1
|
Pechenkova E, Rachinskaya M, Vasilenko V, Blazhenkova O, Mershina E. Brain Functional Connectivity During First- and Third-Person Visual Imagery. Vision (Basel) 2025; 9:30. [PMID: 40265398 PMCID: PMC12015856 DOI: 10.3390/vision9020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
The ability to adopt different perspectives, or vantage points, is fundamental to human cognition, affecting reasoning, memory, and imagery. While the first-person perspective allows individuals to experience a scene through their own eyes, the third-person perspective involves an external viewpoint, which is thought to demand greater cognitive effort and different neural processing. Despite the frequent use of perspective switching across various contexts, including modern media and in therapeutic settings, the neural mechanisms differentiating these two perspectives in visual imagery remain largely underexplored. In an exploratory fMRI study, we compared both activation and task-based functional connectivity underlying first-person and third-person perspective taking in the same 26 participants performing two spatial egocentric imagery tasks, namely imaginary tennis and house navigation. No significant differences in activation emerged between the first-person and third-person conditions. The network-based statistics analysis revealed a small subnetwork of the early visual and posterior temporal areas that manifested stronger functional connectivity during the first-person perspective, suggesting a closer sensory recruitment loop, or, in different terms, a loop between long-term memory and the "visual buffer" circuits. The absence of a strong neural distinction between the first-person and third-person perspectives suggests that third-person imagery may not fully decenter individuals from the scene, as is often assumed.
Collapse
Affiliation(s)
- Ekaterina Pechenkova
- Laboratory for Cognitive Research, School of Psychology, Faculty of Social Sciences, HSE University, 101000 Moscow, Russia (V.V.)
| | - Mary Rachinskaya
- Laboratory for Cognitive Research, School of Psychology, Faculty of Social Sciences, HSE University, 101000 Moscow, Russia (V.V.)
| | - Varvara Vasilenko
- Laboratory for Cognitive Research, School of Psychology, Faculty of Social Sciences, HSE University, 101000 Moscow, Russia (V.V.)
- Institute of Social Sciences, Russian Presidential Academy of National Economy and Public Administration, 119571 Moscow, Russia
| | - Olesya Blazhenkova
- Faculty of Arts and Social Sciences, Sabanci University, 34956 Istanbul, Turkey;
| | - Elena Mershina
- Laboratory for Cognitive Research, School of Psychology, Faculty of Social Sciences, HSE University, 101000 Moscow, Russia (V.V.)
- University Clinic, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Kazazian K, Abdalmalak A, Novi SL, Norton L, Moulavi-Ardakani R, Kolisnyk M, Gofton TE, Mesquita RC, Owen AM, Debicki DB. Functional near-infrared spectroscopy: A novel tool for detecting consciousness after acute severe brain injury. Proc Natl Acad Sci U S A 2024; 121:e2402723121. [PMID: 39186658 PMCID: PMC11388405 DOI: 10.1073/pnas.2402723121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
Recent advancements in functional neuroimaging have demonstrated that some unresponsive patients in the intensive care unit retain a level of consciousness that is inconsistent with their behavioral diagnosis of awareness. Functional near-infrared spectroscopy (fNIRS) is a portable optical neuroimaging method that can be used to measure neural activity with good temporal and spatial resolution. However, the reliability of fNIRS for detecting the neural correlates of consciousness remains to be established. In a series of studies, we evaluated whether fNIRS can record sensory, perceptual, and command-driven neural processing in healthy participants and in behaviorally nonresponsive patients. At the individual healthy subject level, we demonstrate that fNIRS can detect commonly studied resting state networks, sensorimotor processing, speech-specific auditory processing, and volitional command-driven brain activity to a motor imagery task. We then tested fNIRS with three acutely brain injured patients and found that one could willfully modulate their brain activity when instructed to imagine playing a game of tennis-providing evidence of preserved consciousness despite no observable behavioral signs of awareness. The successful application of fNIRS for detecting preserved awareness among behaviorally nonresponsive patients highlights its potential as a valuable tool for uncovering hidden cognitive states in critical care settings.
Collapse
Affiliation(s)
- Karnig Kazazian
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Androu Abdalmalak
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Sergio L Novi
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Loretta Norton
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Psychology, King's University College at Western University, London N6A 2M3, Canada
| | | | - Matthew Kolisnyk
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
| | - Teneille E Gofton
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Rickson C Mesquita
- School of Computer Science, University of Birmingham, Birmingham B15 2SQ, United Kingdom
- Gleb Wataghin Institute of Physics, University of Campinas, Campinas 13083-970, Brazil
| | - Adrian M Owen
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
- Department of Psychology, Faculty of Social Science, Western University, London N6A 3K7, Canada
| | - Derek B Debicki
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| |
Collapse
|
3
|
Kazazian K, Edlow BL, Owen AM. Detecting awareness after acute brain injury. Lancet Neurol 2024; 23:836-844. [PMID: 39030043 DOI: 10.1016/s1474-4422(24)00209-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 07/21/2024]
Abstract
Advances over the past two decades in functional neuroimaging have provided new diagnostic and prognostic tools for patients with severe brain injury. Some of the most pertinent developments in this area involve the assessment of residual brain function in patients in the intensive care unit during the acute phase of severe injury, when they are at their most vulnerable and prognosis is uncertain. Advanced neuroimaging techniques, such as functional MRI and EEG, have now been used to identify preserved cognitive processing, including covert conscious awareness, and to relate them to outcome in patients who are behaviourally unresponsive. Yet, technical and logistical challenges to clinical integration of these advanced neuroimaging techniques remain, such as the need for specialised expertise to acquire, analyse, and interpret data and to determine the appropriate timing for such assessments. Once these barriers are overcome, advanced functional neuroimaging technologies could improve diagnosis and prognosis for millions of patients worldwide.
Collapse
Affiliation(s)
- Karnig Kazazian
- Western Institute of Neuroscience, Western University, London, ON, Canada.
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Adrian M Owen
- Western Institute of Neuroscience, Western University, London, ON, Canada; Department of Physiology and Pharmacology and Department of Psychology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
4
|
Abstract
Covert consciousness is a state of residual awareness following severe brain injury or neurological disorder that evades routine bedside behavioral detection. Patients with covert consciousness have preserved awareness but are incapable of self-expression through ordinary means of behavior or communication. Growing recognition of the limitations of bedside neurobehavioral examination in reliably detecting consciousness, along with advances in neurotechnologies capable of detecting brain states or subtle signs indicative of consciousness not discernible by routine examination, carry promise to transform approaches to classifying, diagnosing, prognosticating and treating disorders of consciousness. Here we describe and critically evaluate the evolving clinical category of covert consciousness, including approaches to its diagnosis through neuroimaging, electrophysiology, and novel behavioral tools, its prognostic relevance, and open questions pertaining to optimal clinical management of patients with covert consciousness recovering from severe brain injury.
Collapse
Affiliation(s)
- Michael J. Young
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian L. Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yelena G. Bodien
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Sergeenko EV, Belousova OB, Pilipenko YV. [Diagnostic criteria for prolonged and chronic disturbances of consciousness after aneurysmal subarachnoid hemorrhages]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:117-121. [PMID: 39169590 DOI: 10.17116/neiro202488041117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
BACKGROUND In recent years, prolonged states of impaired consciousness became widespread among patients with aneurysmal subarachnoid hemorrhage. Treatment and maintenance of vital functions in such patients represent a complex medical, economic and social problem. In this regard, searching for the causes of prolonged states of impaired consciousness and predicting the outcomes are important. OBJECTIVE To analyze available literature data on prevention and treatment of prolonged states of impaired consciousness after aneurysmal subarachnoid hemorrhage. RESULTS We reviewed the PubMed database using the keywords «unresponsive wakefulness syndrome», «persistent vegetative state2, «minimal consciousness state» and «outcome of subarachnoid hemorrhage». Only 4 reports devoted to the causes and treatment outcomes in patients with prolonged impairment of consciousness after aneurysmal subarachnoid hemorrhage were found. At the same time, patients with aneurysmal subarachnoid hemorrhage comprise up to 11% among all cases of prolonged states of impaired consciousness. Examination, management and treatment of patients with prolonged impairment of consciousness after aneurysmal subarachnoid hemorrhage are carried out according to general principles without taking into account specific etiological and pathogenetic factors. CONCLUSION Increased number of patients with prolonged impairment of consciousness after aneurysmal subarachnoid hemorrhage necessitates analysis of etiopathogenesis and outcomes of these disorders based on modern clinical, instrumental and laboratory assessment of the brain.
