilisation and body composition, between the all-male Spear17 (SP-17) and all-female Ice Maiden (IM) transantarctic expeditions (IM: N = 6, 61 days, 1700 km; SP-17: N = 5, 67 days, 1750 km). Energy expenditure and substrate utilisation were measured by a standardised 36 h calorimetry protocol; body composition was determined using air displacement plethysmography. Energy balance calculation were used to assess the physical challenge. There was difference in the daily energy expenditure (IM: 4,939 kcal day−1; SP-17: 6,461 kcal day−1, p = 0.004); differences related to physical activity were small, but statistically significant (IM = 2,282 kcal day−1; SP-17 = 3,174 kcal day−1; p = 0.004). Bodyweight loss was modest (IM = 7.8%, SP-17 = 6.5%; p > 0.05) as was fat loss (IM = 30.4%, SP-17 = 40.4%; p > 0.05). Lean tissue weight change was statistically significant (IM = − 2.5%, SP-17 = + 1.0%; p = 0.05). No difference was found in resting or sleeping energy expenditure, normalised to lean tissue weight (p > 0.05); nor in energy expenditure when exercising at 80, 100 and 120 steps min−1, normalised to body weight (p > 0.05). Similarly, no difference was found in the change in normalised substrate utilisation for any of the activities (p > 0.05). Analysis suggested that higher daily energy expenditures for the men in Spear-17 was the result of higher physical demands resulting in a reduced demand for energy to thermoregulate compared to the women in Ice Maiden. The lack of differences between men and women in the change in energy expenditure and substrate utilisation, suggests no sex difference in response to exposure to extreme environments.
Collapse
Affiliation(s)
- John Hattersley
- Coventry NIHR CRF Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK. .,School of Engineering, University of Warwick, Coventry, CV4 7AL, USA. .,Faculty of Health and Life Sciences, Coventry University, Coventry, UK.
| | - Adrian J Wilson
- Coventry NIHR CRF Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK.,Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Rob Gifford
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, UK
| | - Jamie Facer-Childs
- Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Oliver Stoten
- Emergency Department, Royal Bournemouth Hospital, Bournemouth, BH7 7DW, UK
| | - Rinn Cobb
- Performance, Nutrition and Dietetic Consulting, pnd consulting.co.uk, Middlesbrough, UK
| | - C Doug Thake
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Rebecca M Reynolds
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - David Woods
- Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, UK.,Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK.,Northumbria and Newcastle NHS Trusts, Wansbeck General and Royal Victoria Infirmary, Newcastle, UK
| | - Chris Imray
- Coventry NIHR CRF Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK.,Faculty of Health and Life Sciences, Coventry University, Coventry, UK.,Department of Vascular and Renal Transplant Surgery, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| |
Collapse
|
13
|
Wang XM, Liu H, Li JY, Wei JX, Li X, Zhang YL, Li LZ, Zhang XZ. Rosamultin Attenuates Acute Hypobaric Hypoxia-Induced Bone Injuries by Regulation of Sclerostin and Its Downstream Signals. High Alt Med Biol 2020; 21:273-286. [PMID: 32598190 DOI: 10.1089/ham.2019.0113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Wang, Xing-Min, Hui Liu, Jian-Yu Li, Jin-Xia Wei, Xia Li, Yong-Liang Zhang, Ling-Zhi Li, and Xi-Zheng Zhang. Rosamultin attenuates acute hypobaric hypoxia-induced bone injuries by regulation of sclerostin and its downstream signals. High Alt Med Biol. 21:273-286, 2020. Background: Rosamultin, one of the compounds extracted from Potentilla anserina L., exhibited significant pharmacological activity against oxidative stress and hypoxic injury in our previous study. However, the effect of rosamultin on bone damage induced by acute hypobaric hypoxia (HH) has not been thoroughly studied. Methods: In this study, we first investigated the protective effect of rosamultin against bone damage in rats following acute exposure to simulated high-altitude hypoxia. Furthermore, we explored the detailed mechanism involved in the regulation of rat bone remodeling by rosamultin in an acute HH environment through analysis of sclerostin expression and the regulation of downstream signaling pathways. Results: Pretreatment with rosamultin significantly reduced HH-induced oxidative stress and inflammation, improved bone metabolic abnormalities, and alleviated the imbalance in bone remodeling in rats exposed to acute HH. Rosamultin markedly downregulated the expression of sclerostin, activated the Wnt/β-catenin signaling pathway, and enhanced the ratio of osteoprotegerin/receptor activator of nuclear factor kappa B ligand to maintain the balance of bone formation and resorption. Conclusions: Rosamultin attenuates acute HH-induced bone damage and improves abnormal bone remodeling in rats by inhibition of sclerostin expression and activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xing-Min Wang
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Hui Liu
- Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin Third Central Hospital, Nankai University, Tianjin, China
| | - Jian-Yu Li
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, China.,Key Laboratory of Interforce Functionality and Personalization of Bone Implants, Tianjin, China
| | - Jin-Xia Wei
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Xia Li
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Yong-Liang Zhang
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, China
| | - Ling-Zhi Li
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, China
| | - Xi-Zheng Zhang
- Key Laboratory of Interforce Functionality and Personalization of Bone Implants, Tianjin, China.,Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin, China
| |
Collapse
|
14
|
Preventive preclinical efficacy of intravenously administered sphingosine-1-phosphate (S1P) in strengthening hypoxia adaptive responses to acute and sub-chronic hypobaric hypoxia. Eur J Pharmacol 2019; 870:172877. [PMID: 31866409 DOI: 10.1016/j.ejphar.2019.172877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Sphingosine-1-phosphate (S1P) is emerging as a hypoxia responsive bio-lipid; systemically raised levels of S1P are proposed to have potential hypoxia pre-conditioning effects. The study aims to evaluate the hypoxia pre-conditioning efficacy of exogenously administered S1P in rats exposed to acute (24-48 hs (h)) and sub-chronic (7 days) hypobaric hypoxia. Sprague-Dawley rats (200 ± 20 g) were preconditioned with 1 μg/kg body weight S1P intravenously for three consecutive days. On the third day, control and S1P preconditioned animals were exposed to hypobaric hypoxia equivalent to 7620 m for 24 h, 48 h and 7 days. Post exposure analysis included body weight quantitation, blood gas/chemistry analysis, vascular permeability assays, evaluation of oxidative stress/inflammation parameters, and estimation of hypoxia responsive molecules. S1P preconditioned rats exposed to acute HH display a significant reduction in body weight loss, as a culmination of improved oxygen carrying capacity, increased 2,3- diphosphoglycerate levels and recuperation from energy deficit. Pathological disturbances such as vascular leakage in the lungs and brain, oxidative stress, pro-inflammatory milieu and raised level of endothelin-1 were also reined. The adaptive and protective advantage conferred by S1P in the acute phase of hypobaric hypoxia exposure, is observed to precipitate into an improved sustenance even after sub-chronic (7d) hypobaric hypoxia exposure as indicated by decreased body weight loss, lower edema index and improvement in general pathology biomarkers. Conclusively, administration of 1 μg/kg body weight S1P, in the aforementioned schedule, confer hypoxia pre-conditioning benefits, sustained up to 7 days of hypobaric hypoxia exposure.
