1
|
Medeiros M, Guenka S, Bastos D, Oliveira KL, Brassesco MS. Amicis Omnia Sunt Communia: NF-κB Inhibition as an Alternative to Overcome Osteosarcoma Heterogeneity. Pharmaceuticals (Basel) 2024; 17:734. [PMID: 38931401 PMCID: PMC11206879 DOI: 10.3390/ph17060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor heterogeneity poses a significant challenge in osteosarcoma (OS) treatment. In this regard, the "omics" era has constantly expanded our understanding of biomarkers and altered signaling pathways (i.e., PI3K/AKT/mTOR, WNT/β-catenin, NOTCH, SHH/GLI, among others) involved in OS pathophysiology. Despite different players and complexities, many commonalities have been described, among which the nuclear factor kappa B (NF-κB) stands out. Its altered activation is pervasive in cancer, with pleiotropic action on many disease-relevant traits. Thus, in the scope of this article, we highlight the evidence of NF-κB dysregulation in OS and its integration with other cancer-related pathways while we summarize the repertoire of compounds that have been described to interfere with its action. In silico strategies were used to demonstrate that NF-κB is closely coordinated with other commonly dysregulated signaling pathways not only by functionally interacting with several of their members but also by actively participating in the regulation of their transcription. While existing inhibitors lack selectivity or act indirectly, the therapeutic potential of targeting NF-κB is indisputable, first for its multifunctionality on most cancer hallmarks, and secondly, because, as a common downstream effector of the many dysregulated pathways influencing OS aggressiveness, it turns complex regulatory networks into a simpler picture underneath molecular heterogeneity.
Collapse
Affiliation(s)
- Mariana Medeiros
- Cell Biology Department, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil;
| | - Sophia Guenka
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - David Bastos
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - Karla Laissa Oliveira
- Regional Blood Center, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14051-140, São Paulo, Brazil;
| | - María Sol Brassesco
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| |
Collapse
|
2
|
Fu L, Xu S, Zhou Y, Huang J, Qiu J, Huang P. Knockdown of LncRNA DICER1-AS1 arrests the cell cycle, inhibits cell proliferation, and induces cell apoptosis by regulating CDC5L nuclear transfer in osteosarcoma. Connect Tissue Res 2023; 64:519-531. [PMID: 37310074 DOI: 10.1080/03008207.2023.2223289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND DICER1-AS1 is reported to promote the progression and disturb the cell cycle in osteosarcoma; however, its mechanism has rarely been studied. MATERIALS AND METHODS DICER1-AS1 expression levels were evaluated by qPCR and fluorescence in situ hybridization (FISH). The total, nuclear, and cytosolic levels of CDC5L were measured by western blotting and immunofluorescence (IF). Cell proliferation, apoptosis, and cell cycle analyses were conducted using the colony formation, CCK-8 assay, terminal transferase-mediated UTP nick end-labeling kit (TUNEL) assay, and flow cytometry. Levels of cell proliferation-, cell cycle-, and cell apoptosis-related proteins were determined by western blotting. RNA immunoprecipitation (RIP) and RNA pull-down assays were conducted to evaluate the relationship between DICER1-AS1 and CDC5L. RESULTS LncRNA DICER1-AS1 was highly expressed in samples of osteosarcoma tissue and in osteosarcoma cell lines. DICER1-AS1 knockdown inhibited cell proliferation, promoted cell apoptosis, and disturbed the cell cycle. Moreover, DICER1-AS1 was found to bind with CDC5L, and knockdown of DICER-AS1 inhibited the nuclear transfer of CDC5L. DICER1-AS1 knockdown also reversed the effects of CDC5L overexpression on cell proliferation, apoptosis, and the cell cycle. Moreover, CDC5L inhibition suppressed cell proliferation, promoted cell apoptosis, and disturbed the cell cycle, and those effects were further enhanced by DICER1-AS1 knockdown. Finally, DICER1-AS knockdown inhibited tumor growth and proliferation, and promoted cell apoptosis in vivo. CONCLUSION LncRNA DICER1-AS1 knockdown inhibits the nuclear transfer of CDC5L protein, arrests the cell cycle, and induces apoptosis to suppress the development of osteosarcoma. Our results suggest a novel target (DICER1-AS1) for treatment of osteosarcoma.
Collapse
Affiliation(s)
- Laihua Fu
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Songfeng Xu
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yang Zhou
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jingyang Huang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jin Qiu
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Pengzhou Huang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
3
|
Que Z, Yang K, Wang N, Li S, Li T. Functional Role of RBP in Osteosarcoma: Regulatory Mechanism and Clinical Therapy. Anal Cell Pathol (Amst) 2023; 2023:9849719. [PMID: 37426488 PMCID: PMC10328736 DOI: 10.1155/2023/9849719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023] Open
Abstract
Malignant bone neoplasms can be represented by osteosarcoma (OS), which accounts for 36% of all sarcomas. To reduce tumor malignancy, extensive efforts have been devoted to find an ideal target from numerous candidates, among which RNA-binding proteins (RBPs) have shown their unparalleled competitiveness. With the special structure of RNA-binding domains, RBPs have the potential to establish relationships with RNAs or small molecules and are considered regulators of different sections of RNA processes, including splicing, transport, translation, and degradation of RNAs. RBPs have considerable significant roles in various cancers, and experiments revealed that there was a strong association of RBPs with tumorigenesis and tumor cell progression. Regarding OS, RBPs are a new orientation, but achievements in hand are noteworthy. Higher or lower expression of RBPs was first found in tumor cells compared to normal tissue. By binding to different molecules, RBPs are capable of influencing tumor cell phenotypes through different signaling pathways or other axes, and researches on medical treatment have been largely inspired. Exploring the prognostic and therapeutic values of RBPs in OS is a hotspot where diverse avenues on regulating RBPs have achieved dramatical effects. In this review, we briefly summarize the contribution of RBPs and their binding molecules to OS oncogenicity and generally introduce distinctive RBPs as samples. Moreover, we focus on the attempts to differentiate RBP's opposite functions in predicting prognosis and collect possible strategies for treatment. Our review provides forwards insight into improving the understanding of OS and suggests RBPs as potential biomarkers for therapies.