Collapse
|
6
|
Zamora E, Chun KJ, Zamora C. Neuroimaging in Coma, Brain Death, and Related Conditions. NEUROGRAPHICS 2023; 13:190-209. [DOI: 10.3174/ng.2200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coma is a state of unresponsiveness to external stimuli, which can be secondary to a variety of CNS alterations affecting essential neuronal pathways, particularly the ascending reticular activating system. A comprehensive clinical evaluation is necessary for assessment of motor function and brainstem reflexes but is often insufficient for determination of the underlying etiology and extent of injury. Diagnostic brain imaging is typically needed for management and decision-making, particularly in acute settings where prompt diagnosis of reversible/treatable conditions is essential, as well as for prognostication. Understanding the pathophysiologic mechanisms leading to coma and comalike states and their imaging manifestations will enable selection of appropriate modalities and facilitate a clinically relevant interpretation. For evaluation of brain death, diagnostic imaging has a supportive role, and when indicated, selection of an ancillary diagnostic test is based on multiple factors, including susceptibility to confounding factors and specificity, in addition to safety, convenience, and availability.Learning objective: To describe the pathophysiology of alterations of consciousness and discuss the role of neuroimaging modalities in the evaluation of coma, brain death, and associated conditions
Collapse
|
7
|
Norton L, Graham M, Kazazian K, Gofton T, Weijer C, Debicki D, Fernandez-Espejo D, Thenayan EA, Owen AM. Use of functional magnetic resonance imaging to assess cognition and consciousness in severe Guillain-Barré syndrome. Int J Clin Health Psychol 2023; 23:100347. [DOI: 10.1016/j.ijchp.2022.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/08/2022] [Indexed: 11/13/2022] Open
|
8
|
Liu G, Sun J, Zuo S, Zhang L, Cai H, Zhang X, Hu Z, Liu Y, Yao Z. The signs of computer tomography combined with artificial intelligence can indicate the correlation between status of consciousness and primary brainstem hemorrhage of patients. Front Neurol 2023; 14:1116382. [PMID: 37051055 PMCID: PMC10083250 DOI: 10.3389/fneur.2023.1116382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
BackgroundFor patients of primary brainstem hemorrhage (PBH), it is crucial to find a method that can quickly and accurately predict the correlation between status of consciousness and PBH.ObjectiveTo analyze the value of computer tomography (CT) signs in combination with artificial intelligence (AI) technique in predicting the correlation between status of consciousness and PBH.MethodsA total of 120 patients with PBH were enrolled from August 2011 to March 2021 according to the criteria. Patients were divided into three groups [consciousness, minimally conscious state (MCS) and coma] based on the status of consciousness. Then, first, Mann–Whitney U test and Spearman rank correlation test were used on the factors: gender, age, stages of intracerebral hemorrhage, CT signs with AI or radiology physicians, hemorrhage involving the midbrain or ventricular system. We collected hemorrhage volumes and mean CT values with AI. Second, those significant factors were screened out by the Mann–Whitney U test and those highly or moderately correlated by Spearman’s rank correlation test, and a further ordinal multinomial logistic regression analysis was performed to find independent predictors of the status of consciousness. At last, receiver operating characteristic (ROC) curves were drawn to calculate the hemorrhage volume for predictively assessing the status of consciousness.ResultsPreliminary meaningful variables include hemorrhage involving the midbrain or ventricular system, hemorrhage volume, grade of hematoma shape and density, and CT value from Mann–Whitney U test and Spearman rank correlation test. It is further shown by ordinal multinomial logistic regression analysis that hemorrhage volume and hemorrhage involving the ventricular system are two major predictors of the status of consciousness. It showed from ROC that the hemorrhage volumes of <3.040 mL, 3.040 ~ 6.225 mL and >6.225 mL correspond to consciousness, MCS or coma, respectively. If the hemorrhage volume is the same, hemorrhage involving the ventricular system should be correlated with more severe disorders of consciousness (DOC).ConclusionCT signs combined with AI can predict the correlation between status of consciousness and PBH. Hemorrhage volume and hemorrhage involving the ventricular system are two independent factors, with hemorrhage volume in particular reaching quantitative predictions.
Collapse
Affiliation(s)
- Guofang Liu
- Department of Radiology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Juan Sun
- Department of Pain and Rehabilitation, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiyi Zuo
- Department of Pain and Rehabilitation, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lei Zhang
- Department of Radiology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hanxu Cai
- Department of Physiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaolong Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhian Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yong Liu
- Department of Pain and Rehabilitation, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yong Liu,
| | - Zhongxiang Yao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
- Zhongxiang Yao,
| |
Collapse
|
9
|
Luppi AI, Vohryzek J, Kringelbach ML, Mediano PAM, Craig MM, Adapa R, Carhart-Harris RL, Roseman L, Pappas I, Peattie ARD, Manktelow AE, Sahakian BJ, Finoia P, Williams GB, Allanson J, Pickard JD, Menon DK, Atasoy S, Stamatakis EA. Distributed harmonic patterns of structure-function dependence orchestrate human consciousness. Commun Biol 2023; 6:117. [PMID: 36709401 PMCID: PMC9884288 DOI: 10.1038/s42003-023-04474-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/11/2023] [Indexed: 01/29/2023] Open
Abstract
A central question in neuroscience is how consciousness arises from the dynamic interplay of brain structure and function. Here we decompose functional MRI signals from pathological and pharmacologically-induced perturbations of consciousness into distributed patterns of structure-function dependence across scales: the harmonic modes of the human structural connectome. We show that structure-function coupling is a generalisable indicator of consciousness that is under bi-directional neuromodulatory control. We find increased structure-function coupling across scales during loss of consciousness, whether due to anaesthesia or brain injury, capable of discriminating between behaviourally indistinguishable sub-categories of brain-injured patients, tracking the presence of covert consciousness. The opposite harmonic signature characterises the altered state induced by LSD or ketamine, reflecting psychedelic-induced decoupling of brain function from structure and correlating with physiological and subjective scores. Overall, connectome harmonic decomposition reveals how neuromodulation and the network architecture of the human connectome jointly shape consciousness and distributed functional activation across scales.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK.
| | - Jakub Vohryzek
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08005, Spain
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Computing, Imperial College London, London, W12 0NN, UK
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ram Adapa
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
- Psychedelics Division - Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Leor Roseman
- Center for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
| | - Ioannis Pappas
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Alexander R D Peattie
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anne E Manktelow
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Barbara J Sahakian
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Psychiatry, MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Paola Finoia
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Judith Allanson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - John D Pickard
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Selen Atasoy
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
10
|
Norton L, Kazazian K, Gofton T, Debicki DB, Fernandez-Espejo D, Peelle JE, Al Thenayan E, Young GB, Owen AM. Functional Neuroimaging as an Assessment Tool in Critically Ill Patients. Ann Neurol 2023; 93:131-141. [PMID: 36222470 DOI: 10.1002/ana.26530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Little is known about residual cognitive function in the earliest stages of serious brain injury. Functional neuroimaging has yielded valuable diagnostic and prognostic information in chronic disorders of consciousness, such as the vegetative state (also termed unresponsive wakefulness syndrome). The objective of the current study was to determine if functional neuroimaging could be efficacious in the assessment of cognitive function in acute disorders of consciousness, such as coma, where decisions about the withdrawal of life-sustaining therapies are often made. METHODS A hierarchical functional magnetic resonance imaging (fMRI) approach assessed sound perception, speech perception, language comprehension, and covert command following in 17 critically ill patients admitted to the intensive care unit (ICU). RESULTS Preserved auditory function was observed in 15 patients (88%), whereas 5 (29%) also had preserved higher-order language comprehension. Notably, one patient could willfully modulate his brain activity when instructed to do so, suggesting a level of covert conscious awareness that was entirely inconsistent with his clinical diagnosis at the time of the scan. Across patients, a positive relationship was also observed between fMRI responsivity and the level of functional recovery, such that patients with the greatest functional recovery had neural responses most similar to those observed in healthy control participants. INTERPRETATION These results suggest that fMRI may provide important diagnostic and prognostic information beyond standard clinical assessment in acutely unresponsive patients, which may aid discussions surrounding the continuation or removal of life-sustaining therapies during the early post-injury period. ANN NEUROL 2023;93:131-141.
Collapse
Affiliation(s)
- Loretta Norton
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Psychology, King's University College at Western University, London, Ontario, Canada
| | - Karnig Kazazian
- Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Teneille Gofton
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Derek B Debicki
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Davinia Fernandez-Espejo
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK.,Centre for Human Brain Health and School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
| | - Jonathan E Peelle
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA
| | - Eyad Al Thenayan
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - G Bryan Young
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Adrian M Owen
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology and Department of Psychology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
11
|
Gomez LA, Shen Q, Doyle K, Vrosgou A, Velazquez A, Megjhani M, Ghoshal S, Roh D, Agarwal S, Park S, Claassen J, Kleinberg S. Classification of Level of Consciousness in a Neurological ICU Using Physiological Data. Neurocrit Care 2023; 38:118-128. [PMID: 36109448 PMCID: PMC9935697 DOI: 10.1007/s12028-022-01586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/08/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Impaired consciousness is common in intensive care unit (ICU) patients, and an individual's degree of consciousness is crucial to determining their care and prognosis. However, there are no methods that continuously monitor consciousness and alert clinicians to changes. We investigated the use of physiological signals collected in the ICU to classify levels of consciousness in critically ill patients. METHODS We studied 61 patients with subarachnoid hemorrhage (SAH) and 178 patients with intracerebral hemorrhage (ICH) from the neurological ICU at Columbia University Medical Center in a retrospective observational study of prospectively collected data. The level of consciousness was determined on the basis of neurological examination and mapped to comatose, vegetative state or unresponsive wakefulness syndrome (VS/UWS), minimally conscious minus state (MCS-), and command following. For each physiological signal, we extracted time-series features and performed classification using extreme gradient boosting on multiple clinically relevant tasks across subsets of physiological signals. We applied this approach independently on both SAH and ICH patient groups for three sets of variables: (1) a minimal set common to most hospital patients (e.g., heart rate), (2) variables available in most ICUs (e.g., body temperature), and (3) an extended set recorded mainly in neurological ICUs (absent for the ICH patient group; e.g., brain temperature). RESULTS On the commonly performed classification task of VS/UWS versus MCS-, we achieved an area under the receiver operating characteristic curve (AUROC) in the SAH patient group of 0.72 (sensitivity 82%, specificity 57%; 95% confidence interval [CI] 0.63-0.81) using the extended set, 0.69 (sensitivity 83%, specificity 51%; 95% CI 0.59-0.78) on the variable set available in most ICUs, and 0.69 (sensitivity 56%, specificity 78%; 95% CI 0.60-0.78) on the minimal set. In the ICH patient group, AUROC was 0.64 (sensitivity 56%, specificity 65%; 95% CI 0.55-0.74) using the minimal set and 0.61 (sensitivity 50%, specificity 80%; 95% CI 0.51-0.71) using the variables available in most ICUs. CONCLUSIONS We find that physiological signals can be used to classify states of consciousness for patients in the ICU. Building on this with intraday assessments and increasing sensitivity and specificity may enable alarm systems that alert physicians to changes in consciousness and frequent monitoring of consciousness throughout the day, both of which may improve patient care and outcomes.
Collapse
Affiliation(s)
- Louis A Gomez
- Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Qi Shen
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kevin Doyle
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Athina Vrosgou
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela Velazquez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Murad Megjhani
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shivani Ghoshal
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- New York Presbyterian Hospital, New York, NY, USA
| | - David Roh
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- New York Presbyterian Hospital, New York, NY, USA
| | - Sachin Agarwal
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- New York Presbyterian Hospital, New York, NY, USA
| | - Soojin Park
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- New York Presbyterian Hospital, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- New York Presbyterian Hospital, New York, NY, USA
| | - Samantha Kleinberg
- Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA.
| |
Collapse
|
12
|
Kim N, O'Sullivan J, Olafson E, Caliendo E, Nowak S, Voss HU, Lowder R, Watson WD, Ivanidze J, Fins JJ, Schiff ND, Hill NJ, Shah SA. Cognitive-Motor Dissociation Following Pediatric Brain Injury: What About the Children? Neurol Clin Pract 2022; 12:248-257. [PMID: 35733619 PMCID: PMC9208423 DOI: 10.1212/cpj.0000000000001169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/07/2022] [Indexed: 11/27/2022]
Abstract
Background and Objectives Following severe brain injury, up to 16% of adults showing no clinical signs of cognitive function nonetheless have preserved cognitive capacities detectable via neuroimaging and neurophysiology; this has been designated cognitive-motor dissociation (CMD). Pediatric medicine lacks both practice guidelines for identifying covert cognition and epidemiologic data regarding CMD prevalence. Methods We applied a diverse battery of neuroimaging and neurophysiologic tests to evaluate 2 adolescents (aged 15 and 18 years) who had shown no clinical evidence of preserved cognitive function following brain injury at age 9 and 13 years, respectively. Clinical evaluations were consistent with minimally conscious state (minus) and vegetative state, respectively. Results Both participants' EEG, and 1 participant's fMRI, provided evidence that they could understand commands and make consistent voluntary decisions to follow them. Both participants' EEG demonstrated larger-than-expected responses to auditory stimuli and intact semantic processing of words in context. Discussion These converging lines of evidence lead us to conclude that both participants had preserved cognitive function dissociated from their motor output. Throughout the 5+ years since injury, communication attempts and therapy had remained uninformed by such objective evidence of their cognitive abilities. Proper diagnosis of CMD is an ethical imperative. Children with covert cognition reflect a vulnerable and isolated population; the methods outlined here provide a first step in identifying such persons to advance efforts to alleviate their condition.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Radiology (NK, JOS, EO, HUV, JI, SAS) and Department of Rehabilitation Medicine (EC, RL), Weill Cornell Medicine, New York; Blythedale Children's Hospital (SN, WDW), Valhalla, NY; Division of Medical Ethics (JJF), Weill Cornell Medicine and New York Presbyterian Weill Cornell Medical Center; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York; National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center; and Department of Electrical and Computer Engineering (NJH), State University of New York at Albany, NY
| | - James O'Sullivan
- Department of Radiology (NK, JOS, EO, HUV, JI, SAS) and Department of Rehabilitation Medicine (EC, RL), Weill Cornell Medicine, New York; Blythedale Children's Hospital (SN, WDW), Valhalla, NY; Division of Medical Ethics (JJF), Weill Cornell Medicine and New York Presbyterian Weill Cornell Medical Center; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York; National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center; and Department of Electrical and Computer Engineering (NJH), State University of New York at Albany, NY
| | - Emily Olafson
- Department of Radiology (NK, JOS, EO, HUV, JI, SAS) and Department of Rehabilitation Medicine (EC, RL), Weill Cornell Medicine, New York; Blythedale Children's Hospital (SN, WDW), Valhalla, NY; Division of Medical Ethics (JJF), Weill Cornell Medicine and New York Presbyterian Weill Cornell Medical Center; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York; National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center; and Department of Electrical and Computer Engineering (NJH), State University of New York at Albany, NY
| | - Eric Caliendo
- Department of Radiology (NK, JOS, EO, HUV, JI, SAS) and Department of Rehabilitation Medicine (EC, RL), Weill Cornell Medicine, New York; Blythedale Children's Hospital (SN, WDW), Valhalla, NY; Division of Medical Ethics (JJF), Weill Cornell Medicine and New York Presbyterian Weill Cornell Medical Center; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York; National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center; and Department of Electrical and Computer Engineering (NJH), State University of New York at Albany, NY
| | - Sophie Nowak
- Department of Radiology (NK, JOS, EO, HUV, JI, SAS) and Department of Rehabilitation Medicine (EC, RL), Weill Cornell Medicine, New York; Blythedale Children's Hospital (SN, WDW), Valhalla, NY; Division of Medical Ethics (JJF), Weill Cornell Medicine and New York Presbyterian Weill Cornell Medical Center; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York; National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center; and Department of Electrical and Computer Engineering (NJH), State University of New York at Albany, NY
| | - Henning U Voss
- Department of Radiology (NK, JOS, EO, HUV, JI, SAS) and Department of Rehabilitation Medicine (EC, RL), Weill Cornell Medicine, New York; Blythedale Children's Hospital (SN, WDW), Valhalla, NY; Division of Medical Ethics (JJF), Weill Cornell Medicine and New York Presbyterian Weill Cornell Medical Center; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York; National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center; and Department of Electrical and Computer Engineering (NJH), State University of New York at Albany, NY
| | - Ryan Lowder
- Department of Radiology (NK, JOS, EO, HUV, JI, SAS) and Department of Rehabilitation Medicine (EC, RL), Weill Cornell Medicine, New York; Blythedale Children's Hospital (SN, WDW), Valhalla, NY; Division of Medical Ethics (JJF), Weill Cornell Medicine and New York Presbyterian Weill Cornell Medical Center; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York; National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center; and Department of Electrical and Computer Engineering (NJH), State University of New York at Albany, NY
| | - William D Watson
- Department of Radiology (NK, JOS, EO, HUV, JI, SAS) and Department of Rehabilitation Medicine (EC, RL), Weill Cornell Medicine, New York; Blythedale Children's Hospital (SN, WDW), Valhalla, NY; Division of Medical Ethics (JJF), Weill Cornell Medicine and New York Presbyterian Weill Cornell Medical Center; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York; National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center; and Department of Electrical and Computer Engineering (NJH), State University of New York at Albany, NY
| | - Jana Ivanidze
- Department of Radiology (NK, JOS, EO, HUV, JI, SAS) and Department of Rehabilitation Medicine (EC, RL), Weill Cornell Medicine, New York; Blythedale Children's Hospital (SN, WDW), Valhalla, NY; Division of Medical Ethics (JJF), Weill Cornell Medicine and New York Presbyterian Weill Cornell Medical Center; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York; National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center; and Department of Electrical and Computer Engineering (NJH), State University of New York at Albany, NY
| | - Joseph J Fins
- Department of Radiology (NK, JOS, EO, HUV, JI, SAS) and Department of Rehabilitation Medicine (EC, RL), Weill Cornell Medicine, New York; Blythedale Children's Hospital (SN, WDW), Valhalla, NY; Division of Medical Ethics (JJF), Weill Cornell Medicine and New York Presbyterian Weill Cornell Medical Center; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York; National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center; and Department of Electrical and Computer Engineering (NJH), State University of New York at Albany, NY
| | - Nicholas D Schiff
- Department of Radiology (NK, JOS, EO, HUV, JI, SAS) and Department of Rehabilitation Medicine (EC, RL), Weill Cornell Medicine, New York; Blythedale Children's Hospital (SN, WDW), Valhalla, NY; Division of Medical Ethics (JJF), Weill Cornell Medicine and New York Presbyterian Weill Cornell Medical Center; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York; National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center; and Department of Electrical and Computer Engineering (NJH), State University of New York at Albany, NY
| | - N Jeremy Hill
- Department of Radiology (NK, JOS, EO, HUV, JI, SAS) and Department of Rehabilitation Medicine (EC, RL), Weill Cornell Medicine, New York; Blythedale Children's Hospital (SN, WDW), Valhalla, NY; Division of Medical Ethics (JJF), Weill Cornell Medicine and New York Presbyterian Weill Cornell Medical Center; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York; National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center; and Department of Electrical and Computer Engineering (NJH), State University of New York at Albany, NY
| | - Sudhin A Shah
- Department of Radiology (NK, JOS, EO, HUV, JI, SAS) and Department of Rehabilitation Medicine (EC, RL), Weill Cornell Medicine, New York; Blythedale Children's Hospital (SN, WDW), Valhalla, NY; Division of Medical Ethics (JJF), Weill Cornell Medicine and New York Presbyterian Weill Cornell Medical Center; Department of Neurology and BMRI (NDS), Weill Cornell Medicine, New York; National Center for Adaptive Neurotechnologies (NJH), Stratton VA Medical Center; and Department of Electrical and Computer Engineering (NJH), State University of New York at Albany, NY
| |
Collapse
|
13
|
Wade DT, Turner-Stokes L, Playford ED, Allanson J, Pickard J. Prolonged disorders of consciousness: A response to a "critical evaluation of the new UK guidelines.". Clin Rehabil 2022; 36:1267-1275. [PMID: 35546561 PMCID: PMC9354059 DOI: 10.1177/02692155221099704] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND In 2020, The London Royal College of Physicians published "Prolonged disorders of consciousness following sudden-onset brain injury: national clinical guidelines". In 2021, in the journal Brain, Scolding et al. published "a critical evaluation of the new UK guidelines". This evaluation focussed on one of the 73 recommendations in the National Clinical Guidelines. They also alleged that the guidelines were unethical. CRITICISMS They criticised our recommendation not to use activation protocols using fMRI, electroencephalography, or Positron Emission Tomography. They claim these tests can (a) detect 'covert consciousness', (b) add predictive value and (c) should be part of routine clinical care. They also suggest that our guideline was driven by cost considerations, leading to clinicians deciding to withdraw treatment at 72 h. EVIDENCE Our detailed review of the evidence confirms the American Academy of Neurology Practise Guideline (2018) and the European Academy of Neurology Guideline (2020), which agree that insufficient evidence supports their approach. ETHICS The ethical objections are based on unwarranted assumptions. Our guideline does not make any recommendations about management until at least four weeks have passed. We explicitly recommend that expert assessors undertake ongoing surveillance and monitoring; we do not suggest that patients be abandoned. Our recommendation will increase the cost We had ethicists in the working party. CONCLUSION We conclude the "critical evaluation" fails to provide evidence for their criticism and that the ethical objections arise from incorrect assumptions and unsupported interpretations of evidence and our guideline. The 2020 UK national guidelines remain valid.