Collapse
|
15
|
Rood K, Lopez V, La Frano MR, Fiehn O, Zhang L, Blood AB, Wilson SM. Gestational Hypoxia and Programing of Lung Metabolism. Front Physiol 2019; 10:1453. [PMID: 31849704 PMCID: PMC6895135 DOI: 10.3389/fphys.2019.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Gestational hypoxia is a risk factor in the development of pulmonary hypertension in the newborn and other sequela, however, the mechanisms associated with the disease remain poorly understood. This review highlights disruption of metabolism by antenatal high altitude hypoxia and the impact this has on pulmonary hypertension in the newborn with discussion of model organisms and human populations. There is particular emphasis on modifications in glucose and lipid metabolism along with alterations in mitochondrial function. Additional focus is placed on increases in oxidative stress and the progression of pulmonary vascular disease in the newborn and on the need for further exploration using a combination of contemporary and classical approaches.
Collapse
Affiliation(s)
- Kristiana Rood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Vanessa Lopez
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Michael R La Frano
- Department of Food Science and Nutrition, Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, United States.,Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Arlin B Blood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Sean M Wilson
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
16
|
Hattersley J, Wilson AJ, Thake CD, Facer-Childs J, Stoten O, Imray C. Metabolic rate and substrate utilisation resilience in men undertaking polar expeditionary travel. PLoS One 2019; 14:e0221176. [PMID: 31415661 PMCID: PMC6695185 DOI: 10.1371/journal.pone.0221176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/31/2019] [Indexed: 11/24/2022] Open
Abstract
The energy expenditure and substrate utilisation were measured in 5 men pre- and post- a 67 day, 1750km unassisted Antarctic traverse from the Hercules Inlet to the Ross Sea Ice via the South pole pulling sledges weighing 120kg whilst experiencing temperatures as low as -57°C. A 36-hours protocol in a whole body calorimeter was employed to measure periods of rest, sleep and three periods of standardised stepping exercises at 80, 100 and 120 steps min-1; participants were fed isocalorically. Unlike previous expeditions where large weight loss was reported, only a modest loss of body weight (7%, P = 0.03) was found; fat tissue was reduced by 53% (P = 0.03) together with a small, but not statistically significant, increase in lean tissue weight (P = 0.18). This loss occurred despite a high-energy intake (6500 kcal/day) designed to match energy expenditure. An energy balance analysis suggested the loss in body weight could be due to the energy requirements of thermoregulation. Differences in energy expenditure [4.9 (0.1) vs 4.5 (0.1) kcal/min. P = 0.03], carbohydrate utilisation [450 (180) vs 569 (195) g/day; P = 0.03] and lipid utilisation [450 (61) vs 388 (127) g/day, P = 0.03] at low levels of exertion were different from pre-expedition values. Only carbohydrate utilisation remained statistically significant when normalised to body weight. The differences in energy expenditure and substrate utilisation between the pre- and post-expedition for other physiological states (sleeping, resting, higher levels of exercise, etc) were small and not statistically significant. Whilst inter-subject variability was large, there was a tendency for increased carbohydrate utilisation, post-expedition, when fasted that decreased upon feeding.
Collapse
Affiliation(s)
- John Hattersley
- Coventry NIHR CRF Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- School of Engineering, University of Warwick, Coventry, United Kingdom
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
- * E-mail:
| | - Adrian J. Wilson
- Coventry NIHR CRF Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Department of Physics, University of Warwick, Coventry, United Kingdom
| | - C. Doug Thake
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Jamie Facer-Childs
- Institute of Child Health, University College London, London, United Kingdom
| | - Oliver Stoten
- Emergency Department, Royal Bournemouth Hospital, Bournemouth, Uinted Kingdom
| | - Chris Imray
- Coventry NIHR CRF Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
- Department of Vascular and Renal Transplant Surgery, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| |
Collapse
|
17
|
Intermittent normobaric hypoxia facilitates high altitude acclimatization by curtailing hypoxia-induced inflammation and dyslipidemia. Pflugers Arch 2019; 471:949-959. [DOI: 10.1007/s00424-019-02273-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/20/2019] [Indexed: 12/23/2022]
|
18
|
Hattersley J, Wilson AJ, Gifford RM, Cobb R, Thake CD, Reynolds RM, Woods DR, Imray CHE. Pre- to postexpedition changes in the energy usage of women undertaking sustained expeditionary polar travel. J Appl Physiol (1985) 2019; 126:681-690. [DOI: 10.1152/japplphysiol.00792.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This paper reports the metabolic energy changes in six women who made the first unsupported traverse of Antarctica, covering a distance of 1,700 km in 61 days, hauling sledges weighing up to 80 kg. Pre- and postexpedition, measurements of energy expenditure and substrate utilization were made on all six members of the expedition over a 36-h period in a whole body calorimeter. During the study, subjects were fed an isocaloric diet: 50% carbohydrate, 35% fat, and 15% protein. The experimental protocol contained pre- and postexpedition measurement, including periods of sleep, rest, and three periods of standardized stepping exercise at 80, 100, and 120 steps/min. A median (interquartile range) decrease in the lean and fat weight of the subjects of 1.4 (1.0) and 4.4 (1.8) kg, respectively (P < 0.05) was found, using air-displacement plethysmography. No statistically significant difference was found between pre- and postexpedition values for sleeping or resting metabolic rate, nor for diet-induced thermogenesis. A statistically significant difference was found in energy expenditure between the pre- and postexpedition values for exercise at 100 [4.7 (0.23) vs. 4.4 (0.29), P < 0.05] and 120 [5.7 (0.46) vs. 5.5 (0.43), P < 0.05] steps/min; a difference that disappeared when the metabolic rate values were normalized to body weight. The group was well matched for the measures studied. Whereas a physiological change in weight was seen, the lack of change in metabolic rate measures supports a view that women appropriately nourished and well prepared can undertake polar expeditions with a minimal metabolic energy consequence. NEW & NOTEWORTHY This is the first study on the metabolic energy consequences for women undertaking expeditionary polar travel. The results show that participant selection gave a “well-matched” group, particularly during exercise. Notwithstanding this, individual differences were observed and explored. The results show that appropriately selected, trained, and nourished women can undertake such expeditions with no change in their metabolic energy requirements during rest or while undertaking moderate exercise over a sustained period of time.