Collapse
Affiliation(s)
- Ziyuan Que
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Kang Yang
- Department of Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Nan Wang
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Shuying Li
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Tao Li
- Department of Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
4
|
Marchais A, Marques Da Costa ME, Job B, Abbas R, Drubay D, Piperno-Neumann S, Fromigué O, Gomez-Brouchet A, Françoise R, Droit R, Lervat C, ENTZ-WERLE N, Pacquement H, Devoldere C, Cupissol D, Bodet D, GANDEMER V, Berger MG, Bérard PM, Jimenez M, Vassal G, Geoerger B, Brugieres L, Gaspar N. Immune infiltrate and tumor microenvironment transcriptional programs stratify pediatric osteosarcoma into prognostic groups at diagnosis. Cancer Res 2022; 82:974-985. [DOI: 10.1158/0008-5472.can-20-4189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/26/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
|
5
|
Byron SA, Hendricks WPD, Nagulapally AB, Kraveka JM, Ferguson WS, Brown VI, Eslin DE, Mitchell D, Cornelius A, Roberts W, Isakoff MS, Oesterheld JE, Wada RK, Rawwas J, Neville K, Zage PE, Harrod VL, Bergendahl G, VanSickle E, Dykema K, Bond J, Chou HC, Wei JS, Wen X, Reardon HV, Roos A, Nasser S, Izatt T, Enriquez D, Hegde AM, Cisneros F, Christofferson A, Turner B, Szelinger S, Keats JJ, Halperin RF, Khan J, Saulnier Sholler GL, Trent JM. Genomic and Transcriptomic Analysis of Relapsed and Refractory Childhood Solid Tumors Reveals a Diverse Molecular Landscape and Mechanisms of Immune Evasion. Cancer Res 2021; 81:5818-5832. [PMID: 34610968 DOI: 10.1158/0008-5472.can-21-1033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Children with treatment-refractory or relapsed (R/R) tumors face poor prognoses. As the genomic underpinnings driving R/R disease are not well defined, we describe here the genomic and transcriptomic landscapes of R/R solid tumors from 202 patients enrolled in Beat Childhood Cancer Consortium clinical trials. Tumor mutational burden (TMB) was elevated relative to untreated tumors at diagnosis, with one-third of tumors classified as having a pediatric high TMB. Prior chemotherapy exposure influenced the mutational landscape of these R/R tumors, with more than 40% of tumors demonstrating mutational signatures associated with platinum or temozolomide chemotherapy and two tumors showing treatment-associated hypermutation. Immunogenomic profiling found a heterogenous pattern of neoantigen and MHC class I expression and a general absence of immune infiltration. Transcriptional analysis and functional gene set enrichment analysis identified cross-pathology clusters associated with development, immune signaling, and cellular signaling pathways. While the landscapes of these R/R tumors reflected those of their corresponding untreated tumors at diagnosis, important exceptions were observed suggestive of tumor evolution, treatment resistance mechanisms, and mutagenic etiologies of treatment.
Collapse
Affiliation(s)
- Sara A Byron
- Integrated Cancer Genomics Division, Translational Genomics Research Institute
| | | | | | | | - William S Ferguson
- Pediatrics, Division of Hematology-Oncology, Saint Louis University School of Medicine
| | - Valerie I Brown
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Penn State Children's Hospital and Penn State College of Medicine
| | - Don E Eslin
- Pediatric Hematology-Oncology, St. Joseph's Children's Hospital
| | | | | | - William Roberts
- Hematology/Oncology, University of California - San Diego School of Medicine
| | - Michael S Isakoff
- Center for Cancer and Blood Disorders, Connecticut Children's Medical Center
| | | | - Randal K Wada
- Pediatric Hematology/Oncology, Kapiolani Medical Center for Women and Children
| | - Jawhar Rawwas
- Pediatric Hematology and Oncology, Children's Hospitals and Clinics of Minnesota
| | | | | | | | | | | | | | - Jeffrey Bond
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital
| | - Hsien-Chao Chou
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health
| | - Jun S Wei
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Xinyu Wen
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health
| | - Hue V Reardon
- Advanced Biomedical Computational Sciences, Biomedical Informatics & Data Science, Frederick National Laboratory for Cancer Research
| | | | - Sara Nasser
- Integrated Cancer Genomics Division, Translational Genomics Research Institute
| | - Tyler Izatt
- Neurogenomics Division, Translational Genomics Research Institute
| | - Daniel Enriquez
- Integrated Cancer Genomics, Translational Genomics Research Institute
| | | | | | | | - Bryce Turner
- Integrated Cancer Genomics Division, Translational Genomics Research Institute
| | | | - Jonathan J Keats
- Integrated Cancer Genomics, Translational Genomics Research Institute