Collapse
Affiliation(s)
| | | | | | - Judith Allanson
- Department of Neurological Rehabilitation, 405352Addenbrookes Hospital, Cambridge, UK
| | - John Pickard
- Academic Neurosurgery, Department of Clinical Neurosciences, 406021University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
14
|
Fainberg N, Mataya L, Kirschen M, Morrison W. Pediatric brain death certification: a narrative review. Transl Pediatr 2021; 10:2738-2748. [PMID: 34765497 PMCID: PMC8578760 DOI: 10.21037/tp-20-350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/05/2021] [Indexed: 11/30/2022] Open
Abstract
In the five decades since its inception, brain death has become an accepted medical and legal concept throughout most of the world. There was initial reluctance to apply brain death criteria to children as they are believed more likely to regain neurologic function following injury. In spite of early trepidation, criteria for pediatric brain death certification were first proposed in 1987 by a multidisciplinary committee comprised of experts in the medical and legal communities. Protocols have since been developed to standardize brain death determination, but there remains substantial variability in practice throughout the world. In addition, brain death remains a topic of considerable ethical, philosophical, and legal controversy, and is often misrepresented in the media. In the present article, we discuss the history of brain death and the guidelines for its determination. We provide an overview of past and present challenges to its concept and diagnosis from biophilosophical, ethical and legal perspectives, and highlight differences between adult and pediatric brain death determination. We conclude by anticipating future directions for brain death as related to the emergence of new technologies. It is our position that providers should endorse the criteria for brain death diagnosis in children as proposed by the Society of Critical Care Medicine (SCCM), American Academy of Pediatrics (AAP), and Child Neurology Society (CNS), in order to prevent controversy and subjectivity surrounding what constitutes life versus death.
Collapse
Affiliation(s)
- Nina Fainberg
- Division of Pediatric Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Leslie Mataya
- Division of Pediatric Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew Kirschen
- Division of Pediatric Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| | - Wynne Morrison
- Division of Pediatric Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| |
Collapse
|
15
|
Naro A, Pignolo L, Lucca LF, Calabrò RS. An action-observation/motor-imagery based approach to differentiate disorders of consciousness: what is beneath the tip of the iceberg? Restor Neurol Neurosci 2021; 39:181-197. [PMID: 33998559 DOI: 10.3233/rnn-201130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The evaluation of motor imagery in persons with prolonged Disorders of Consciousness (pDOC) is a practical approach to differentiate between patients with Minimally Conscious State (MCS) and Unresponsive Wakefulness Syndrome (UWS) and to identify residual awareness even in individuals with UWS. Investigating the influence of motor observation on motor imagery could be helpful in this regard. OBJECTIVE In order to corroborate the clinical diagnosis and identify misdiagnosed individuals, we used EEG recordings, to assess the influence of the low-level perceptual and motoric mechanisms on motor observation on motor imagery, taking into account the role of the high-level cognitive mechanisms in patients with pDOC. METHODS We assessed the influence of motor observation of walking in first-person or third-person view (by a video provision) on motor imagery of walking in the first-person view on the visual N190 (expression of motor observation processing), the readiness potential (RP) (expressing motor preparation), and the P3 component (high-level cognitive processes) in a sample of 10 persons with MCS, 10 with UWS, and 10 healthy controls (CG). Specifically, the video showed a first-view or third-view walk down the street while the participants were asked to imagine a first-view walking down the street. RESULTS CG showed greater N190 response (low-level sensorimotor processing) in the non-matching than in the matching condition. Conversely, the P3 and RP responses (high-level sensorimotor processing) were greater in the matching than in the non-matching condition. Remarkably, 6 out of 10 patients with MCS showed the preservation of both high- and low-level sensorimotor processing. One UWS patient showed responses similar to those six patients, suggesting a preservation of cognitively-mediated sensorimotor processing despite a detrimental motor preparation process. The remaining patients with MCS did not show diversified EEG responses, suggesting limited cognitive functioning. CONCLUSIONS Our study suggests that identifying the low-level visual and high-level motor preparation processes in response to a simple influence of motor observation of motor imagery tasks potentially supports the clinical differential diagnosis of with MCS and UWS. This might help identify UWS patients which were misdiagnosed and who deserve more sophisticated diagnoses.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | | | | |
Collapse
|
16
|
Scolding N, Owen AM, Keown J. Prolonged disorders of consciousness: a critical evaluation of the new UK guidelines. Brain 2021; 144:1655-1660. [PMID: 33778883 PMCID: PMC8320298 DOI: 10.1093/brain/awab063] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/06/2020] [Accepted: 12/11/2020] [Indexed: 11/14/2022] Open
Abstract
In March 2020, the Royal College of Physicians in the UK published national guidelines on the management of patients with prolonged disorders of consciousness, updating their 2013 guidance 'particularly in relation to recent developments in assessment and management and … changes in the law governing … the withdrawal of clinically assisted nutrition and hydration'. The report's primary focus is on patients who could live for many years with treatment and care. This update, by a neurologist, an imaging neuroscientist, and a lawyer-ethicist, questions the document's rejection of any significant role for neuroimaging techniques including functional MRI and/or bedside EEG to detect covert consciousness in such patients. We find the reasons for this rejection unconvincing, given (i) the significant advances made in the use of this technology in recent years; and (ii) the wider scope for its use envisaged by the earlier (2018) guidelines issued by the American Academy of Neurology. We suggest that, since around one in five patients diagnosed with prolonged disorders of consciousness are in fact conscious enough to follow commands in a neuroimaging context (i.e. those who are 'covertly conscious' or those with 'cognitive motor dissociation'), and given the clinical, ethical and legal importance of determining whether patients with prolonged disorders of consciousness are legally competent or at least able to express their views and feelings, the guidance from the Royal College of Physicians requires urgent review.
Collapse
Affiliation(s)
- Neil Scolding
- Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | | | - John Keown
- Kennedy Institute of Ethics, Georgetown University, Washington, DC, USA
| |
Collapse
|
17
|
Abdalmalak A, Milej D, Norton L, Debicki DB, Owen AM, Lawrence KS. The Potential Role of fNIRS in Evaluating Levels of Consciousness. Front Hum Neurosci 2021; 15:703405. [PMID: 34305558 PMCID: PMC8296905 DOI: 10.3389/fnhum.2021.703405] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last few decades, neuroimaging techniques have transformed our understanding of the brain and the effect of neurological conditions on brain function. More recently, light-based modalities such as functional near-infrared spectroscopy have gained popularity as tools to study brain function at the bedside. A recent application is to assess residual awareness in patients with disorders of consciousness, as some patients retain awareness albeit lacking all behavioural response to commands. Functional near-infrared spectroscopy can play a vital role in identifying these patients by assessing command-driven brain activity. The goal of this review is to summarise the studies reported on this topic, to discuss the technical and ethical challenges of working with patients with disorders of consciousness, and to outline promising future directions in this field.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| | - Loretta Norton
- Department of Psychology, King's College, Western University, London, ON, Canada
| | - Derek B Debicki
- Brain and Mind Institute, Western University, London, ON, Canada.,Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Adrian M Owen
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
18
|
Luppi AI, Craig MM, Coppola P, Peattie ARD, Finoia P, Williams GB, Allanson J, Pickard JD, Menon DK, Stamatakis EA. Preserved fractal character of structural brain networks is associated with covert consciousness after severe brain injury. Neuroimage Clin 2021; 30:102682. [PMID: 34215152 PMCID: PMC8102619 DOI: 10.1016/j.nicl.2021.102682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/30/2021] [Accepted: 04/18/2021] [Indexed: 12/24/2022]
Abstract
Self-similarity is ubiquitous throughout natural phenomena, including the human brain. Recent evidence indicates that fractal dimension of functional brain networks, a measure of self-similarity, is diminished in patients diagnosed with disorders of consciousness arising from severe brain injury. Here, we set out to investigate whether loss of self-similarity is observed in the structural connectome of patients with disorders of consciousness. Using diffusion MRI tractography from N = 11 patients in a minimally conscious state (MCS), N = 10 patients diagnosed with unresponsive wakefulness syndrome (UWS), and N = 20 healthy controls, we show that fractal dimension of structural brain networks is diminished in DOC patients. Remarkably, we also show that fractal dimension of structural brain networks is preserved in patients who exhibit evidence of covert consciousness by performing mental imagery tasks during functional MRI scanning. These results demonstrate that differences in fractal dimension of structural brain networks are quantitatively associated with chronic loss of consciousness induced by severe brain injury, highlighting the close connection between structural organisation of the human brain and its ability to support cognitive function.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom.
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| | - Peter Coppola
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| | - Alexander R D Peattie
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| | - Paola Finoia
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| | - Guy B Williams
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, United Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| | - John D Pickard
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, United Kingdom
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| |
Collapse
|
19
|
Cortical Function in Acute Severe Traumatic Brain Injury and at Recovery: A Longitudinal fMRI Case Study. Brain Sci 2020; 10:brainsci10090604. [PMID: 32899145 PMCID: PMC7563151 DOI: 10.3390/brainsci10090604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/22/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022] Open
Abstract
Differences in the functional integrity of the brain from acute severe brain injury to subsequent recovery of consciousness have not been well documented. Functional magnetic resonance imaging (fMRI) may elucidate this issue as it allows for the objective measurement of brain function both at rest and in response to stimuli. Here, we report the cortical function of a patient with a severe traumatic brain injury (TBI) in a critically ill state and at subsequent functional recovery 9-months post injury. A series of fMRI paradigms were employed to assess sound and speech perception, command following, and resting state connectivity. The patient retained sound perception and speech perception acutely, as indexed by his fMRI responses. Command following was absent acutely, but was present at recovery. Increases in functional connectivity across multiple resting state networks were observed at recovery. We demonstrate the clinical utility of fMRI in assessing cortical function in a patient with severe TBI. We suggest that hallmarks of the recovery of consciousness are associated with neural activity to higher-order cognitive tasks and increased resting state connectivity.
Collapse
|
20
|
Comanducci A, Boly M, Claassen J, De Lucia M, Gibson RM, Juan E, Laureys S, Naccache L, Owen AM, Rosanova M, Rossetti AO, Schnakers C, Sitt JD, Schiff ND, Massimini M. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: review of an IFCN-endorsed expert group. Clin Neurophysiol 2020; 131:2736-2765. [PMID: 32917521 DOI: 10.1016/j.clinph.2020.07.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 07/06/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
Abstract
The analysis of spontaneous EEG activity and evoked potentialsis a cornerstone of the instrumental evaluation of patients with disorders of consciousness (DoC). Thepast few years have witnessed an unprecedented surge in EEG-related research applied to the prediction and detection of recovery of consciousness after severe brain injury,opening up the prospect that new concepts and tools may be available at the bedside. This paper provides a comprehensive, critical overview of bothconsolidated and investigational electrophysiological techniquesfor the prognostic and diagnostic assessment of DoC.We describe conventional clinical EEG approaches, then focus on evoked and event-related potentials, and finally we analyze the potential of novel research findings. In doing so, we (i) draw a distinction between acute, prolonged and chronic phases of DoC, (ii) attempt to relate both clinical and research findings to the underlying neuronal processes and (iii) discuss technical and conceptual caveats.The primary aim of this narrative review is to bridge the gap between standard and emerging electrophysiological measures for the detection and prediction of recovery of consciousness. The ultimate scope is to provide a reference and common ground for academic researchers active in the field of neurophysiology and clinicians engaged in intensive care unit and rehabilitation.
Collapse
Affiliation(s)
- A Comanducci
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - M Boly
- Department of Neurology and Department of Psychiatry, University of Wisconsin, Madison, USA; Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, USA
| | - J Claassen
- Department of Neurology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - M De Lucia
- Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - R M Gibson
- The Brain and Mind Institute and the Department of Physiology and Pharmacology, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, Ontario, Canada
| | - E Juan
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, USA; Amsterdam Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - S Laureys
- Coma Science Group, Centre du Cerveau, GIGA-Consciousness, University and University Hospital of Liège, 4000 Liège, Belgium; Fondazione Europea per la Ricerca Biomedica Onlus, Milan 20063, Italy
| | - L Naccache
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Sorbonne Université, UPMC Université Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | - A M Owen
- The Brain and Mind Institute and the Department of Physiology and Pharmacology, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, Ontario, Canada
| | - M Rosanova
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; Fondazione Europea per la Ricerca Biomedica Onlus, Milan 20063, Italy
| | - A O Rossetti
- Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - J D Sitt
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - N D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - M Massimini
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
21
|
Møller MLH, Højlund A, Jensen M, Gansonre C, Shtyrov Y. Applied potential of task-free event-related paradigms for assessing neurocognitive functions in disorders of consciousness. Brain Commun 2020; 2:fcaa087. [PMID: 33134912 PMCID: PMC7585695 DOI: 10.1093/braincomms/fcaa087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/21/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Diagnosing patients with disorders of consciousness is immensely difficult and often results in misdiagnoses, which can have fatal consequences. Despite the severity of this well-known issue, a reliable assessment tool has not yet been developed and implemented in the clinic. The main aim of this focused review is to evaluate the various event-related potential paradigms, recorded using EEG, which may be used to improve the assessment of patients with disorders of consciousness; we also provide a brief comparison of these paradigms with other measures. Notably, most event-related potential studies on the topic have focused on testing a small set of components, or even just a single component. However, to be of practical use, we argue that an assessment should probe a range of cognitive and linguistic functions at once. We suggest a novel approach that combines a set of well-tested auditory event-related potential components: N100, mismatch negativity, P3a, N400, early left anterior negativity and lexical response enhancement. Combining these components in a single, task-free design will provide a multidimensional assessment of cognitive and linguistic processes, which may help physicians make a more precise diagnosis.
Collapse
Affiliation(s)
- Marie Louise Holm Møller
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andreas Højlund
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mads Jensen
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christelle Gansonre
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Blundon EG, Gallagher RE, Ward LM. Electrophysiological evidence of preserved hearing at the end of life. Sci Rep 2020; 10:10336. [PMID: 32587364 PMCID: PMC7316981 DOI: 10.1038/s41598-020-67234-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/04/2020] [Indexed: 11/17/2022] Open
Abstract
This study attempts to answer the question: “Is hearing the last to go?” We present evidence of hearing among unresponsive actively dying hospice patients. Individual ERP (MMN, P3a, and P3b) responses to deviations in auditory patterns are reported for conscious young, healthy control participants, as well as for hospice patients, both when the latter were conscious, and again when they became unresponsive to their environment. Whereas the MMN (and perhaps too the P3a) is considered an automatic response to auditory irregularities, the P3b is associated with conscious detection of oddball targets. All control participants, and most responsive hospice patients, evidenced a “local” effect (either a MMN, a P3a, or both) and some a “global” effect (P3b) to deviations in tone, or deviations in auditory pattern. Importantly, most unresponsive patients showed evidence of MMN responses to tone changes, and some showed a P3a or P3b response to either tone or pattern changes. Thus, their auditory systems were responding similarly to those of young, healthy controls just hours from end of life. Hearing may indeed be one of the last senses to lose function as humans die.
Collapse
Affiliation(s)
| | - Romayne E Gallagher
- Department of Family Medicine, Vancouver, Canada.,Department of Family and Community Medicine, Providence Health Care, Vancouver, Canada
| | - Lawrence M Ward
- Department of Psychology, Vancouver, Canada. .,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
23
|
Abdalmalak A, Milej D, Yip LCM, Khan AR, Diop M, Owen AM, St Lawrence K. Assessing Time-Resolved fNIRS for Brain-Computer Interface Applications of Mental Communication. Front Neurosci 2020; 14:105. [PMID: 32132894 PMCID: PMC7040089 DOI: 10.3389/fnins.2020.00105] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Brain-computer interfaces (BCIs) are becoming increasingly popular as a tool to improve the quality of life of patients with disabilities. Recently, time-resolved functional near-infrared spectroscopy (TR-fNIRS) based BCIs are gaining traction because of their enhanced depth sensitivity leading to lower signal contamination from the extracerebral layers. This study presents the first account of TR-fNIRS based BCI for “mental communication” on healthy participants. Twenty-one (21) participants were recruited and were repeatedly asked a series of questions where they were instructed to imagine playing tennis for “yes” and to stay relaxed for “no.” The change in the mean time-of-flight of photons was used to calculate the change in concentrations of oxy- and deoxyhemoglobin since it provides a good compromise between depth sensitivity and signal-to-noise ratio. Features were extracted from the average oxyhemoglobin signals to classify them as “yes” or “no” responses. Linear-discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the responses using the leave-one-out cross-validation method. The overall accuracies achieved for all participants were 75% and 76%, using LDA and SVM, respectively. The results also reveal that there is no significant difference in accuracy between questions. In addition, physiological parameters [heart rate (HR) and mean arterial pressure (MAP)] were recorded on seven of the 21 participants during motor imagery (MI) and rest to investigate changes in these parameters between conditions. No significant difference in these parameters was found between conditions. These findings suggest that TR-fNIRS could be suitable as a BCI for patients with brain injuries.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| | - Daniel Milej
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| | - Lawrence C M Yip
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| | - Ali R Khan
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Mamadou Diop
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| | - Adrian M Owen
- Brain and Mind Institute, Western University, London, ON, Canada
| | - Keith St Lawrence
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
24
|
Abdalmalak A, Milej D, Cohen DJ, Anazodo U, Ssali T, Diop M, Owen AM, St Lawrence K. Using fMRI to investigate the potential cause of inverse oxygenation reported in fNIRS studies of motor imagery. Neurosci Lett 2019; 714:134607. [PMID: 31693928 DOI: 10.1016/j.neulet.2019.134607] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022]
Abstract
Motor imagery (MI) is a commonly used cognitive task in brain-computer interface (BCI) applications because it produces reliable activity in motor-planning regions. However, a number of functional near-infrared spectroscopy (fNIRS) studies have reported the unexpected finding of inverse oxygenation: increased deoxyhemoglobin and decreased oxyhemoglobin during task periods. This finding questions the reliability of fNIRS for BCI applications given that MI activation should result in a focal increase in blood oxygenation. In an attempt to elucidate this phenomenon, fMRI and fNIRS data were acquired on 15 healthy participants performing a MI task. The fMRI data provided global coverage of brain activity, thus allowing visualization of all potential brain regions activated and deactivated during task periods. Indeed, fMRI results from seven subjects included activation in the primary motor cortex and/or the pre-supplementary motor area during the rest periods in addition to the expected activation in the supplementary motor and premotor areas. Of these seven subjects, two showed inverse oxygenation with fNIRS. The proximity of the regions showing inverse oxygenation to the motor planning regions suggests that inverse activation detected by fNIRS may likely be a consequence of partial volume errors due to the sensitivity of the optodes to both primary motor and motor planning regions.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada; Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1 Canada.
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada; Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1 Canada
| | - David J Cohen
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1 Canada
| | - Udunna Anazodo
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada; Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1 Canada
| | - Tracy Ssali
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada; Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1 Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada; Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1 Canada
| | - Adrian M Owen
- The Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada; Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1 Canada
| |
Collapse
|
25
|
Tang Q, Zhang C, Wu X, Duan W, Weng W, Feng J, Mao Q, Chen S, Jiang J, Gao G. Comprehensive Proteomic Profiling of Patients' Tears Identifies Potential Biomarkers for the Traumatic Vegetative State. Neurosci Bull 2018; 34:626-638. [PMID: 30019218 DOI: 10.1007/s12264-018-0259-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/22/2018] [Indexed: 01/03/2023] Open
Abstract
The vegetative state is a complex condition with unclear mechanisms and limited diagnostic, prognostic, and therapeutic methods. In this study, we aimed to explore the proteomic profile of tears from patients in a traumatic vegetative state and identify potential diagnostic markers using tears-a body fluid that can be collected non-invasively. Using iTRAQ quantitative proteomic technology, in the discovery phase, tear samples collected from 16 patients in a traumatic vegetative state and 16 normal individuals were analyzed. Among 1080 identified tear proteins, 57 were upregulated and 15 were downregulated in the patients compared to the controls. Bioinformatics analysis revealed that the differentially-expressed proteins were mainly involved in the wound response and immune response signaling pathways. Furthermore, we verified the levels of 7 differentially-expressed proteins in tears from 50 traumatic vegetative state patients and 50 normal controls (including the samples used in the discovery phase) using ELISA. The results showed that this 7-protein panel had a high discrimination ability for traumatic vegetative state (area under the curve = 0.999). In summary, the altered tear proteomic profile identified in this study provides a basis for potential tear protein markers for diagnosis and prognosis of the traumatic vegetative state and also provides novel insights into the mechanisms of traumatic vegetative state.
Collapse
Affiliation(s)
- Qilin Tang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Head Trauma Institute, Shanghai, 200127, China
| | - Chao Zhang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Head Trauma Institute, Shanghai, 200127, China
| | - Xiang Wu
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Head Trauma Institute, Shanghai, 200127, China
| | - Wenbin Duan
- Department of Neurosurgery, Baoshan People's Hospital, Baoshan, 678000, China
| | - Weiji Weng
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Head Trauma Institute, Shanghai, 200127, China
| | - Junfeng Feng
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Head Trauma Institute, Shanghai, 200127, China
| | - Qing Mao
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Head Trauma Institute, Shanghai, 200127, China
| | - Shubin Chen
- Department of Neurology, Anda Hospital, Shanghai, 201204, China
| | - Jiyao Jiang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Head Trauma Institute, Shanghai, 200127, China
| | - Guoyi Gao
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Shanghai Head Trauma Institute, Shanghai, 200127, China.
| |
Collapse
|
26
|
Rupawala M, Dehghani H, Lucas SJE, Tino P, Cruse D. Shining a Light on Awareness: A Review of Functional Near-Infrared Spectroscopy for Prolonged Disorders of Consciousness. Front Neurol 2018; 9:350. [PMID: 29872420 PMCID: PMC5972220 DOI: 10.3389/fneur.2018.00350] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Qualitative clinical assessments of the recovery of awareness after severe brain injury require an assessor to differentiate purposeful behavior from spontaneous behavior. As many such behaviors are minimal and inconsistent, behavioral assessments are susceptible to diagnostic errors. Advanced neuroimaging tools can bypass behavioral responsiveness and reveal evidence of covert awareness and cognition within the brains of some patients, thus providing a means for more accurate diagnoses, more accurate prognoses, and, in some instances, facilitated communication. The majority of reports to date have employed the neuroimaging methods of functional magnetic resonance imaging, positron emission tomography, and electroencephalography (EEG). However, each neuroimaging method has its own advantages and disadvantages (e.g., signal resolution, accessibility, etc.). Here, we describe a burgeoning technique of non-invasive optical neuroimaging—functional near-infrared spectroscopy (fNIRS)—and review its potential to address the clinical challenges of prolonged disorders of consciousness. We also outline the potential for simultaneous EEG to complement the fNIRS signal and suggest the future directions of research that are required in order to realize its clinical potential.
Collapse
Affiliation(s)
- Mohammed Rupawala
- Centre for Doctoral Training in Physical Sciences for Health, University of Birmingham, Birmingham, United Kingdom
| | - Hamid Dehghani
- Centre for Doctoral Training in Physical Sciences for Health, University of Birmingham, Birmingham, United Kingdom.,School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter Tino
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Damian Cruse
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
27
|
Abstract
OBJECTIVE Outline effects of functional neuroimaging on neuropsychology over the past 25 years. METHOD Functional neuroimaging methods and studies will be described that provide a historical context, offer examples of the utility of neuroimaging in specific domains, and discuss the limitations and future directions of neuroimaging in neuropsychology. RESULTS Tracking the history of publications on functional neuroimaging related to neuropsychology indicates early involvement of neuropsychologists in the development of these methodologies. Initial progress in neuropsychological application of functional neuroimaging has been hampered by costs and the exposure to ionizing radiation. With rapid evolution of functional methods-in particular functional MRI (fMRI)-neuroimaging has profoundly transformed our knowledge of the brain. Its current applications span the spectrum of normative development to clinical applications. The field is moving toward applying sophisticated statistical approaches that will help elucidate distinct neural activation networks associated with specific behavioral domains. The impact of functional neuroimaging on clinical neuropsychology is more circumscribed, but the prospects remain enticing. CONCLUSIONS The theoretical insights and empirical findings of functional neuroimaging have been led by many neuropsychologists and have transformed the field of behavioral neuroscience. Thus far they have had limited effects on the clinical practices of neuropsychologists. Perhaps it is time to add training in functional neuroimaging to the clinical neuropsychologist's toolkit and from there to the clinic or bedside. (PsycINFO Database Record
Collapse
Affiliation(s)
- David R. Roalf
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine Philadelphia, Philadelphia, PA, 19104
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine Philadelphia, Philadelphia, PA, 19104
- Lifespan Brain Institute (LiBI) at the University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| |
Collapse
|
28
|
Abdalmalak A, Milej D, Norton L, Debicki DB, Gofton T, Diop M, Owen AM, St. Lawrence K. Single-session communication with a locked-in patient by functional near-infrared spectroscopy. NEUROPHOTONICS 2017; 4:040501. [PMID: 29296627 PMCID: PMC5741990 DOI: 10.1117/1.nph.4.4.040501] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/27/2017] [Indexed: 05/20/2023]
Abstract
There is a growing interest in the possibility of using functional neuroimaging techniques to aid in detecting covert awareness in patients who are thought to be suffering from a disorder of consciousness. Immerging optical techniques such as time-resolved functional near-infrared spectroscopy (TR-fNIRS) are ideal for such applications due to their low-cost, portability, and enhanced sensitivity to brain activity. The aim of this case study was to investigate for the first time the ability of TR-fNIRS to detect command driven motor imagery (MI) activity in a functionally locked-in patient suffering from Guillain-Barré syndrome. In addition, the utility of using TR-fNIRS as a brain-computer interface (BCI) was also assessed by instructing the patient to perform an MI task as affirmation to three questions: (1) confirming his last name, (2) if he was in pain, and (3) if he felt safe. At the time of this study, the patient had regained limited eye movement, which provided an opportunity to accurately validate a BCI after the fNIRS study was completed. Comparing the two sets of responses showed that fNIRS provided the correct answers to all of the questions. These promising results demonstrate for the first time the potential of using an MI paradigm in combination with fNIRS to communicate with functionally locked-in patients without the need for prior training.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Address all correspondence to: Androu Abdalmalak, E-mail:
| | - Daniel Milej
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Loretta Norton
- Western University, Brain and Mind Institute, London, Ontario, Canada
| | - Derek B. Debicki
- Western University, Clinical Neurological Sciences, London, Ontario, Canada
| | - Teneille Gofton
- Western University, Clinical Neurological Sciences, London, Ontario, Canada
| | - Mamadou Diop
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Adrian M. Owen
- Western University, Brain and Mind Institute, London, Ontario, Canada
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| |
Collapse
|
29
|
Abdalmalak A, Milej D, Diop M, Shokouhi M, Naci L, Owen AM, St. Lawrence K. Can time-resolved NIRS provide the sensitivity to detect brain activity during motor imagery consistently? BIOMEDICAL OPTICS EXPRESS 2017; 8:2162-2172. [PMID: 28736662 PMCID: PMC5516814 DOI: 10.1364/boe.8.002162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/15/2017] [Accepted: 02/27/2017] [Indexed: 05/20/2023]
Abstract
Previous functional magnetic resonance imaging (fMRI) studies have shown that a subgroup of patients diagnosed as being in a vegetative state are aware and able to communicate by performing a motor imagery task in response to commands. Due to the fMRI's cost and accessibility, there is a need for exploring different imaging modalities that can be used at the bedside. A promising technique is functional near infrared spectroscopy (fNIRS) that has been successfully applied to measure brain oxygenation in humans. Due to the limited depth sensitivity of continuous-wave NIRS, time-resolved (TR) detection has been proposed as a way of enhancing the sensitivity to the brain, since late arriving photons have a higher probability of reaching the brain. The goal of this study was to assess the feasibility and sensitivity of TR fNIRS in detecting brain activity during motor imagery. Fifteen healthy subjects were recruited in this study, and the fNIRS results were validated using fMRI. The change in the statistical moments of the distribution of times of flight (number of photons, mean time of flight and variance) were calculated for each channel to determine the presence of brain activity. The results indicate up to an 86% agreement between fMRI and TR-fNIRS and the sensitivity ranging from 64 to 93% with the highest value determined for the mean time of flight. These promising results highlight the potential of TR-fNIRS as a portable brain computer interface for patients with disorder of consciousness.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Daniel Milej
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Mamadou Diop
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Mahsa Shokouhi
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Lorina Naci
- Brain and Mind Institute, Western University, London, ON, Canada
| | - Adrian M. Owen
- Brain and Mind Institute, Western University, London, ON, Canada
| | - Keith St. Lawrence
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
30
|
Naci L, Graham M, Owen AM, Weijer C. Covert narrative capacity: Mental life in patients thought to lack consciousness. Ann Clin Transl Neurol 2016; 4:61-70. [PMID: 28078316 PMCID: PMC5221458 DOI: 10.1002/acn3.376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/20/2016] [Accepted: 10/31/2016] [Indexed: 01/22/2023] Open
Abstract
Despite the apparent absence of external signs of consciousness, a significant proportion of behaviorally nonresponsive patients can respond to commands by willfully modulating their brain activity. However, little is known about the mental life of these patients. We discuss a recent innovative approach, which sheds light on the preserved cognitive capacities of these patients, including executive function, theory of mind, and the experience of affective states. This research represents a fundamental shift in our understanding of these patients, and has important implications for both their continued treatment and care. Moreover, this research marks out avenues for future inquiry into the residual cognitive capacities of these patients.
Collapse
Affiliation(s)
- Lorina Naci
- Brain and Mind Institute Western University London Ontario N6A 5B7 Canada
| | - Mackenzie Graham
- Rotman Institute of Philosophy Western University London Ontario N6A 5B8 Canada
| | - Adrian M Owen
- Brain and Mind Institute Western University London Ontario N6A 5B7 Canada
| | - Charles Weijer
- Rotman Institute of Philosophy Western University London Ontario N6A 5B8 Canada
| |
Collapse
|
31
|
Gibson RM, Chennu S, Fernández-Espejo D, Naci L, Owen AM, Cruse D. Somatosensory attention identifies both overt and covert awareness in disorders of consciousness. Ann Neurol 2016; 80:412-23. [PMID: 27422169 DOI: 10.1002/ana.24726] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/28/2016] [Accepted: 07/10/2016] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Some patients diagnosed with disorders of consciousness retain sensory and cognitive abilities beyond those apparent from their overt behavior. Characterizing these covert abilities is crucial for diagnosis, prognosis, and medical ethics. This multimodal study investigates the relationship between electroencephalographic evidence for perceptual/cognitive preservation and both overt and covert markers of awareness. METHODS Fourteen patients with severe brain injuries were evaluated with an electroencephalographic vibrotactile attention task designed to identify a hierarchy of residual somatosensory and cognitive abilities: (1) somatosensory steady-state evoked responses, (2) bottom-up attention orienting (P3a event-related potential), and (3) top-down attention (P3b event-related potential). Each patient was also assessed with a clinical behavioral scale and 2 functional magnetic resonance imaging assessments of covert command following. RESULTS Six patients produced only sensory responses, with no evidence of cognitive event-related potentials. A further 8 patients demonstrated reliable bottom-up attention-orienting responses (P3a). No patient showed evidence of top-down attention (P3b). Only those patients who followed commands, whether overtly with behavior or covertly with functional neuroimaging, also demonstrated event-related potential evidence of attentional orienting. INTERPRETATION Somatosensory attention-orienting event-related potentials differentiated patients who could follow commands from those who could not. Crucially, this differentiation was irrespective of whether command following was evident through overt external behavior, or through covert functional neuroimaging methods. Bedside electroencephalographic methods may corroborate more expensive and challenging methods such as functional neuroimaging, and thereby assist in the accurate diagnosis of awareness. Ann Neurol 2016;80:412-423.
Collapse
Affiliation(s)
- Raechelle M Gibson
- Department of Psychology, University of Western Ontario, London, Ontario, Canada. .,Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada.
| | - Srivas Chennu
- School of Computing, University of Kent, Chatham Maritime, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Lorina Naci
- Department of Psychology, University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Adrian M Owen
- Department of Psychology, University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Damian Cruse
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
32
|
Progression from Vegetative to Minimally Conscious State Is Associated with Changes in Brain Neural Response to Passive Tasks: A Longitudinal Single-Case Functional MRI Study. J Int Neuropsychol Soc 2016; 22:620-30. [PMID: 27264964 DOI: 10.1017/s1355617716000485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Functional magnetic resonance imaging (fMRI) may be adopted as a complementary tool for bedside observation in the disorders of consciousness (DOC). However, the diagnostic value of this technique is still debated because of the lack of accuracy in determining levels of consciousness within a single patient. Recently, Giacino and colleagues (2014) hypothesized that a longitudinal fMRI evaluation may provide a more informative assessment in the detection of residual awareness. The aim of this study was to measure the correspondence between clinically defined level of awareness and neural responses within a single DOC patient. METHODS We used a follow-up fMRI design in combination with a passive speech-processing task. Patient's consciousness was measured through time by using the Coma Recovery Scale. RESULTS The patient progressed from a vegetative state (VS) to a minimally conscious state (MCS). Patient's task-related neural responses mirrored the clinical change from a VS to an MCS. Specifically, while in an MCS, but not a VS, the patient showed a selective recruitment of the left angular gyrus when he listened to a native speech narrative, as compared to the reverse presentation of the same stimulus. Furthermore, the patient showed an increased response in the language-related brain network and a greater deactivation in the default mode network following his progression to an MCS. CONCLUSIONS Our findings indicate that longitudinal assessment of brain responses to passive stimuli can contribute to the definition of the clinical status in individual patients with DOC and represents an adequate counterpart of the bedside assessment during the diagnostic decision-making process. (JINS, 2016, 22, 620-630).
Collapse
|
33
|
Bodien YG, Giacino JT. Challenges and Pitfalls Associated with Diagnostic and Prognostic Applications of Functional Neuroimaging in Disorders of Consciousness. Open Neuroimag J 2016; 10:23-31. [PMID: 27347262 PMCID: PMC4894860 DOI: 10.2174/1874440001610010023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/12/2022] Open
Abstract
The diagnostic assessment of patients with disorder of consciousness is currently based on clinical testing at the bedside and prone to a high error rate in the assessment of the degree of conscious awareness. Investigation of more objective assessment strategies, such as the use of functional magnetic resonance imaging (fMRI) to detect conscious awareness, are becoming increasingly popular in the research community. However, inherent challenges to the use of fMRI threaten its validity as a diagnostic tool and will need to be resolved prior to its integration into the clinical setting. These challenges, which range from the heterogeneity of the patient sample to factors influencing data acquisition and biases in interpretation strategies, are discussed below. Recommendations aimed at mitigating some of the limitations are provided.
Collapse
Affiliation(s)
- Yelena G Bodien
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital-Harvard Medical School, Charlestown MA, USA
| | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital-Harvard Medical School, Charlestown MA, USA
| |
Collapse
|
34
|
Gibson RM, Owen AM, Cruse D. Brain-computer interfaces for patients with disorders of consciousness. PROGRESS IN BRAIN RESEARCH 2016; 228:241-91. [PMID: 27590972 DOI: 10.1016/bs.pbr.2016.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The disorders of consciousness refer to clinical conditions that follow a severe head injury. Patients diagnosed as in a vegetative state lack awareness, while patients diagnosed as in a minimally conscious state retain fluctuating awareness. However, it is a challenge to accurately diagnose these disorders with clinical assessments of behavior. To improve diagnostic accuracy, neuroimaging-based approaches have been developed to detect the presence or absence of awareness in patients who lack overt responsiveness. For the small subset of patients who retain awareness, brain-computer interfaces could serve as tools for communication and environmental control. Here we review the existing literature concerning the sensory and cognitive abilities of patients with disorders of consciousness with respect to existing brain-computer interface designs. We highlight the challenges of device development for this special population and address some of the most promising approaches for future investigations.
Collapse
Affiliation(s)
- R M Gibson
- The Brain and Mind Institute, University of Western Ontario, London, ON, Canada; University of Western Ontario, London, ON, Canada.
| | - A M Owen
- The Brain and Mind Institute, University of Western Ontario, London, ON, Canada; University of Western Ontario, London, ON, Canada
| | - D Cruse
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
35
|
Gabriel D, Muzard E, Henriques J, Mignot C, Pazart L, André-Obadia N, Ortega JP, Moulin T. Replicability and impact of statistics in the detection of neural responses of consciousness: Table 1. Brain 2016; 139:e30. [DOI: 10.1093/brain/aww065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
36
|
Robles del Olmo B, García Collado D. Retos éticos del hallazgo de consciencia encubierta con neuroimagen en estados vegetativos. Med Clin (Barc) 2016; 146:218-22. [DOI: 10.1016/j.medcli.2015.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/22/2015] [Indexed: 11/26/2022]
|
37
|
Noirhomme Q, Brecheisen R, Lesenfants D, Antonopoulos G, Laureys S. "Look at my classifier's result": Disentangling unresponsive from (minimally) conscious patients. Neuroimage 2015; 145:288-303. [PMID: 26690804 DOI: 10.1016/j.neuroimage.2015.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/12/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022] Open
Abstract
Given the fact that clinical bedside examinations can have a high rate of misdiagnosis, machine learning techniques based on neuroimaging and electrophysiological measurements are increasingly being considered for comatose patients and patients with unresponsive wakefulness syndrome, a minimally conscious state or locked-in syndrome. Machine learning techniques have the potential to move from group-level statistical results to personalized predictions in a clinical setting. They have been applied for the purpose of (1) detecting changes in brain activation during functional tasks, equivalent to a behavioral command-following test and (2) estimating signs of consciousness by analyzing measurement data obtained from multiple subjects in resting state. In this review, we provide a comprehensive overview of the literature on both approaches and discuss the translation of present findings to clinical practice. We found that most studies struggle with the difficulty of establishing a reliable behavioral assessment and fluctuations in the patient's levels of arousal. Both these factors affect the training and validation of machine learning methods to a considerable degree. In studies involving more than 50 patients, small to moderate evidence was found for the presence of signs of consciousness or good outcome, where one study even showed strong evidence for good outcome.
Collapse
Affiliation(s)
- Quentin Noirhomme
- Brain Innovation BV, Maastricht, Netherlands; Department of Cognitive Neuroscience, Faculty Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Cyclotron Research Centre, University of Liege, Liege, Belgium.
| | - Ralph Brecheisen
- Brain Innovation BV, Maastricht, Netherlands; Department of Cognitive Neuroscience, Faculty Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Damien Lesenfants
- School of Engineering and Institute for Brain Science, Brown University, Providence, Rhode Island, USA
| | | | - Steven Laureys
- Coma Science Group, University Hospital of Liege, Liege, Belgium
| |
Collapse
|
38
|
Osborne NR, Owen AM, Fernández-Espejo D. The dissociation between command following and communication in disorders of consciousness: an fMRI study in healthy subjects. Front Hum Neurosci 2015; 9:493. [PMID: 26441593 PMCID: PMC4569885 DOI: 10.3389/fnhum.2015.00493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging studies have identified a subgroup of patients with a Disorder of Consciousness (DOC) who, while being behaviorally non-responsive, are nevertheless able to follow commands by modulating their brain activity in motor imagery (MI) tasks. These techniques have even allowed for binary communication in a small number of DOC patients. However, the majority of patients who can follow commands are unable to use their responses to communicate. A similar dissociation between present command following (CF) and absent communication abilities has been reported in overt behavioral assessments. However, the neural correlates of this dissociation in both overt and covert modalities are unknown. Here, we used functional magnetic resonance imaging (fMRI) to explore the neural mechanisms underlying CF and selection of responses for binary communication using either executed or imagined movements. Fifteen healthy participants executed or imagined two different types of arm movements that were either pre-determined by the experimenters (CF) or decided by them (action selection, AS). Action selection involved greater activity in high-level associative areas in frontal and parietal regions than CF. Additionally, motor execution (ME), as compared to MI, activated contralateral motor cortex, while the opposite contrast revealed activation in the ipsilateral sensorimotor cortex and the left inferior frontal gyrus. Importantly, there was no interaction between the task (CF/AS) and modality (MI/ME). Our results suggest that the neural processes involved in following a motor command or selecting between two motor actions are not dependent on how the response is expressed (via ME/MI). They also suggest a potential neural basis for the distinction in cognitive abilities seen in DOC patients.
Collapse
Affiliation(s)
- Natalie R Osborne
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada ; Department of Psychology, University of Western Ontario London, ON, Canada
| | - Adrian M Owen
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada ; Department of Psychology, University of Western Ontario London, ON, Canada
| | - Davinia Fernández-Espejo
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada ; Department of Psychology, University of Western Ontario London, ON, Canada
| |
Collapse
|
39
|
Comte A, Gabriel D, Pazart L, Magnin E, Cretin E, Haffen E, Moulin T, Aubry R. On the difficulty to communicate with fMRI-based protocols used to identify covert awareness. Neuroscience 2015; 300:448-59. [DOI: 10.1016/j.neuroscience.2015.05.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/20/2015] [Accepted: 05/24/2015] [Indexed: 10/23/2022]
|
40
|
Gabriel D, Henriques J, Comte A, Grigoryeva L, Ortega JP, Cretin E, Brunotte G, Haffen E, Moulin T, Aubry R, Pazart L. Substitute or complement? Defining the relative place of EEG and fMRI in the detection of voluntary brain reactions. Neuroscience 2015; 290:435-44. [DOI: 10.1016/j.neuroscience.2015.01.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/17/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
|
41
|
Pazart L, Gabriel D, Cretin E, Aubry R. Neuroimaging for detecting covert awareness in patients with disorders of consciousness: reinforce the place of clinical feeling! Front Hum Neurosci 2015; 9:78. [PMID: 25741272 PMCID: PMC4330787 DOI: 10.3389/fnhum.2015.00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/31/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lionel Pazart
- Clinical Investigation Centre, Inserm/University Hospital, Inserm CIC 1431Besançon, France
- *Correspondence:
| | - Damien Gabriel
- Clinical Investigation Centre, Inserm/University Hospital, Inserm CIC 1431Besançon, France
- Laboratoire de Neurosciences de Besançon EA-481, University of Franche-Comté, SFR FED 4231Besançon, France
| | - Elodie Cretin
- Clinical Investigation Centre, Inserm/University Hospital, Inserm CIC 1431Besançon, France
- Espace Ethique Bourgogne and Franche-ComtéBesançon, France
| | - Regis Aubry
- Clinical Investigation Centre, Inserm/University Hospital, Inserm CIC 1431Besançon, France
- Espace Ethique Bourgogne and Franche-ComtéBesançon, France
- Pain and Palliative Medicine Department, University Hospital of BesançonBesançon, France
| |
Collapse
|
42
|
Owen AM. Using functional magnetic resonance imaging and electroencephalography to detect consciousness after severe brain injury. HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:277-93. [PMID: 25702223 DOI: 10.1016/b978-0-444-52892-6.00018-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In recent years, rapid technological developments in the field of neuroimaging have provided new methods for revealing thoughts, actions, and intentions based solely on the pattern of activity that is observed in the brain. In specialized centres, these methods are now being employed routinely in the assessment of patients diagnosed with so-called "disorders of consciousness," mapping patterns of residual function and dysfunction and helping to reduce diagnostic errors between related conditions such as the vegetative and minimally conscious states. Both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) have now been shown to be effective tools for detecting covert awareness in behaviorally nonresponsive patients when standard clinical approaches have been unable to provide that information. Indeed, in some patients, communication with the outside world via simple "yes" and "no" questions has been achieved, even in cases where no possibility for behavioral interaction exists. These studies have profound implications for clinical care, diagnosis, prognosis and medical-legal decision making relating to the prolongation, or otherwise, of life after severe brain injury. Moreover, the results suggest an urgent need for a re-evaluation of the existing diagnostic guidelines for behaviorally nonresponsive patients to include information derived from functional neuroimaging.
Collapse
Affiliation(s)
- Adrian M Owen
- Brain and Mind Institute, Department of Psychology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
43
|
Gibson RM, Fernández-Espejo D, Gonzalez-Lara LE, Kwan BY, Lee DH, Owen AM, Cruse D. Multiple tasks and neuroimaging modalities increase the likelihood of detecting covert awareness in patients with disorders of consciousness. Front Hum Neurosci 2014; 8:950. [PMID: 25505400 PMCID: PMC4244609 DOI: 10.3389/fnhum.2014.00950] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/07/2014] [Indexed: 01/14/2023] Open
Abstract
Minimal or inconsistent behavioral responses to command make it challenging to accurately diagnose the level of awareness of a patient with a Disorder of consciousness (DOC). By identifying markers of mental imagery being covertly performed to command, functional neuroimaging (fMRI), electroencephalography (EEG) has shown that some of these patients are aware despite their lack of behavioral responsiveness. We report the findings of behavioral, fMRI, and EEG approaches to detecting command-following in a group of patients with DOC. From an initial sample of 14 patients, complete data across all tasks was obtained in six cases. Behavioral evaluations were performed with the Coma Recovery Scale—Revised. Both fMRI and EEG evaluations involved the completion of previously validated mental imagery tasks—i.e., motor imagery (EEG and fMRI) and spatial navigation imagery (fMRI). One patient exhibited statistically significant evidence of motor imagery in both the fMRI and EEG tasks, despite being unable to follow commands behaviorally. Two behaviorally non-responsive patients produced appropriate activation during the spatial navigation fMRI task. However, neither of these patients successfully completed the motor imagery tasks, likely due to specific motor area damage in at least one of these cases. A further patient demonstrated command following only in the EEG motor imagery task, and two patients did not demonstrate command following in any of the behavioral, EEG, or fMRI assessments. Due to the heterogeneity of etiology and pathology in this group, DOC patients vary in terms of their suitability for some forms of neuroimaging, the preservation of specific neural structures, and the cognitive resources that may be available to them. Assessments of a range of cognitive abilities supported by spatially-distinct brain regions and indexed by multiple neural signatures are therefore required in order to accurately characterize a patient's level of residual cognition and awareness.
Collapse
Affiliation(s)
- Raechelle M Gibson
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada ; Department of Psychology, University of Western Ontario London, ON, Canada
| | | | | | - Benjamin Y Kwan
- Department of Medical Imaging, University of Western Ontario London, ON, Canada
| | - Donald H Lee
- Department of Medical Imaging, University of Western Ontario London, ON, Canada ; Department of Radiology, London Health Sciences Centre London, ON, Canada
| | - Adrian M Owen
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada ; Department of Psychology, University of Western Ontario London, ON, Canada
| | - Damian Cruse
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada
| |
Collapse
|