Collapse
Affiliation(s)
- John Hattersley
- Coventry National Institute for Health Research, Clinical Research Facility, Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire, National Health Service Trust, Coventry, United Kingdom
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Adrian J. Wilson
- Coventry National Institute for Health Research, Clinical Research Facility, Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire, National Health Service Trust, Coventry, United Kingdom
- Department of Physics, University of Warwick, Coventry, United Kingdom
| | - Robert M. Gifford
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, United Kingdom
| | - Rin Cobb
- Performance, Nutrition and Dietetic Consulting, Birmingham, United Kingdom
| | - C. Doug Thake
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Rebecca M. Reynolds
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David R. Woods
- Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, United Kingdom
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
- Northumbria and Newcastle National Health Service Trusts, Wansbeck General and Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Christopher H. E. Imray
- Coventry National Institute for Health Research, Clinical Research Facility, Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire, National Health Service Trust, Coventry, United Kingdom
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
- Department of Vascular and Renal Transplant Surgery, University Hospitals Coventry and Warwickshire, National Health Service Trust, Coventry, United Kingdom
| |
Collapse
|
19
|
O'Brien KA, Pollock RD, Stroud M, Lambert RJ, Kumar A, Atkinson RA, Green DA, Anton-Solanas A, Edwards LM, Harridge SDR. Human physiological and metabolic responses to an attempted winter crossing of Antarctica: the effects of prolonged hypobaric hypoxia. Physiol Rep 2019. [PMID: 29521037 PMCID: PMC5843758 DOI: 10.14814/phy2.13613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An insufficient supply of oxygen to the tissues (hypoxia), as is experienced upon high‐altitude exposure, elicits physiological acclimatization mechanisms alongside metabolic remodeling. Details of the integrative adaptive processes in response to chronic hypobaric hypoxic exposure remain to be sufficiently investigated. In this small applied field study, subjects (n = 5, male, age 28–54 years) undertook a 40 week Antarctica expedition in the winter months, which included 24 weeks residing above 2500 m. Measurements taken pre‐ and postexpedition revealed alterations to glucose and fatty acid resonances within the serum metabolic profile, a 7.8 (±3.6)% increase in respiratory exchange ratio measured during incremental exercise (area under curve, P > 0.01, mean ± SD) and a 2.1(±0.8) % decrease in fat tissue (P < 0.05) postexpedition. This was accompanied by an 11.6 (±1.9) % increase (P > 0.001) in VO2 max corrected to % lean mass postexpedition. In addition, spine bone mineral density and lung function measures were identified as novel parameters of interest. This study provides, an in‐depth characterization of the responses to chronic hypobaric hypoxic exposure in one of the most hostile environments on Earth.
Collapse
Affiliation(s)
- Katie A O'Brien
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ross D Pollock
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, United Kingdom
| | - Mike Stroud
- Biomedical Research Centre in Nutrition, Southampton University Hospitals Trust, Southampton, United Kingdom
| | - Rob J Lambert
- Department of Trauma and Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Alex Kumar
- Department of Medicine and Physiology, Fribourg, Switzerland.,Department of Primary Care & Public Health Sciences, King's College London, London, United Kingdom
| | - Robert A Atkinson
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London Guy's Campus London, London, United Kingdom
| | - David A Green
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, United Kingdom.,KBRwyle, European Astronaut Centre, European Space Agency, Linder Höhe, Cologne, Germany
| | | | - Lindsay M Edwards
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, United Kingdom.,Respiratory Data Sciences Group, Respiratory TAU, GlaxosmithKline Medicines Research, Stevenage, United Kingdom
| | - Steve D R Harridge
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, United Kingdom
| |
Collapse
|
20
|
O'Brien KA, Atkinson RA, Richardson L, Koulman A, Murray AJ, Harridge SDR, Martin DS, Levett DZH, Mitchell K, Mythen MG, Montgomery HE, Grocott MPW, Griffin JL, Edwards LM. Metabolomic and lipidomic plasma profile changes in human participants ascending to Everest Base Camp. Sci Rep 2019; 9:2297. [PMID: 30783167 PMCID: PMC6381113 DOI: 10.1038/s41598-019-38832-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
At high altitude oxygen delivery to the tissues is impaired leading to oxygen insufficiency (hypoxia). Acclimatisation requires adjustment to tissue metabolism, the details of which remain incompletely understood. Here, metabolic responses to progressive environmental hypoxia were assessed through metabolomic and lipidomic profiling of human plasma taken from 198 human participants before and during an ascent to Everest Base Camp (5,300 m). Aqueous and lipid fractions of plasma were separated and analysed using proton (1H)-nuclear magnetic resonance spectroscopy and direct infusion mass spectrometry, respectively. Bayesian robust hierarchical regression revealed decreasing isoleucine with ascent alongside increasing lactate and decreasing glucose, which may point towards increased glycolytic rate. Changes in the lipid profile with ascent included a decrease in triglycerides (48-50 carbons) associated with de novo lipogenesis, alongside increases in circulating levels of the most abundant free fatty acids (palmitic, linoleic and oleic acids). Together, this may be indicative of fat store mobilisation. This study provides the first broad metabolomic account of progressive exposure to environmental hypobaric hypoxia in healthy humans. Decreased isoleucine is of particular interest as a potential contributor to muscle catabolism observed with exposure to hypoxia at altitude. Substantial changes in lipid metabolism may represent important metabolic responses to sub-acute exposure to environmental hypoxia.
Collapse
Affiliation(s)
- Katie A O'Brien
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK.
| | - R Andrew Atkinson
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics King's College London Guy's Campus London, London, UK
| | - Larissa Richardson
- NIHR BRC Nutritional Biomarker Laboratory, University of Cambridge, Pathology building level 4, Addenbrooke's Hospital, Cambridge, UK
| | - Albert Koulman
- NIHR BRC Nutritional Biomarker Laboratory, University of Cambridge, Pathology building level 4, Addenbrooke's Hospital, Cambridge, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| | - Stephen D R Harridge
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Daniel S Martin
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, First Floor, 170 Tottenham Court Road, London, W1T 7HA, UK
- Critical Care Unit, Royal Free Hospital, Pond Street, London, NW3 2QG, UK
| | - Denny Z H Levett
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Integrative Physiological and Critical Illness Group, Division of Clinical and Experimental Science, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Kay Mitchell
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Integrative Physiological and Critical Illness Group, Division of Clinical and Experimental Science, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Monty G Mythen
- University College London Hospitals National Institute of Health Research Biomedical Research Centre, London, UK
| | - Hugh E Montgomery
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, First Floor, 170 Tottenham Court Road, London, W1T 7HA, UK
- Centre for Human Health and Performance, Department of Medicine, University College London, London, UK
| | - Michael P W Grocott
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Integrative Physiological and Critical Illness Group, Division of Clinical and Experimental Science, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Lindsay M Edwards
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK.
- Respiratory Data Sciences Group, Respiratory TAU, GlaxoSmithKline Medicines Research, Stevenage, UK.
| |
Collapse
|
21
|
HILL NEILE, DEIGHTON KEVIN, MATU JAMIE, MISRA SHIVANI, OLIVER NICKS, NEWMAN CARRIE, MELLOR ADRIAN, O’HARA JOHN, WOODS DAVID. Continuous Glucose Monitoring at High Altitude—Effects on Glucose Homeostasis. Med Sci Sports Exerc 2018; 50:1679-1686. [DOI: 10.1249/mss.0000000000001624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Onyango AN. Cellular Stresses and Stress Responses in the Pathogenesis of Insulin Resistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4321714. [PMID: 30116482 PMCID: PMC6079365 DOI: 10.1155/2018/4321714] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Abstract
Insulin resistance (IR), a key component of the metabolic syndrome, precedes the development of diabetes, cardiovascular disease, and Alzheimer's disease. Its etiological pathways are not well defined, although many contributory mechanisms have been established. This article summarizes such mechanisms into the hypothesis that factors like nutrient overload, physical inactivity, hypoxia, psychological stress, and environmental pollutants induce a network of cellular stresses, stress responses, and stress response dysregulations that jointly inhibit insulin signaling in insulin target cells including endothelial cells, hepatocytes, myocytes, hypothalamic neurons, and adipocytes. The insulin resistance-inducing cellular stresses include oxidative, nitrosative, carbonyl/electrophilic, genotoxic, and endoplasmic reticulum stresses; the stress responses include the ubiquitin-proteasome pathway, the DNA damage response, the unfolded protein response, apoptosis, inflammasome activation, and pyroptosis, while the dysregulated responses include the heat shock response, autophagy, and nuclear factor erythroid-2-related factor 2 signaling. Insulin target cells also produce metabolites that exacerbate cellular stress generation both locally and systemically, partly through recruitment and activation of myeloid cells which sustain a state of chronic inflammation. Thus, insulin resistance may be prevented or attenuated by multiple approaches targeting the different cellular stresses and stress responses.
Collapse
Affiliation(s)
- Arnold N. Onyango
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi 00200, Kenya
| |
Collapse
|
23
|
Hirakawa Y, Jao TM, Inagi R. Pathophysiology and therapeutics of premature ageing in chronic kidney disease, with a focus on glycative stress. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:70-77. [PMID: 28467603 DOI: 10.1111/1440-1681.12777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/12/2017] [Accepted: 04/22/2017] [Indexed: 11/30/2022]
Abstract
Chronic kidney disease (CKD) is a major concern in public health. The pathology of CKD includes premature ageing in the kidney and vessels, which results in a high risk of cardiovascular events and end-stage renal disease. Many factors are involved in premature ageing in CKD, including hormonal imbalance, glycative stress, nitrogenous metabolites, and oxidative stress. Of these, the most important role in premature ageing in CKD is played by glycative stress, namely a massive and unfavourable glycation state, since the kidney is responsible for the clearance of advanced glycation endproducts (AGEs). In an animal model, overexpression of glyoxalase I (GLO-1), a detoxifier of AGEs, has been found to alleviate premature ageing in the kidney and vessels. Both lifestyle changes and drug therapy have shown promise in overcoming premature ageing. Promising drug therapies include a GLO-1 activator and an absorbent against glycotoxin and nitrogenous metabolites.
Collapse
Affiliation(s)
- Yosuke Hirakawa
- Division of Nephrology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tzu-Ming Jao
- Division of CKD Pathophysiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Reiko Inagi
- Division of CKD Pathophysiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Wandrag L, Siervo M, Riley HL, Khosravi M, Fernandez BO, Leckstrom CA, Martin DS, Mitchell K, Levett DZH, Montgomery HE, Mythen MG, Stroud MA, Grocott MPW, Feelisch M. Does hypoxia play a role in the development of sarcopenia in humans? Mechanistic insights from the Caudwell Xtreme Everest Expedition. Redox Biol 2017; 13:60-68. [PMID: 28570949 PMCID: PMC5451185 DOI: 10.1016/j.redox.2017.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 12/24/2022] Open
Abstract
Objectives Sarcopenia refers to the involuntary loss of skeletal muscle and is a predictor of physical disability/mortality. Its pathogenesis is poorly understood, although roles for altered hypoxic signaling, oxidative stress, adipokines and inflammatory mediators have been suggested. Sarcopenia also occurs upon exposure to the hypoxia of high altitude. Using data from the Caudwell Xtreme Everest expedition we therefore sought to analyze the extent of hypoxia-induced body composition changes and identify putative pathways associated with fat-free mass (FFM) and fat mass (FM) loss. Methods After baseline testing in London (75 m), 24 investigators ascended from Kathmandu (1300 m) to Everest base camp (EBC 5300 m) over 13 days. Fourteen investigators climbed above EBC, eight of whom reached the summit (8848 m). Assessments were conducted at baseline, during ascent and after one, six and eight week(s) of arrival at EBC. Changes in body composition (FM, FFM, total body water, intra- and extra-cellular water) were measured by bioelectrical impedance. Biomarkers of nitric oxide and oxidative stress were measured together with adipokines, inflammatory, metabolic and vascular markers. Results Participants lost a substantial, but variable, amount of body weight (7.3±4.9 kg by expedition end; p<0.001). A progressive loss of both FM and FFM was observed, and after eight weeks, the proportion of FFM loss was 48% greater than FM loss (p<0.008). Changes in protein carbonyls (p<0.001) were associated with a decline in FM whereas 4-hydroxynonenal (p<0.001) and IL-6 (p<0.001) correlated with FFM loss. GLP-1 (r=−0.45, p<0.001) and nitrite (r=−0.29, p<0.001) concentration changes were associated with FFM loss. In a multivariate model, GLP-1, insulin and nitrite were significant predictors of FFM loss while protein carbonyls were predicted FM loss. Conclusions The putative role of GLP-1 and nitrite as mediators of the effects of hypoxia on FFM is an intriguing finding. If confirmed, nutritional and pharmacological interventions targeting these pathways may offer new avenues for prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Liesl Wandrag
- Nutrition and Dietetic Research Group, Department of Investigative Medicine, Imperial College London, UK; University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, 170 Tottenham Court Road, London W1T 7HA, UK
| | - Mario Siervo
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne NE4 5PL, UK
| | - Heather L Riley
- Warwick Systems Biology Centre and Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Maryam Khosravi
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, 170 Tottenham Court Road, London W1T 7HA, UK; Department of Cell and Developmental Biology, Division of Biosciences, University College London, WC1B 6BT, UK
| | - Bernadette O Fernandez
- Warwick Systems Biology Centre and Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Carl A Leckstrom
- Warwick Systems Biology Centre and Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Daniel S Martin
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, 170 Tottenham Court Road, London W1T 7HA, UK; Division of Surgery and Interventional Science, University College London, 9th Floor, Royal Free Hospital, London NW3 2QG, UK
| | - Kay Mitchell
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, 170 Tottenham Court Road, London W1T 7HA, UK; University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Denny Z H Levett
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, 170 Tottenham Court Road, London W1T 7HA, UK; University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK; Southampton NIHR Respiratory Biomedical Research Unit, UK
| | - Hugh E Montgomery
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, 170 Tottenham Court Road, London W1T 7HA, UK
| | - Monty G Mythen
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, 170 Tottenham Court Road, London W1T 7HA, UK
| | - Michael A Stroud
- University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Michael P W Grocott
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, 170 Tottenham Court Road, London W1T 7HA, UK; Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK; Southampton NIHR Respiratory Biomedical Research Unit, UK
| | - Martin Feelisch
- Warwick Systems Biology Centre and Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK; Southampton NIHR Respiratory Biomedical Research Unit, UK.