| | - Rebecca F Halperin
- Quantitative Medicine and Systems Biology Division, Translational Genomics Research Institute
| | - Javed Khan
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute
| | | | - Jeffrey M Trent
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute
| |
Collapse
|
6
|
Lee HJ, Shin DH, Song JS, Park JY, Kim SY, Hwang CS, Na JY, Lee JH, Kim JY, Park SW, Sol MY. mTOR Inhibition Increases Transcription Factor E3 (TFE3) Activity and Modulates Programmed Death-Ligand 1 (PD-L1) Expression in Translocation Renal Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1999-2008. [PMID: 34358517 DOI: 10.1016/j.ajpath.2021.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
The efficacy of programmed cell death protein ligand (PD-L)-1/PD-1 checkpoint blockade in renal cell carcinoma (RCC) remains unknown. The effects of mTOR inhibitors are uncertain, and patients may develop resistance to them. The limited understanding of cancer cell-intrinsic mTOR-mediated pathways remains a challenge in developing effective treatments. Whether transcription factor (TF)-E3 regulates PD-L1 expression and the tumor microenvironment was investigated, and the effects of an mammalian target of rapamycin (mTOR) inhibitor on translocation RCC were explored. TFE3 was overexpressed in clear cell RCC cell lines, and PD-L1 expression was analyzed by Western blot analysis. PD-L1 activity in relation to TFE3 expression in translocation RCC was also analyzed, via TFE3 knockdown and treatment with an mTOR inhibitor. The results were correlated with the gene expression profile, evaluated using digital multiplex analysis. TFE3 and PD-L1 expression were positively correlated in RCC cells. TFE3 overexpression was associated with the expression of PD-L1 in RCC. Furthermore, mTOR inhibition was associated with enhanced PD-L1 expression via TFE3 activation in translocation RCC. These data support the feasibility of combination therapy based on mTOR inhibition and PD-L1 blockade as a novel strategy for the treatment of patients with translocation RCC.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea; The Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Dong Hoon Shin
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea; The Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| | - Ji Sun Song
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Joon Young Park
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - So Young Kim
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Chung Su Hwang
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ju-Young Na
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jung Hee Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jee Yeon Kim
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sung Woo Park
- Department of Urology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Mee Young Sol
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
7
|
Lin LL, Liu ZZ, Tian JZ, Zhang X, Zhang Y, Yang M, Zhong HC, Fang W, Wei RX, Hu C. Integrated Analysis of Nine Prognostic RNA-Binding Proteins in Soft Tissue Sarcoma. Front Oncol 2021; 11:633024. [PMID: 34026613 PMCID: PMC8138553 DOI: 10.3389/fonc.2021.633024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
RNA-binding proteins (RBPs) have been shown to be dysregulated in cancer transcription and translation, but few studies have investigated their mechanism of action in soft tissue sarcoma (STS). Here, The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases were used to identify differentially expressed RBPs in STS and normal tissues. Through a series of biological information analyses, 329 differentially expressed RBPs were identified. Functional enrichment analysis showed that differentially expressed RBPs were mainly involved in RNA transport, RNA splicing, mRNA monitoring pathways, ribosome biogenesis and translation regulation. Through Cox regression analyses, 9 RBPs (BYSL, IGF2BP3, DNMT3B, TERT, CD3EAP, SRSF12, TLR7, TRIM21 and MEX3A) were all up-regulated in STS as prognosis-related genes, and a prognostic model was established. The model calculated a risk score based on the expression of 9 hub RBPs. The risk score could be used for risk stratification of patients and had a high prognostic value based on the receiver operating characteristic (ROC) curve. We also established a nomogram containing risk scores and 9 key RBPs to predict the 1-year, 3-year, and 5-year survival rates of patients in STS. Afterwards, methylation analysis showed significant changes in the methylation degree of BYSL, CD3EAP and MEX2A. Furthermore, the expression of 9 hub RBPs was closely related to immune infiltration rather than tumor purity. Based on the above studies, these findings may provide new insights into the pathogenesis of STS and will provide candidate biomarkers for the prognosis of STS.
Collapse
Affiliation(s)
- Lu-Lu Lin
- Department of Pathology and Pathophysiology, School of Basic Medicine, Wuhan University, Wuhan, China
| | - Zi-Zhen Liu
- The Third Clinical School, Hubei University of Medicine, Shiyan, China
| | - Jing-Zhuo Tian
- The Third Clinical School, Hubei University of Medicine, Shiyan, China
| | - Xiao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- The Third Clinical School, Hubei University of Medicine, Shiyan, China
| | - Min Yang
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hou-Cheng Zhong
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Fang
- Hubei University of Medicine, Shiyan, China
| | - Ren-Xiong Wei
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Hu
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Zhu H, Tang JH, Zhang SM, Qian JP, Ling X, Wu XY, Yang LX. Long Noncoding RNA LINC00963 Promotes CDC5L-Mediated Malignant Progression in Gastric Cancer. Onco Targets Ther 2020; 13:12999-13013. [PMID: 33376349 PMCID: PMC7764734 DOI: 10.2147/ott.s274708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
Background Gastric cancer (GC) is a common cancer with high incidence and mortality worldwide. In recent years, accumulating evidence has shown that long noncoding RNAs (lncRNAs) exert critical roles in the development and progression of cancer by acting as a tumor initiator or suppressor. LINC00963 is a newly reported lncRNA related to cancer, and its role in GC remains unclear. Materials and Methods The expression levels of LINC00963, miR-612, and cell division cycle 5-like protein (CDC5L) were measured using quantitative real-time PCR or Western blot. The biological functions of LINC00963, miR-612, and CDC5L in GC cells were analyzed by transwell and proliferation experiments. The expression of CDC5L in patients with GC was evaluated using the Oncomine database. Bone marrow-derived dendritic cells (DCs) were derived from C57BL/6 mice. Results LINC00963 expression was higher in GC tissues than in adjacent normal tissues. Similar results were found in GC cell lines and normal human gastric epithelial cells. Upregulation of LINC00963 was related to the poor prognosis of patients with GC. Knockdown of LINC00963 inhibited the proliferation, invasion, and metastasis but promoted the apoptosis of GC cells. Furthermore, silencing of LINC00963 in GC cells significantly suppressed the tumor growth of GC. Bioinformatics analysis indicated that LINC00963 could target miR-612 by functioning as a competing endogenous RNA. The expression of miR-612 decreased in GC tissues and cell lines. Meanwhile, LINC00963 expression was negatively associated with miR-612. CDC5L was a direct target of miR-612. miR-612 suppressed the expression of CDC5L in GC tissues and cells. Moreover, LINC00963 inhibited the differentiation and maturation of DCs by regulating miR-612 expression in DCs. Conclusion LINC00963 promoted the progression of GC by competitively binding to miR-612 to regulate the expression of CDC5L and mediated DC-related anti-tumor immune response. Thus, targeting LINC00963 may be a promising therapeutic strategy for GC.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Jin-Hai Tang
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Shi-Meng Zhang
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Jia-Ping Qian
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Xin Ling
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Xiao-Ying Wu
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Ling-Xia Yang
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
9
|
Guo L, Li Y, Zhao C, Peng J, Song K, Chen L, Zhang P, Ma H, Yuan C, Yan S, Fang Y, Kong B. RECQL4, Negatively Regulated by miR-10a-5p, Facilitates Cell Proliferation and Invasion via MAFB in Ovarian Cancer. Front Oncol 2020; 10:524128. [PMID: 33014878 PMCID: PMC7500455 DOI: 10.3389/fonc.2020.524128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
The high frequency of somatic copy number alterations, as opposed to point mutations, is considered a unique feature of ovarian cancer. Amplification-dependent overexpression of RecQ protein-like 4 (RECQL4), which participates in DNA replication and repair, mediates the development of various cancers, but its pathobiological and clinical roles are poorly understood. Here, using bioinformatics analysis, RECQL4 amplification was found to occur in 27% of ovarian cancer samples in the TCGA cohort. RECQL4 was found to be upregulated and associated with a poor prognosis based on the immunohistochemistry staining of ovarian cancer. Functionally, RECQL4 overexpression increased proliferation and invasion of ovarian cancer cells. RECQL4 silencing had the opposite effects. In addition, RECQL4 knockdown enhanced the sensitivity of ovarian cancer cells to cisplatin and PARP inhibitor (PARPi). Further mechanistic investigations revealed that MAFB was a downstream target of RECQL4. The oncogenic effect of RECQL4 was attenuated after MAFB knockdown. Moreover, RECQL4 overexpression was negatively regulated by the tumor suppressor miR-10a-5p. Collectively, these findings indicate that genomic amplification and low expression of miR-10a-5p contribute to RECQL4 overexpression in ovarian cancer. This is the first study to reveal the oncogenic functions and clinical significance of RECQL4 in ovarian cancer.
Collapse
Affiliation(s)
- Li Guo
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Obstetrics and Gynecology, Qingdao Municipal Hospital, Shandong University, Qingdao, China
| | - Yingwei Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiali Peng
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Long Chen
- Department of Obstetrics and Gynecology, Qingdao Municipal Hospital, Shandong University, Qingdao, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, Qingdao Municipal Hospital, Shandong University, Qingdao, China
| | - Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shi Yan
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Fang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Otoukesh B, Abbasi M, Gorgani HOL, Farahini H, Moghtadaei M, Boddouhi B, Kaghazian P, Hosseinzadeh S, Alaee A. MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma. Cancer Cell Int 2020; 20:254. [PMID: 32565738 PMCID: PMC7302353 DOI: 10.1186/s12935-020-01342-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) involved in key signaling pathways and aggressive phenotypes of osteosarcoma (OS) was discussed, including PI3K/AKT/MTOR, MTOR AND RAF-1 signaling, tumor suppressor P53- linked miRNAs, NOTCH- related miRNAs, miRNA -15/16 cluster, apoptosis related miRNAs, invasion-metastasis-related miRNAs, and 14Q32-associated miRNAs cluster. Herrin, we discussed insights into the targeted therapies including miRNAs (i.e., tumor-suppressive miRNAs and oncomiRNAs). Using bioinformatics tools, the interaction network of all OS-associated miRNAs and their targets was also depicted.
Collapse
Affiliation(s)
- Babak Otoukesh
- Orthopedic Surgery Fellowship in Département Hospitalo-Universitaire MAMUTH « Maladies musculo-squelettiques et innovations thérapeutiques » , Université Pierre et Marie-Curie, Sorbonne Université, Paris, France.,Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Abbasi
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib-O-Lah Gorgani
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Hossein Farahini
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Moghtadaei
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Bahram Boddouhi
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Peyman Kaghazian
- Department of Orthopedic and Traumatology, Universitätsklinikum Bonn, Bonn, Germany
| | - Shayan Hosseinzadeh
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA USA
| | - Atefe Alaee
- Department of Information Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
D’Angelo A, Sobhani N, Roviello G, Bagby S, Bonazza D, Bottin C, Giudici F, Zanconati F, De Manzini N, Guglielmi A, Generali D. Tumour infiltrating lymphocytes and immune-related genes as predictors of outcome in pancreatic adenocarcinoma. PLoS One 2019; 14:e0219566. [PMID: 31381571 PMCID: PMC6681957 DOI: 10.1371/journal.pone.0219566] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/26/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND We investigated the correlation between pancreatic ductal adenocarcinoma patient prognosis and the presence of tumour infiltrating lymphocytes and expression of 521 immune system genes. METHODS Intratumoural CD3+, CD8+, and CD20+ lymphocytes were examined by immunohistochemistry in 12 PDAC patients with different outcomes who underwent pancreaticoduodenectomy. The results were correlated with gene expression profile using the digital multiplexed NanoString nCounter analysis system (NanoString Technologies, Seattle, WA, USA). RESULTS Twenty immune system genes were significantly differentially expressed in patients with a good prognosis relative to patients with a worse prognosis: TLR2 and TLR7 (Toll-like receptor superfamily); CD4, CD37, FOXP3, PTPRC (B cell and T cell signalling); IRF5, IRF8, STAT1, TFE3 (transcription factors); ANP32B, CCND3 (cell cycle); BTK (B cell development); TNF, TNFRF1A (TNF superfamily); HCK (leukocyte function); C1QA (complement system); BAX, PNMA1 (apoptosis); IKBKE (NFκB pathway). Differential expression was more than twice log 2 for TLR7, TNF, C1QA, FOXP3, and CD37. DISCUSSION Tumour infiltrating lymphocytes were present at higher levels in samples from patients with better prognosis. Our findings indicate that tumour infiltrating lymphocyte levels and expression level of the immune system genes listed above influence pancreatic ductal adenocarcinoma prognosis. This information could be used to improve selection of best responders to immune inhibitors.
Collapse
Affiliation(s)
- Alberto D’Angelo
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Department of Medical, Surgical, & Health Sciences, University of Trieste, Piazza Ospitale, Trieste, Italy
| | - Navid Sobhani
- Department of Medical, Surgical, & Health Sciences, University of Trieste, Piazza Ospitale, Trieste, Italy
- Breast Cancer Unit, ASST Cremona, Cremona, Italy
| | - Giandomenico Roviello
- Department of Medical, Surgical, & Health Sciences, University of Trieste, Piazza Ospitale, Trieste, Italy
| | - Stefan Bagby
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Deborah Bonazza
- Department of Medical Sciences, Ospedale di Cattinara, Università degli Studi di Trieste, Strada di Fiume, Trieste, Italy
| | - Cristina Bottin
- Department of Medical Sciences, Ospedale di Cattinara, Università degli Studi di Trieste, Strada di Fiume, Trieste, Italy
| | - Fabiola Giudici
- Department of Medical Sciences, Ospedale di Cattinara, Università degli Studi di Trieste, Strada di Fiume, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical Sciences, Ospedale di Cattinara, Università degli Studi di Trieste, Strada di Fiume, Trieste, Italy
| | - Nicolo De Manzini
- Department of Medical Sciences, Ospedale di Cattinara, Università degli Studi di Trieste, Strada di Fiume, Trieste, Italy
| | - Alessandra Guglielmi
- Department of Medical, Surgical, & Health Sciences, University of Trieste, Piazza Ospitale, Trieste, Italy
| | - Daniele Generali
- Department of Medical, Surgical, & Health Sciences, University of Trieste, Piazza Ospitale, Trieste, Italy
- Breast Cancer Unit, ASST Cremona, Cremona, Italy
- Department of Medical Sciences, Ospedale di Cattinara, Università degli Studi di Trieste, Strada di Fiume, Trieste, Italy
| |
Collapse
|
12
|
Zamborsky R, Kokavec M, Harsanyi S, Danisovic L. Identification of Prognostic and Predictive Osteosarcoma Biomarkers. Med Sci (Basel) 2019; 7:28. [PMID: 30754703 PMCID: PMC6410182 DOI: 10.3390/medsci7020028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Both adolescents and children suffer from osteosarcoma, localized in the metaphysis of the long bones. This is the most common primary high-grade bone tumor in this patient group. Early tumor detection is the key to ensuring effective treatment. Improved osteosarcoma outcomes in clinical trials have been contingent on biomarker discovery and an evolving understanding of molecules and their complex interactions. In this review, we present a short overview of biomarkers for osteosarcoma, and highlight advances in osteosarcoma-related biomarker research. Many studies show that several biomarkers undergo critical changes with osteosarcoma progression. Growing knowledge about osteosarcoma-related markers is expected to positively impact the development of therapeutics for osteosarcoma, and ultimately of clinical care. It has also become important to develop new biomarkers, which can identify vulnerable patients who should be treated with more intensive and aggressive therapy after diagnosis.
Collapse
Affiliation(s)
- Radoslav Zamborsky
- Department of Orthopedics, Faculty of Medicine, Comenius University, Limbova 1, 833 40 Bratislava, Slovakia.
| | - Milan Kokavec
- Department of Orthopedics, Faculty of Medicine, Comenius University, Limbova 1, 833 40 Bratislava, Slovakia.
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia.
| |
Collapse
|
13
|
Ocampo-Candiani J, Salinas-Santander M, Trevino V, Ortiz-López R, Ocampo-Garza J, Sanchez-Dominguez CN. Evaluation of skin expression profiles of patients with vitiligo treated with narrow-band UVB therapy by targeted RNA-seq. An Bras Dermatol 2019; 93:843-851. [PMID: 30484529 PMCID: PMC6256230 DOI: 10.1590/abd1806-4841.20187589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Vitiligo is characterized by a lack of pigmentation in the skin. To date, there are no studies that analyze the changes in gene expression in the skin of vitiligo patients in response to narrow-band ultraviolet B (nb-UVB) phototherapy treatment. OBJECTIVE Explore the usefulness of new generation RNA sequencing in the identification of gene expression changes in the skin of vitiligo patients treated with nb-UVB phototherapy. METHODS Four skin biopsies (4mm in diameter) were collected from 45 Mexican vitiligo vulgaris patients, 2 specimens before and 2 after treatment with nb-UVB phototherapy, obtained from pigmented and non-pigmented tissue. RNA extracted from the biopsies was analyzed using the Illumina TruSeq Targeted RNA Expression protocol to study the expression of genes that participate in pathways of skin homeostasis. The 2 groups were compared using Student's t-test and the Mann-Whitney U-test. RESULTS The expression analysis identified differences in 12 genes included in this study after comparing the samples obtained before and after treatment: 5 genes involved in skin pigmentation, 2 genes involved in apoptosis, 2 genes involved in cell survival, 2 genes involved in oxidative stress responses and 1 gene involved in signal transduction mechanisms (p<0.05). STUDY LIMITATIONS The small size of skin biopsies limits the amount of RNA obtained, the number of genes to be analyzed and the use of conventional techniques such as RT-qPCR. CONCLUSION We demonstrated usefulness of new generation RNA sequencing in the identification of gene expression changes, in addition to identifying new targets in the study of vitiligo.
Collapse
Affiliation(s)
- Jorge Ocampo-Candiani
- Dermatology Service, Hospital Universitario Dr. José
Eleuterio González, Facultad de Medicina, Universidad Autónoma de
Nuevo León, Nuevo León, México
| | - Mauricio Salinas-Santander
- Department of Investigation, Facultad de Medicina Unidad Saltillo,
Universidad Autónoma de Coahuila, Saltillo, México
| | - Victor Trevino
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de
Monterrey, Tecnológico de Monterrey, México
| | - Rocio Ortiz-López
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de
Monterrey, Tecnológico de Monterrey, México
| | - Jorge Ocampo-Garza
- Dermatology Service, Hospital Universitario Dr. José
Eleuterio González, Facultad de Medicina, Universidad Autónoma de
Nuevo León, Nuevo León, México
| | - Celia Nohemi Sanchez-Dominguez
- Department of Biochemistry and Molecular Medicine, Facultad de
Medicina, Universidad Autónoma de Nuevo León, Nuevo León,
México
| |
Collapse
|
14
|
Villanueva F, Araya H, Briceño P, Varela N, Stevenson A, Jerez S, Tempio F, Chnaiderman J, Perez C, Villarroel M, Concha E, Khani F, Thaler R, Salazar-Onfray F, Stein GS, van Wijnen AJ, Galindo M. The cancer-related transcription factor RUNX2 modulates expression and secretion of the matricellular protein osteopontin in osteosarcoma cells to promote adhesion to endothelial pulmonary cells and lung metastasis. J Cell Physiol 2019; 234:13659-13679. [PMID: 30637720 DOI: 10.1002/jcp.28046] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022]
Abstract
Osteosarcomas are bone tumors that frequently metastasize to the lung. Aberrant expression of the transcription factor, runt-related transcription factor 2 (RUNX2), is a key pathological feature in osteosarcoma and associated with loss of p53 and miR-34 expression. Elevated RUNX2 may transcriptionally activate genes mediating tumor progression and metastasis, including the RUNX2 target gene osteopontin (OPN/SPP1). This gene encodes a secreted matricellular protein produced by osteoblasts to regulate bone matrix remodeling and tissue calcification. Here we investigated whether and how the RUNX2/OPN axis regulates lung metastasis of osteosarcoma. Importantly, RUNX2 depletion attenuates lung metastasis of osteosarcoma cells in vivo. Using next-generation RNA-sequencing, protein-based assays, as well as the loss- and gain-of-function approaches in selected osteosarcoma cell lines, we show that osteopontin messenger RNA levels closely correlate with RUNX2 expression and that RUNX2 controls the levels of secreted osteopontin. Elevated osteopontin levels promote heterotypic cell-cell adhesion of osteosarcoma cells to human pulmonary microvascular endothelial cells, but not in the presence of neutralizing antibodies. Collectively, these findings indicate that the RUNX2/OPN axis regulates the ability of osteosarcoma cells to attach to pulmonary endothelial cells as a key step in metastasis of osteosarcoma cells to the lung.
Collapse
Affiliation(s)
- Francisco Villanueva
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Hector Araya
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pedro Briceño
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nelson Varela
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Andres Stevenson
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sofia Jerez
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fabian Tempio
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jonas Chnaiderman
- Program of Virology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carola Perez
- Laboratory Animal Facility, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Milena Villarroel
- Department of Oncology, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile.,National Child Programme of Antineoplastic Drugs (PINDA), Santiago, Chile
| | - Emma Concha
- Department of Oncology, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile
| | - Farzaneh Khani
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Flavio Salazar-Onfray
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Gary S Stein
- Department of Biochemistry, University of Vermont Cancer Center, The Robert Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Mario Galindo
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
15
|
Schiano C, Soricelli A, De Nigris F, Napoli C. New challenges in integrated diagnosis by imaging and osteo-immunology in bone lesions. Expert Rev Clin Immunol 2019; 15:289-301. [PMID: 30570412 DOI: 10.1080/1744666x.2019.1561283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION High-resolution imaging is the gold standard to measure the functional and biological features of bone lesions. Imaging markers have allowed the characterization both of tumour heterogeneity and metabolic data. Besides, ongoing studies are evaluating a combined use of 'imaging markers', such as SUVs, MATV, TLG, ADC from PET and MRI techniques respectively, and several 'biomarkers' spanning from chemokine immune-modulators, such as PD-1, RANK/RANKL, CXCR4/CXCL12 to transcription factors, such as TP53, RB1, MDM2, RUNX family, EZH2, YY1, MAD2. Osteoimmunology may improve diagnosis and prognosis leading to precision medicine in bone lesion treatment. Areas covered: We investigated modalities (molecular and imaging approach) useful to identify bone lesions deriving both from primary bone tumours and from osteotropic tumours, which have a higher incidence, prevalence and prognosis. Here, we summarized the recent advances in imaging techniques and osteoimmunology biomarkers which could play a pivotal role in personalized treatment. Expert commentary: Although imaging and molecular integration could allow both early diagnosis and stratification of cancer prognosis, large scale clinical trials will be necessary to translate pilot studies in the current clinical setting. ABBREVIATIONS ADC: apparent diffusion coefficient; ALCAM: Activated Leukocyte Cell Adhesion Molecule; ALP: Alkaline phosphatases; BC: Breast cancer; BSAP: B-Cell Lineage Specific Activator; BSAP: bone-specific alkaline phosphatase; BSP: bone sialoprotein; CRIP1: cysteine-rich intestinal protein 1; CD44: cluster of differentiation 44; CT: computed tomography; CXCL12: C-X-C motif ligand 12; CXCR4: C-X-C C-X-C chemokine receptor type 4; CTLA-4: Cytotoxic T-lymphocyte antigen 4; CTX-1: C-terminal end of the telopeptide of type I collagen; DC: dendritic cell; DWI: Diffusion-weighted MR image; EMT: mesenchymal transition; ET-1: endothelin-1; FDA: Food and Drug Administration; FDG: 18F-2-fluoro-2-deoxy-D-glucose; FGF: fibroblast growth factor; FOXC2: forkhead box protein C2: HK-2: hexokinase-2; ICTP: carboxyterminal cross-linked telopeptide of type I collagen; IGF-1R: Insulin Like Growth Factor 1 Receptor; ILC: innate lymphocytes cells; LC: lung cancer; IL-1: interleukin-1; LYVE1: lymphatic vessel endothelial hyaluronic acid receptor 1; MAD2: mitotic arrest deficient 2; MATV: metabolically active tumour volume; M-CSF: macrophage colony stimulating factor; MM: multiple myeloma; MIP1a: macrophage inflammatory protein 1a; MSC: mesenchymal stem cell; MRI: magnetic resonance imaging; PC: prostate cancer; NRP2: neuropilin 2; OPG: osteoprotogerin; PDGF: platelet-derived growth factor; PD-1: Programmed Cell Death 1; PET: positron emission tomography; PINP: procollagen type I N propeptide; PROX1: prospero homeobox protein 1; PSA: Prostate-specific antigen; PTH: parathyroid hormone; RANK: Receptor activator of NF-kB ligand; RECK: Reversion-inducing-cysteine-rich protein; SEMAs: semaphorins; SPECT: single photon computed tomography; SUV: standard uptake value; TLG: total lesion glycolysis; TP53: tumour protein 53; VCAM-1: vascular endothelial molecule-1; VOI: volume of interest; YY1: Yin Yang 1.
Collapse
Affiliation(s)
- Concetta Schiano
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy
| | - Andrea Soricelli
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy.,b Department of Motor Sciences and Healthiness , University of Naples Parthenope , Naples , Italy
| | - Filomena De Nigris
- c Department of Precision Medicine , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Claudio Napoli
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy.,d Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy
| |
Collapse
|
16
|
Chen H, Yuan K, Wang X, Wang H, Wu Q, Wu X, Peng J. Overexpression of RECQL4 is associated with poor prognosis in patients with gastric cancer. Oncol Lett 2018; 16:5419-5425. [PMID: 30250613 DOI: 10.3892/ol.2018.9318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the expression, clinical association, and prognosis of RecQ protein-like 4 (RECQL4) protein in human gastric cancers (GCs). The expression levels and prognostic value of RECQL4 were initially predicted by using bioinformatics. GC specimens and matched normal gastric tissues were evaluated by immunohistochemistry (IHC), and patient clinicopathological parameters and survival times were analyzed. Multivariate Cox analysis was used to determine the prognostic role of RECQL4 expression. The Oncomine database predicted that RECQL4 mRNA expression levels were significantly increased in GCs as compared with those in normal gastric tissues (P<0.05) and that patients with increased RECQL4 mRNA expression levels had significantly lower overall survival (OS) (P<0.001). The results of IHC showed that the positive rate of RECQL4 in the GC samples was significantly higher than that in the normal gastric mucosa specimens (P<0.05). RECQL4 expression was positively associated with depth of invasion and TNM (P<0.05). High RECQL4 expression in GC samples was significantly associated with poor OS (P=0.024). Positive RECQL4 expression, depth of invasion, lymphatic invasion, and TNM staging were independent factors for predicting worse OS rates by using multivariate analysis. Compared with expression levels in normal gastric tissues, RECQL4 was significantly overexpressed in GC samples, and increased RECQL4 expression was an independent predictor of poor prognosis in GC patients.
Collapse
Affiliation(s)
- Honglei Chen
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Kaitao Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Yuexiu, Guangzhou, Guangdong 510080, P.R. China
| | - Xinyou Wang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Huashe Wang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Qiuning Wu
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiaobin Wu
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Junsheng Peng
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
17
|
Inhibition of MDM2 via Nutlin-3A: A Potential Therapeutic Approach for Pleural Mesotheliomas with MDM2-Induced Inactivation of Wild-Type P53. JOURNAL OF ONCOLOGY 2018; 2018:1986982. [PMID: 30112000 PMCID: PMC6077509 DOI: 10.1155/2018/1986982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/23/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022]
Abstract
Previously, our group demonstrated that nuclear expression of E3 ubiquitin ligase (MDM2) in malignant pleural mesothelioma (MPM) is significantly associated with decreased overall survival. A possible explanation may be that overexpression of MDM2 leads to a proteasomal degradation of TP53 that eventually results in a loss of TP53-induced apoptosis and senescence. It is well known from other tumor entities that restoration of TP53 activity, e.g., by MDM2 inhibition, results in an instant TP53-induced stress and/or DNA damage response of cancer cells. Nutlin-3A (a cis-imidazoline analogue) has been described as a potent and selective MDM2 inhibitor preventing MDM2-TP53-interaction by specific binding to the hydrophobic TP53-binding pocket of MDM2. In the present study, the effects of MDM2 inhibition in MPM via Nutlin-3A and standard platinum based chemotherapeutic agents were comparatively tested in three MPM cell lines (NCI-H2052, MSTO-211H, and NCI-H2452) showing different expression profiles of TP53, MDM2, and its physiological inhibitor of MDM2—P14/ARF. Our in vitro experiments on MPM cell lines revealed that Nutlin-3A in combination with cisplatin resulted in up to 9.75 times higher induction of senescence (p=0.0050) and up to 5 times higher apoptosis rate (p=0.0067) compared to the commonly applied cisplatin and pemetrexed regimens. Thus Nutlin-3A, a potent inhibitor of MDM2, is associated with a significant induction of senescence and apoptosis in MPM cell lines, making Nutlin-3A a promising substance for a targeted therapy in the subgroup of MPM showing MDM2 overexpression.
Collapse
|
18
|
Xu L, Xia C, Sun Q, Sheng F, Xiong J, Wang S. Variants of FasL and ABCC5 are predictive of outcome after chemotherapy-based treatment in osteosarcoma. J Bone Oncol 2018; 12:44-48. [PMID: 30065912 PMCID: PMC6066469 DOI: 10.1016/j.jbo.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/04/2023] Open
Abstract
Objectives Previous pharmacogenetics studies showed that genetic variants could be indicative of the response to chemotherapy. We aimed to investigate whether variants of FasL, MSH2, ABCC5, CASP3 and CYP3A4 are associated with the outcome after chemotherapy-based treatment in osteosarcoma. Methods 132 osteosarcoma patients who had completed the neoadjuvant chemotherapy in our center were included. 5-year progression-free survival (PFS) was assessed from the initial treatment to the earliest sign of disease progression or death from any cause. 5 SNPs were genotyped using TaqMan SNP Genotyping Assay, including rs763110 of FasL, rs4638843 of MSH2, rs939338 of ABCC5, rs2720376 of CASP3 and rs4646437 of CYP3A4. Patients were classified into two groups according to the 5-year PFS (event/no event). The chi-square test was used to analyze difference of genotype frequency. Logistic regression analysis was used to determine the independent predictors of the PFS rate. Results The overall 5-year PFS was 61.4% (81/132). Genotype TT/CT of rs763110 and genotype GG/AG of rs939338 were significantly associated with the event of 5-year PFS (p = 0.028 for rs763110; p = 0.039 for rs939338). Patients with no risk allele showed a 5-year PFS of 73.7% (42/57), which was significantly higher than a PFS of 54.2% (26/48) for patients with one risk allele and 48.1% (13/27) for patients with two different risk alleles (p = 0.03). Logistic regression analysis showed that allele T of FasL rs763110 and allele G of ABCC5 rs939338 were independent risk factors of the 5-year PFS. The ORs were 2.14 (95%CI = 1.13–3.35, p = 0.01) for rs763110 and 1.73 (95%CI = 1.05–2.52, p = 0.03) for rs939338, respectively. Conclusions The association of variants of FASL and ABCC5 with survival outcome after chemotherapy was validated in patients with osteosarcoma. Our findings may provide a new insight into a more personalized treatment for patients with osteosarcoma.
Collapse
Affiliation(s)
- Leilei Xu
- Department of Orthopedic Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| | - Chao Xia
- Department of Orthopedic Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| | - Qi Sun
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China
| | - Fei Sheng
- Department of Orthopedic Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| | - Jin Xiong
- