1
|
Effect of Photo-Mediated Ultrasound Therapy on Nitric Oxide and Prostacyclin from Endothelial Cells. APPLIED SCIENCES-BASEL 2022; 12. [PMID: 35983461 PMCID: PMC9384428 DOI: 10.3390/app12052617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several studies have investigated the effect of photo-mediated ultrasound therapy (PUT) on the treatment of neovascularization. This study explores the impact of PUT on the release of the vasoactive agents nitric oxide (NO) and prostacyclin (PGI2) from the endothelial cells in an in vitro blood vessel model. In this study, an in vitro vessel model containing RF/6A chorioretinal endothelial cells was used. The vessels were treated with ultrasound-only (0.5, 1.0, 1.5 and 2.0 MPa peak negative pressure at 0.5 MHz with 10% duty cycle), laser-only (5, 10, 15 and 20 mJ/cm2 at 532 nm with a pulse width of 5 ns), and synchronized laser and ultrasound (PUT) treatments. Passive cavitation detection was used to determine the cavitation activities during treatment. The levels of NO and PGI2 generally increased when the applied ultrasound pressure and laser fluence were low. The increases in NO and PGI2 levels were significantly reduced by 37.2% and 42.7%, respectively, from 0.5 to 1.5 MPa when only ultrasound was applied. The increase in NO was significantly reduced by 89.5% from 5 to 20 mJ/cm2, when only the laser was used. In the PUT group, for 10 mJ/cm2 laser fluence, the release of NO decreased by 76.8% from 0.1 to 1 MPa ultrasound pressure. For 0.5 MPa ultrasound pressure in the PUT group, the release of PGI2 started to decrease by 144% from 15 to 20 mJ/cm2 laser fluence. The decreases in NO and PGI2 levels coincided with the increased cavitation activities in each group. In conclusion, PUT can induce a significant reduction in the release of NO and PGI2 in comparison with ultrasound-only and laser-only treatments.
Collapse
|
2
|
Qin Y, Yu Y, Fu J, Xie X, Wang T, Woodward MA, Paulus YM, Yang X, Wang X. Photo-Mediated Ultrasound Therapy for the Treatment of Corneal Neovascularization in Rabbit Eyes. Transl Vis Sci Technol 2020; 9:16. [PMID: 33344060 PMCID: PMC7726583 DOI: 10.1167/tvst.9.13.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/24/2020] [Indexed: 12/05/2022] Open
Abstract
Purpose Corneal neovascularization (CNV) is the invasion of new blood vessels into the avascular cornea, leading to reduced corneal transparency and visual acuity, impaired vision, and even blindness. Current treatment options for CNV are limited. We developed a novel treatment method, termed photo-mediated ultrasound therapy (PUT), that combines laser and ultrasound, and we tested its feasibility for treating CNV in a rabbit model. Methods A suture-induced CNV model was established in New Zealand White rabbits, which were randomly divided into two groups: PUT and control. For the PUT group, the applied light fluence at the corneal surface was estimated to be 27 mJ/cm2 at 1064-nm wavelength with a pulse duration of 5 ns, and the ultrasound pressure applied on the cornea was 0.43 MPa at 0.5 MHz. The control group received no treatment. Red-free photography and fluorescein angiography were utilized to evaluate the efficiency of PUT. Safety was evaluated by histology and immunohistochemistry. For comparison with the PUT safety results, conventional laser photocoagulation (LP) treatment was performed with standard clinical parameters: 532-nm continuous-wave (CW) laser with 0.1-second pulse duration, 450-mW power, and 75-µm spot size. Results In the PUT group, only 1.8% ± 0.8% of the CNV remained 30 days after treatment. In contrast, 71.4% ± 7.2% of the CNV remained in the control group after 30 days. Safety evaluations showed that PUT did not cause any damage to the surrounding tissue. Conclusions These results demonstrate that PUT is capable of removing CNV safely and effectively in this rabbit model. Translational Relevance PUT can remove CNV safely and effectively.
Collapse
Affiliation(s)
- Yu Qin
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yixin Yu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| | - Julia Fu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Xinyi Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Maria A Woodward
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Yannis M Paulus
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Xinmai Yang
- Institute for Bioengineering Research and Department of Mechanical Engineering, University of Kansas, Lawrence, KS, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Qin Y, Yu Y, Xie X, Zhang W, Fu J, Paulus YM, Yang X, Wang X. The Effect of Laser and Ultrasound Synchronization in Photo-Mediated Ultrasound Therapy. IEEE Trans Biomed Eng 2020; 67:3363-3370. [PMID: 32275582 PMCID: PMC8183568 DOI: 10.1109/tbme.2020.2985648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Photo-mediated ultrasound therapy (PUT) is a novel, non-invasive, agent-free, highly selective, and precise anti-vascular technique. PUT removes microvessels through promoting cavitation activity precisely in targeted microvessels by applying synchronized nanosecond laser pulses and ultrasound bursts. The synchronization between laser and ultrasound is critical to the outcome of PUT. METHODS Through theoretical simulation and experimental study, the effect of synchronization between laser pulses and ultrasound bursts on cavitation activity during PUT is evaluated. RESULTS By using a theoretical model, we found that cavitation activity was enhanced when laser pulses and ultrasound bursts were synchronized such that the produced photoacoustic wave overlaid the rarefactional phase of the ultrasound wave. This finding was then verified through in vitro studies where cavitation was monitored by using a passive cavitation detector. Furthermore, we demonstrated that the in vivo treatment outcome of PUT in rabbits was directly related to the synchronization between laser and ultrasound. The anti-vascular effect could only be observed when laser and ultrasound were properly synchronized in vivo. CONCLUSION PUT is more efficient when the laser-induced photoacoustic wave overlays the rarefactional phase of the ultrasonic wave. SIGNIFICANCE This is a systematic study to investigate the synchronization effect of PUT, which would be significant for further understanding the mechanism and further improving the treatment efficiency of PUT.
Collapse
Affiliation(s)
- Yu Qin
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, P. R. China
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yixin Yu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xinyi Xie
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Wei Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Julia Fu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Yannis M Paulus
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Xinmai Yang
- Institute for Bioengineering Research and Department of Mechanical Engineering, University of Kansas, Lawrence, KS, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Paulus YM, Qin Y, Yu Y, Fu J, Wang X, Yang X. Photo-mediated Ultrasound Therapy to Treat Retinal Neovascularization. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:5244-5247. [PMID: 33019167 DOI: 10.1109/embc44109.2020.9175882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This report describes a novel therapeutic technique called photo-mediated ultrasound therapy (PUT). PUT applies synchronized short pulse duration (nanosecond) laser and ultrasound burst on targeted tissue, offering high-precision localized treatment. PUT is based on controlled induction and promotion of micro-cavitation activity in the target tissue. PUT is able to safely and effectively treat retinal neovascularization in rabbits with persistent nonperfusion up to 4 weeks after PUT in the choroidal vasculature.Clinical Relevance- PUT can selectively remove retinal angiogenesis in clinically-relevant disease models in humansized eyes (rabbit) without damaging surrounding tissue.
Collapse
|
5
|
Zhang H, Xie X, Li J, Qin Y, Zhang W, Cheng Q, Yuan S, Liu Q, Paulus YM, Wang X, Yang X. Removal of choroidal vasculature using concurrently applied ultrasound bursts and nanosecond laser pulses. Sci Rep 2018; 8:12848. [PMID: 30150731 PMCID: PMC6110758 DOI: 10.1038/s41598-018-31045-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/02/2018] [Indexed: 11/09/2022] Open
Abstract
Pathologic microvasculature plays a crucial role in innumerable diseases causing death and major organ impairment. A major clinical challenge is the development of selective therapies to remove these diseased microvessels without damaging surrounding tissue. This report describes our development of novel photo-mediated ultrasound therapy (PUT) technology for precisely removing choroidal blood vessels in the eye. PUT selectively removes microvessels by concurrently applying nanosecond laser pulses with ultrasound bursts. In PUT experiments on rabbit eyes in vivo, we applied 55-75 mJ/cm2 of light fluence at the retinochoroidal surface at 532-nm and 0.5 MPa of ultrasound pressure at 0.5 MHz. PUT resulted in significantly reduced blood perfusion in the choroidal layer which persisted to four weeks without causing collateral tissue damage, demonstrating that PUT is capable of removing choroidal microvasculature safely and effectively. With its unique advantages, PUT holds potential for the clinical management of eye diseases associated with microvessels and neovascularization.
Collapse
Affiliation(s)
- Haonan Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
| | - Xinyi Xie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jia Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Yu Qin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
| | - Wei Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
| | - Songtao Yuan
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Qinghuai Liu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Yannis M Paulus
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China.
| | - Xinmai Yang
- Institute for Bioengineering Research and Department of Mechanical Engineering, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
6
|
Li S, Qin Y, Wang X, Yang X. Bubble growth in cylindrically-shaped optical absorbers during photo-mediated ultrasound therapy. Phys Med Biol 2018; 63:125017. [PMID: 29794345 DOI: 10.1088/1361-6560/aac7bc] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Photo-mediated ultrasound therapy (PUT) is a non-invasive, agent-free technique to shut down microvessels with high precision by promoting cavitation activity precisely in the targeted microvessels. PUT is based on the photoacoustic (PA) cavitation generated through concurrently applied nanosecond laser pulses and ultrasound bursts. In this study, a PA cavitation model is employed to understand the enhanced cavitation activity during PUT, with full consideration of the optical absorption of blood vessels. Bubble size evolution in cylindrically-shaped optical absorbers (vessels) due to rectified diffusion is simulated. Results show that the ultrasound pressure required for bubble growth decreases dramatically with the increased laser fluence. At a relatively low ultrasound driving pressure, bubble equilibrium radius increases rapidly due to concurrently applied nanosecond laser pulses and ultrasound bursts, resulting in a transition from inertial cavitation to stable cavitation. This inertial to stable transition is verified by the experimentally measured results on 0.76 mm silicone tubes filled with human whole blood with 0.5 MHz ultrasound at 0.243 MPa. This study demonstrated the potential to induce stable bubbles in blood vessels by PUT non-invasively.
Collapse
Affiliation(s)
- Shuying Li
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States of America. These two authors contribute equally to the work
| | | | | | | |
Collapse
|
7
|
Hou R, Xu Y, Lu Q, Zhang Y, Hu B. Effect of low-frequency low-intensity ultrasound with microbubbles on prostate cancer hypoxia. Tumour Biol 2017; 39:1010428317719275. [PMID: 28974155 DOI: 10.1177/1010428317719275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Rui Hou
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai, P.R. China
| | - Yanjun Xu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai, P.R. China
| | - Qijie Lu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai, P.R. China
| | - Yang Zhang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai, P.R. China
| | - Bing Hu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai, P.R. China
| |
Collapse
|
8
|
Zhao DW, Tian M, Zou JZ, Zheng YY, Li T. Effects of Non-Focused Microbubble-Enhanced and High-Intensity Focused Ultrasound on Hemostasis in a Rabbit Model of Liver Trauma. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:629-639. [PMID: 28062179 DOI: 10.1016/j.ultrasmedbio.2016.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Uncontrolled hemorrhage after trauma to the liver can lead to death. The present study compared the effects of non-focused microbubble-enhanced ultrasound and high-intensity focused ultrasound on hepatic hemostasis in the injured liver. Blood perfusion level, serum liver enzyme levels and the aspartate transaminase/alanine transaminase ratio differed between the two types of treatment (all p values < 0.05). Hepatic cells in the microbubble-enhanced ultrasound group exhibited edema and compressed the hepatic sinus and blood vessels in the portal area. Coagulation and necrosis, inflammatory cell infiltration, and fibrous tissue encapsulation were observed in the high-intensity focused ultrasound group at later stages. The groups also differed in degree of ultrastructural damage and recovery time. Thus, microbubble-enhanced ultrasound has less of an impact on blood reperfusion and surrounding normal tissue than high-intensity focused ultrasound and is a better choice for the treatment of liver trauma.
Collapse
Affiliation(s)
- Da-Wei Zhao
- Department of Ultrasound, Daping Hospital & Institute of Surgery Research, Third Military Medical University, Chongqing, China
| | - Meng Tian
- Department of Ultrasound, Daping Hospital & Institute of Surgery Research, Third Military Medical University, Chongqing, China
| | - Jian-Zhong Zou
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Medical University, Chongqing, China
| | - Yuan-Yi Zheng
- Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing, China
| | - Tao Li
- Department of Ultrasound, Daping Hospital & Institute of Surgery Research, Third Military Medical University, Chongqing, China.
| |
Collapse
|
9
|
Hu Z, Zhang H, Mordovanakis A, Paulus YM, Liu Q, Wang X, Yang X. High-precision, non-invasive anti-microvascular approach via concurrent ultrasound and laser irradiation. Sci Rep 2017; 7:40243. [PMID: 28074839 PMCID: PMC5225605 DOI: 10.1038/srep40243] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/05/2016] [Indexed: 11/09/2022] Open
Abstract
Antivascular therapy represents a proven strategy to treat angiogenesis. By applying synchronized ultrasound bursts and nanosecond laser irradiation, we developed a novel, selective, non-invasive, localized antivascular method, termed photo-mediated ultrasound therapy (PUT). PUT takes advantage of the high native optical contrast among biological tissues and can treat microvessels without causing collateral damage to the surrounding tissue. In a chicken yolk sac membrane model, under the same ultrasound parameters (1 MHz at 0.45 MPa and 10 Hz with 10% duty cycle), PUT with 4 mJ/cm2 and 6 mJ/cm2 laser fluence induced 51% (p = 0.001) and 37% (p = 0.018) vessel diameter reductions respectively. With 8 mJ/cm2 laser fluence, PUT would yield vessel disruption (90%, p < 0.01). Selectivity of PUT was demonstrated by utilizing laser wavelengths at 578 nm or 650 nm, where PUT selectively shrank veins or occluded arteries. In a rabbit ear model, PUT induced a 68.5% reduction in blood perfusion after 7 days (p < 0.001) without damaging the surrounding cells. In vitro experiments in human blood suggested that cavitation may play a role in PUT. In conclusion, PUT holds significant promise as a novel non-invasive antivascular method with the capability to precisely target blood vessels.
Collapse
Affiliation(s)
- Zizhong Hu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA.,Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Haonan Zhang
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.,Institute of Acoustics, Tongji University, Shanghai, P.R. China
| | - Aghapi Mordovanakis
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Yannis M Paulus
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Qinghuai Liu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Xinmai Yang
- Bioengineering Research Center and Department of Mechanical Engineering, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
10
|
Zhao DW, Tian M, Yang JZ, Du P, Bi J, Zhu X, Li T. Hemostatic mechanism underlying microbubble-enhanced non-focused ultrasound in the treatment of a rabbit liver trauma model. Exp Biol Med (Maywood) 2016; 242:231-240. [PMID: 27633577 DOI: 10.1177/1535370216669835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The aim of our study was to investigate the hemostatic mechanism underlying microbubble-enhanced non-focused ultrasound treatment of liver trauma. Thirty rabbits with liver trauma were randomly divided into three groups-the microbubble-enhanced ultrasound (MEUS; further subdivided based on exposure intensity into MEUS1 [0.11 W/cm2], MEUS2 [0.55 W/cm2], and MEUS3 [1.1 W/cm2]), ultrasound without microbubbles (US), and microbubbles without ultrasound (MB) groups. The pre- and post-treatment bleeding weight and visual bleeding scores were evaluated. The serum liver enzyme concentrations as well as the blood perfusion level represented by mean peak contrast intensity (PI) ratio in the treatment area were analyzed. The hemostatic mechanism was evaluated by histological and transmission electron microscopic examination of liver tissue samples. The MEUS subgroups 1-3 (grade 0-1, grade 0-2, and grade 1-2, respectively) exhibited significantly lower post-treatment visual bleeding scores than the US and MB groups (both, grade 3-4; all, P < 0.05). Subgroups MEUS1 (0.346 ± 0.345 g) and MEUS2 (2.232 ± 2.256 g) exhibited significantly lower post-treatment bleeding weight than the US and MB groups (5.698 ± 1.938 and 5.688 ± 2.317 g, respectively; all, P < 0.05). Additionally, MEUS subgroups 1-3 exhibited significantly lower post-treatment blood perfusion levels (PI ratios, 0.64 ± 0.085, 0.73 ± 0.045, and 0.84 ± 0.034, respectively) than the US and MB groups (PI ratios, 1.00 ± 0.005 and 0.99 ± 0.005, respectively; all, P < 0.05). In the MEUS group, hepatic cells became edematous and compressed the hepatic sinus and associated blood vessels. However, the serum liver enzyme levels were not significantly altered. Microbubble-enhanced non-focused ultrasound does not significantly affect blood perfusion and liver function and can be used to induce rapid hemostasis in case of liver trauma.
Collapse
Affiliation(s)
- Da-Wei Zhao
- 1 Department of Ultrasound, Daping Hospital & Institute of Surgery Research, Third Military Medical University, Chongqing 400042, P.R. China
| | - Meng Tian
- 1 Department of Ultrasound, Daping Hospital & Institute of Surgery Research, Third Military Medical University, Chongqing 400042, P.R. China
| | - Jian-Zheng Yang
- 1 Department of Ultrasound, Daping Hospital & Institute of Surgery Research, Third Military Medical University, Chongqing 400042, P.R. China
| | - Peng Du
- 1 Department of Ultrasound, Daping Hospital & Institute of Surgery Research, Third Military Medical University, Chongqing 400042, P.R. China
| | - Jie Bi
- 1 Department of Ultrasound, Daping Hospital & Institute of Surgery Research, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xinjian Zhu
- 2 State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital & Institute of Surgery Research, Third Military Medical University, Chongqing 400042, P.R. China
| | - Tao Li
- 1 Department of Ultrasound, Daping Hospital & Institute of Surgery Research, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
11
|
Abstract
Ultrasound therapy has been investigated for over half a century. Ultrasound can act on tissue through a variety of mechanisms, including thermal, shockwave and cavitation mechanisms, and through these can elicit different responses. Ultrasound therapy can provide a non-invasive or minimally invasive treatment option, and ultrasound technology has advanced to the point where devices can be developed to investigate a wide range of applications. This review focuses on non-cancer clinical applications of therapeutic ultrasound, with an emphasis on treatments that have recently reached clinical investigations, and preclinical research programmes that have great potential to impact patient care.
Collapse
|