| | | |
Collapse
|
25
|
Casillan AJ, Chao J, Wood JG, Gonzalez NC. Acclimatization of the systemic microcirculation to alveolar hypoxia is mediated by an iNOS-dependent increase in nitric oxide availability. J Appl Physiol (1985) 2017; 123:974-982. [PMID: 28302706 DOI: 10.1152/japplphysiol.00322.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 02/15/2017] [Accepted: 03/12/2017] [Indexed: 11/22/2022] Open
Abstract
Rats breathing 10% O2 show a rapid and widespread systemic microvascular inflammation that results from nitric oxide (NO) depletion secondary to increased reactive O2 species (ROS) generation. The inflammation eventually resolves, and the microcirculation becomes resistant to more severe hypoxia. These experiments were directed to determine the mechanisms underlying this microvascular acclimatization process. Intravital microscopy of the mesentery showed that after 3 wk of hypoxia (barometric pressure ~380 Torr; partial pressure of inspired O2 ~68-70 Torr), rats showed no evidence of inflammation; however, treatment with the inducible NO synthase (iNOS) inhibitor L-N6-(1-iminoethyl) lysine dihydrochloride led to ROS generation, leukocyte-endothelial adherence and emigration, and increased vascular permeability. Mast cells harvested from normoxic rats underwent degranulation when exposed in vitro to monocyte chemoattractant protein-1 (MCP-1), the proximate mediator of mast cell degranulation in acute hypoxia. Mast cell degranulation by MCP-1 was prevented by the NO donor spermine-NONOate. MCP-1 did not induce degranulation of mast cells harvested from 6-day hypoxic rats; however, pretreatment with either the general NOS inhibitor L-NG-monomethyl arginine citrate or the selective iNOS inhibitor N-[3-(aminomethyl) benzyl] acetamidine restored the effect of MCP-1. iNOS was demonstrated in mast cells and alveolar macrophages of acclimatized rats. Nitrate + nitrite plasma levels decreased significantly in acute hypoxia and were restored after 6 days of acclimatization. The results support the hypothesis that the microvascular acclimatization to hypoxia results from the restoration of the ROS/NO balance mediated by iNOS expression at key sites in the inflammatory cascade.NEW & NOTEWORTHY The study shows that the systemic inflammation of acute hypoxia resolves via an inducible nitric oxide (NO) synthase-induced restoration of the reactive O2 species/NO balance in the systemic microcirculation. It is proposed that the acute systemic inflammation may represent the first step of the microvascular acclimatization process.
Collapse
Affiliation(s)
- Alfred J Casillan
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | - Jie Chao
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | - John G Wood
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and.,Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Norberto C Gonzalez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| |
Collapse
|
26
|
Hirakawa Y, Tanaka T, Nangaku M. Mechanisms of metabolic memory and renal hypoxia as a therapeutic target in diabetic kidney disease. J Diabetes Investig 2017; 8:261-271. [PMID: 28097824 PMCID: PMC5415475 DOI: 10.1111/jdi.12624] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a worldwide public health problem. The definition of DKD is under discussion. Although the term DKD was originally defined as ‘kidney disease specific to diabetes,’ DKD frequently means chronic kidney disease with diabetes mellitus and includes not only classical diabetic nephropathy, but also kidney dysfunction as a result of nephrosclerosis and other causes. Metabolic memory plays a crucial role in the progression of various complications of diabetes, including DKD. The mechanisms of metabolic memory in DKD are supposed to include advanced glycation end‐products, deoxyribonucleic acid methylation, histone modifications and non‐coding ribonucleic acid including micro ribonucleic acid. Regardless of the presence of diabetes mellitus, the final common pathway in chronic kidney disease is chronic kidney hypoxia, which influences epigenetic processes, including deoxyribonucleic acid methylation, histone modification, and conformational changes in micro ribonucleic acid and chromatin. Therefore, hypoxia and oxidative stress are appropriate targets of therapies against DKD. Prolyl hydroxylase domain inhibitor enhances the defensive mechanisms against hypoxia. Bardoxolone methyl protects against oxidative stress, and can even reverse impaired renal function; a phase 2 trial with considerable attention to heart complications is currently ongoing in Japan.
Collapse
Affiliation(s)
- Yosuke Hirakawa
- Division of Nephrology and Endocrinology, the University of Tokyo School of Medicine, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, the University of Tokyo School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, the University of Tokyo School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Toward a Blood-Borne Biomarker of Chronic Hypoxemia: Red Cell Distribution Width and Respiratory Disease. Adv Clin Chem 2017; 82:105-197. [PMID: 28939210 DOI: 10.1016/bs.acc.2017.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxemia (systemic oxygen desaturation) marks the presence, risk, and progression of many diseases. Episodic or nocturnal hypoxemia can be challenging to detect and quantify. A sensitive, specific, and convenient marker of recent oxygen desaturation represents an unmet medical need. Observations of acclimatization to high altitude in humans and animals reveals several proteosomic, ventilatory, and hematological responses to low oxygen tension. Of these, increased red cell distribution width (RDW) appears to have the longest persistence. Literature review and analyses of a 2M patient database across the full disease pathome revealed that increased RDW is predictive of poor outcome for certain diseases including many if not all hypoxigenic conditions. Comprehensive review of diseases impacting the respiratory axis show many are associated with increased RDW and no apparent counterexamples. The mechanism linking RDW to outcome is unknown. Conjectural roles for iron deficiency, inflammation, and oxidative stress have not been born out experimentally. Sports-doping studies show that erythropoietin (EPO) injection can induce formation of unusually large red blood cells (RBC) in sufficient numbers to increase RDW. Because endogenous EPO responds strongly to hypoxemia, this molecule could potentially mediate a long-lived RDW response to low oxygenation. RDW may be a guidepost signaling that unexploited information is embedded in subtle RBC variation. Applying modern techniques of measurement and analysis to certain RBC characteristics may yield a more specific and sensitive marker of chronic pulmonary and circulatory diseases, sleep apnea, and opioid inhibition of breathing.
Collapse
|
28
|
Surviving physiological stress: Can insights into human adaptation to austere environments be applied to the critical care unit? TRENDS IN ANAESTHESIA AND CRITICAL CARE 2016. [DOI: 10.1016/j.tacc.2016.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Cole MA, Abd Jamil AH, Heather LC, Murray AJ, Sutton ER, Slingo M, Sebag-Montefiore L, Tan SC, Aksentijević D, Gildea OS, Stuckey DJ, Yeoh KK, Carr CA, Evans RD, Aasum E, Schofield CJ, Ratcliffe PJ, Neubauer S, Robbins PA, Clarke K. On the pivotal role of PPARα in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury. FASEB J 2016; 30:2684-2697. [PMID: 27103577 PMCID: PMC5072355 DOI: 10.1096/fj.201500094r] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
The role of peroxisome proliferator-activated receptor α (PPARα)-mediated metabolic remodeling in cardiac adaptation to hypoxia has yet to be defined. Here, mice were housed in hypoxia for 3 wk before in vivo contractile function was measured using cine MRI. In isolated, perfused hearts, energetics were measured using (31)P magnetic resonance spectroscopy (MRS), and glycolysis and fatty acid oxidation were measured using [(3)H] labeling. Compared with a normoxic, chow-fed control mouse heart, hypoxia decreased PPARα expression, fatty acid oxidation, and mitochondrial uncoupling protein 3 (UCP3) levels, while increasing glycolysis, all of which served to maintain normal ATP concentrations ([ATP]) and thereby, ejection fractions. A high-fat diet increased cardiac PPARα expression, fatty acid oxidation, and UCP3 levels with decreased glycolysis. Hypoxia was unable to alter the high PPARα expression or reverse the metabolic changes caused by the high-fat diet, with the result that [ATP] and contractile function decreased significantly. The adaptive metabolic changes caused by hypoxia in control mouse hearts were found to have occurred already in PPARα-deficient (PPARα(-/-)) mouse hearts and sustained function in hypoxia despite an inability for further metabolic remodeling. We conclude that decreased cardiac PPARα expression is essential for adaptive metabolic remodeling in hypoxia, but is prevented by dietary fat.-Cole, M. A., Abd Jamil, A. H., Heather, L. C., Murray, A. J., Sutton, E. R., Slingo, M., Sebag-Montefiore, L., Tan, S. C., Aksentijević, D., Gildea, O. S., Stuckey, D. J., Yeoh, K. K., Carr, C. A., Evans, R. D., Aasum, E., Schofield, C. J., Ratcliffe, P. J., Neubauer, S., Robbins, P. A., Clarke, K. On the pivotal role of PPARα in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury.
Collapse
Affiliation(s)
- Mark A Cole
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Amira H Abd Jamil
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J Murray
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Elizabeth R Sutton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mary Slingo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Liam Sebag-Montefiore
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Suat Cheng Tan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Dunja Aksentijević
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ottilie S Gildea
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Daniel J Stuckey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kar Kheng Yeoh
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom; and
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Rhys D Evans
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ellen Aasum
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Peter J Ratcliffe
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
30
|
Nam H, Jones D, Cooksey RC, Gao Y, Sink S, Cox J, McClain DA. Synergistic Inhibitory Effects of Hypoxia and Iron Deficiency on Hepatic Glucose Response in Mouse Liver. Diabetes 2016; 65:1521-33. [PMID: 26993063 PMCID: PMC4878425 DOI: 10.2337/db15-0580] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 03/05/2016] [Indexed: 01/28/2023]
Abstract
Hypoxia and iron both regulate metabolism through multiple mechanisms, including hypoxia-inducible transcription factors. The hypoxic effects on glucose disposal and glycolysis are well established, but less is known about the effects of hypoxia and iron deficiency on hepatic gluconeogenesis. We therefore assessed their effects on hepatic glucose production in mice. Weanling C57BL/6 male mice were fed an iron-deficient (4 ppm) or iron-adequate (35 ppm) diet for 14 weeks and were continued in normoxia or exposed to hypoxia (8% O2) for the last 4 weeks of that period. Hypoxic mice became hypoglycemic and displayed impaired hepatic glucose production after a pyruvate challenge, an effect accentuated by an iron-deficient diet. Stabilization of hypoxia-inducible factors under hypoxia resulted in most glucose being converted into lactate and not oxidized. Hepatic pyruvate concentrations were lower in hypoxic mice. The decreased hepatic pyruvate levels were not caused by increased utilization but rather were contributed to by decreased metabolism from gluconeogenic amino acids. Pyruvate carboxylase, which catalyzes the first step of gluconeogenesis, was also downregulated by hypoxia with iron deficiency. Hypoxia, and more so hypoxia with iron deficiency, results in hypoglycemia due to decreased levels of hepatic pyruvate and decreased pyruvate utilization for gluconeogenesis. These data highlight the role of iron levels as an important determinant of glucose metabolism in hypoxia.
Collapse
Affiliation(s)
- Hyeyoung Nam
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Deborah Jones
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Robert C Cooksey
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Yan Gao
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Sandy Sink
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT
| | - Donald A McClain
- Department of Internal Medicine, University of Utah, Salt Lake City, UT Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC Department of Biochemistry, University of Utah, Salt Lake City, UT
| |
Collapse
|
31
|
Song TT, Bi YH, Gao YQ, Huang R, Hao K, Xu G, Tang JW, Ma ZQ, Kong FP, Coote JH, Chen XQ, Du JZ. Systemic pro-inflammatory response facilitates the development of cerebral edema during short hypoxia. J Neuroinflammation 2016; 13:63. [PMID: 26968975 PMCID: PMC4788817 DOI: 10.1186/s12974-016-0528-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-altitude cerebral edema (HACE) is the severe type of acute mountain sickness (AMS) and life threatening. A subclinical inflammation has been speculated, but the exact mechanisms underlying the HACE are not fully understood. METHODS Human volunteers ascended to high altitude (3860 m, 2 days), and rats were exposed to hypoxia in a hypobaric chamber (5000 m, 2 days). Human acute mountain sickness was evaluated by the Lake Louise Score (LLS), and plasma corticotrophin-releasing hormone (CRH) and cytokines TNF-α, IL-1β, and IL-6 were measured in rats and humans. Subsequently, rats were pre-treated with lipopolysaccharide (LPS, intraperitoneal (ip) 4 mg/kg, 11 h) to induce inflammation prior to 1 h hypoxia (7000 m elevation). TNF-α, IL-1β, IL-6, nitric oxide (NO), CRH, and aquaporin-4 (AQP4) and their gene expression, Evans blue, Na(+)-K(+)-ATPase activity, p65 translocation, and cell swelling were measured in brain by ELISA, Western blotting, Q-PCR, RT-PCR, immunohistochemistry, and transmission electron micrography. MAPKs, NF-κB pathway, and water permeability of primary astrocytes were demonstrated. All measurements were performed with or without LPS challenge. The release of NO, TNF-α, and IL-6 in cultured primary microglia by CRH stimulation with or without PDTC (NF-κB inhibitor) or CP154,526 (CRHR1 antagonist) were measured. RESULTS Hypobaric hypoxia enhanced plasma TNF-α, IL-1β, and IL-6 and CRH levels in human and rats, which positively correlated with AMS. A single LPS injection (ip, 4 mg/kg, 12 h) into rats increased TNF-α and IL-1β levels in the serum and cortex, and AQP4 and AQP4 mRNA expression in cortex and astrocytes, and astrocyte water permeability but did not cause brain edema. However, LPS treatment 11 h prior to 1 h hypoxia (elevation, 7000 m) challenge caused cerebral edema, which was associated with activation of NF-κB and MAPKs, hypoxia-reduced Na(+)-K(+)-ATPase activity and blood-brain barrier (BBB) disruption. Both LPS and CRH stimulated TNF-α, IL-6, and NO release in cultured rat microglia via NF-κB and cAMP/PKA. CONCLUSIONS Preexisting systemic inflammation plus a short severe hypoxia elicits cerebral edema through upregulated AQP4 and water permeability by TLR4 and CRH/CRHR1 signaling. This study revealed that both infection and hypoxia can cause inflammatory response in the brain. Systemic inflammation can facilitate onset of hypoxic cerebral edema through interaction of astrocyte and microglia by activation of TLR4 and CRH/CRHR1 signaling. Anti-inflammatory agents and CRHR1 antagonist may be useful for prevention and treatment of AMS and HACE.
Collapse
Affiliation(s)
- Ting-Ting Song
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Hua Bi
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Qi Gao
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Rui Huang
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Ke Hao
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Gang Xu
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jia-Wei Tang
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Qiang Ma
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Fan-Ping Kong
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - John H Coote
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, B15 2TT, UK
| | - Xue-Qun Chen
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| | - Ji-Zeng Du
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, Institute of Neuroscience, School of Medicine, Key Laboratory of Medical Neurobiology of The Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Abstract
The Caudwell Xtreme Everest (CXE) expedition in the spring of 2007 systematically studied 222 healthy volunteers as they ascended from sea level to Everest Base Camp (5300 m). A subgroup of climbing investigators ascended higher on Everest and obtained physiological measurements up to an altitude of 8400 m. The aim of the study was to explore inter-individual variation in response to environmental hypobaric hypoxia in order to understand better the pathophysiology of critically ill patients and other patients in whom hypoxaemia and cellular hypoxia are prevalent. This paper describes the aims, study characteristics, organization and management of the CXE expedition.
Collapse
|
33
|
Bruno RM, Ghiadoni L, Pratali L. Vascular adaptation to extreme conditions: The role of hypoxia. Artery Res 2016. [DOI: 10.1016/j.artres.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
34
|
Abstract
Extreme, expedition, and wilderness medicine are modern and rapidly evolving specialties that address the spirit of adventure and exploration. The relevance of and interest in these specialties are changing rapidly to match the underlying activities, which include global exploration, adventure travel, and military deployments. Extreme, expedition, and wilderness medicine share themes of providing best available medical care in the outdoors, especially in austere or remote settings. Early clinical and logistics decision making can often have important effects on subsequent outcomes. There are lessons to be learned from out-of-hospital care, military medicine, humanitarian medicine, and disaster medicine that can inform in-hospital medicine, and vice-versa. The future of extreme, expedition, and wilderness medicine will be defined by both recipients and practitioners, and empirical observations will be transformed by evidence-based practice.
Collapse
Affiliation(s)
- Christopher H E Imray
- Division of Translational Medicine, Warwick Medical School, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK.
| | - Michael P W Grocott
- Faculty of Medicine, University of Southampton, Southampton, UK; Anaesthesia and Critical Care Research Unit, University Hospital, Southampton NHS Foundation Trust, Southampton, UK; Critical Care Research Area, NIHR Southampton Respiratory Biomedical Research Unit, Southampton, UK
| | - Mark H Wilson
- Institute of Pre-Hospital Care, London's Air Ambulance, The Royal London Hospital, UK; Imperial College, St Mary's Major Trauma Centre, London, UK
| | - Amy Hughes
- UK-Med Ebola Response Team, UK International Emergency Trauma and Medical Register, University of Manchester, Manchester, UK
| | - Paul S Auerbach
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
35
|
Reinders I, Murphy RA, Song X, Mitchell GF, Visser M, Cotch MF, Garcia ME, Launer LJ, Eiriksdottir G, Gudnason V, Harris TB, Brouwer IA. Higher Plasma Phospholipid n-3 PUFAs, but Lower n-6 PUFAs, Are Associated with Lower Pulse Wave Velocity among Older Adults. J Nutr 2015; 145:2317-24. [PMID: 26311808 PMCID: PMC4580955 DOI: 10.3945/jn.115.212282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/30/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Higher intake of polyunsaturated fatty acids (PUFAs) and higher circulating PUFAs are associated with lower cardiovascular disease (CVD) risk. The positive influence of PUFAs might be via lowering arterial stiffness, resulting in a better CVD risk profile; however, studies investigating circulating PUFAs in relation to arterial stiffness in a general population are limited. OBJECTIVE We investigated the associations of plasma phospholipid n-3 (ω-3) and n-6 PUFAs and fish oil intake with arterial stiffness. METHODS We used data from a subgroup of the Age, Gene/Environment Susceptibility-Reykjavik (AGES-Reykjavik) Study (n = 501, 75.0 ± 4.96 y, 46% men), a population-based study of community-dwelling older adults. Plasma phospholipid PUFAs were measured by GC at baseline, and fish oil intake was assessed at 3 time points: early life (ages 14-19 y), midlife (ages 40-50 y), and late life (ages 66-96 y, AGES-Reykjavik baseline) with the use of a validated food-frequency questionnaire. Arterial stiffness was determined as carotid-femoral pulse wave velocity (cf-PWV) with the use of an electrocardiogram after a mean follow-up of 5.2 ± 0.3 y. Regression coefficients (95% CIs), adjusted for demographics, follow-up time, risk factors, cholesterol, triglycerides, and serum vitamin D, were calculated by linear regression per SD increment in PUFAs. RESULTS Plasma total n-3 PUFAs, eicosapentaenoic acid, and docosahexaenoic acid were associated with lower cf-PWV [β (95% CI): -0.036 (-0.064, -0.008); -0.031 (-0.059, -0.003); -0.036 (-0.064, -0.009), respectively]. In contrast, plasma total n-6 PUFAs and linoleic acid were associated with higher cf-PWV [0.035 (0.009, 0.061) and 0.034 (0.008, 0.059)]. Regular fish oil consumption at early-, mid-, and late-life was not associated with cf-PWV. CONCLUSIONS Our results show a positive association between plasma n-6 PUFAs and arterial stiffness, and suggest that higher concentrations of plasma long-chain n-3 PUFAs are associated with less arterial stiffness and therein may be one of the mechanisms underlying the association between plasma n-3 PUFAs and lower CVD risk.
Collapse
Affiliation(s)
- Ilse Reinders
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD; Department of Health Sciences and the EMGO Institute for Health and Care Research, VU University Amsterdam, Amsterdam, Netherlands;
| | - Rachel A Murphy
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD
| | - Xiaoling Song
- Division of Public Health Sciences, Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Marjolein Visser
- Department of Health Sciences and the EMGO Institute for Health and Care Research, VU University Amsterdam, Amsterdam, Netherlands;,Department of Nutrition and Dietetics, Internal Medicine, VU University Medical Center, Amsterdam, Netherlands
| | - Mary Frances Cotch
- Division of Epidemiology and Clinical Applications, National Eye Institute, Bethesda, MD
| | - Melissa E Garcia
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD
| | | | - Vilmundur Gudnason
- Icelandic Heart Association Research Institute, Kopavogur, Iceland; and,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD
| | - Ingeborg A Brouwer
- Department of Health Sciences and the EMGO Institute for Health and Care Research, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
36
|
Kasprzak Z, Śliwicka E, Hennig K, Pilaczyńska-Szcześniak Ł, Huta-Osiecka A, Nowak A. Vitamin D, Iron Metabolism, and Diet in Alpinists During a 2-Week High-Altitude Climb. High Alt Med Biol 2015; 16:230-5. [DOI: 10.1089/ham.2015.0008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Zbigniew Kasprzak
- Department of Hygiene, University School of Physical Education, Poznań, Poland
| | - Ewa Śliwicka
- Department of Hygiene, University School of Physical Education, Poznań, Poland
| | - Karol Hennig
- Department of Hygiene, University School of Physical Education, Poznań, Poland
| | | | - Anna Huta-Osiecka
- Department of Hygiene, University School of Physical Education, Poznań, Poland
| | - Alicja Nowak
- Department of Hygiene, University School of Physical Education, Poznań, Poland
| |
Collapse
|
37
|
Miller SC. Diabetic Ketoacidosis and Acute Mountain Sickness: Case Report and Review of Treatment Options in Type 1 Diabetes Mellitus. Wilderness Environ Med 2015; 26:185-8. [DOI: 10.1016/j.wem.2014.09.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/12/2014] [Accepted: 09/14/2014] [Indexed: 01/27/2023]
|
38
|
Castillo RL, Zepeda AB, Short SE, Figueroa E, Bustos-Obregon E, Farías JG. Protective effects of polyunsatutared fatty acids supplementation against testicular damage induced by intermittent hypobaric hypoxia in rats. J Biomed Sci 2015; 22:8. [PMID: 25613908 PMCID: PMC4307138 DOI: 10.1186/s12929-015-0112-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/07/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Intermittent hypobaric hypoxia (IHH) induces changes in the redox status and structure in rat testis. These effects may be present in people at high altitudes, such as athletes and miners. Polyunsaturated fatty acids (PUFA) can be effective in counteracting these oxidative modifications due to their antioxidants properties. The aim of the work was to test whether PUFA supplementation attenuates oxidative damage in testis by reinforcing the antioxidant defense system. The animals were divided into four groups (7 rats per group): normobaric normoxia (~750 tor; pO2 156 mmHg; Nx); Nx + PUFA, supplemented with PUFA (DHA: EPA = 3:1; 0.3 g kg(-1) of body weight per day); hypoxic hypoxia (~428 tor; pO2 90 mmHg; Hx) and, Hx + PUFA. The hypoxic groups were exposed in 4 cycles to 96 h of HH followed by 96 h of normobaric normoxia for 32 days. Total antioxidant capacity (FRAP) and lipid peroxidation (malondialdehyde, MDA) in plasma and reduced (GSH)/oxidized glutathione (GSSG) ratio, tissue lipid peroxidation (TBARS) and antioxidant enzymes activity were assessed at the end of the study in testis. Also, SIRTUIN 1 and HIF-1 protein expression in testis were determined. RESULTS IHH increased lipid peroxidation in plasma and HIF-1 protein levels in testis. In addition, IHH reduced FRAP levels in plasma, antioxidant enzymes activities and SIRTUIN 1 protein levels in testis. PUFA supplementation attenuated these effects, inducing the increases in FRAP, in the antioxidant enzymes activity and HIF-1 levels. CONCLUSIONS These results suggest that the IHH model induces a prooxidant status in plasma and testis. The molecular protective effect of PUFA may involve the induction of an antioxidant mechanism.
Collapse
Affiliation(s)
- Rodrigo L Castillo
- Pathophysiology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Andrea B Zepeda
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco, Chile. .,Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580 - Bloco 16, São Paulo, SP, 05508-900, Brazil.
| | - Stefania E Short
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| | - Elías Figueroa
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco, Chile. .,School of Aquaculture, Catholic University of Temuco, Faculty of Natural Resources, Temuco, Chile.
| | - Eduardo Bustos-Obregon
- Anatomy and Developmental Biology Program, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Jorge G Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| |
Collapse
|
39
|
Mesarwi OA, Sharma EV, Jun JC, Polotsky VY. Metabolic dysfunction in obstructive sleep apnea: A critical examination of underlying mechanisms. Sleep Biol Rhythms 2015; 13:2-17. [PMID: 26412981 PMCID: PMC4583137 DOI: 10.1111/sbr.12078] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has recently become clear that obstructive sleep apnea (OSA) is an independent risk factor for the development of metabolic syndrome, a disorder of defective energy storage and use. Several mechanisms have been proposed to explain this finding, drawing upon the characteristics that define OSA. In particular, intermittent hypoxia, sleep fragmentation, elevated sympathetic tone, and oxidative stress - all consequences of OSA - have been implicated in the progression of poor metabolic outcomes in OSA. In this review we examine the evidence to support each of these disease manifestations of OSA as a unique risk for metabolic dysfunction. Tissue hypoxia and sleep fragmentation are each directly connected to insulin resistance and hypertension, and each of these also may increase sympathetic tone, resulting in defective glucose homeostasis, excessive lipolysis, and elevated blood pressure. Oxidative stress further worsens insulin resistance and in turn, metabolic dysfunction also increases oxidative stress. However, despite many studies linking each of these individual components of OSA to the development of metabolic syndrome, there are very few reports that actually provide a coherent narrative about the mechanism underlying metabolic dysfunction in OSA.
Collapse
Affiliation(s)
- Omar A Mesarwi
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Jonathan C Jun
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|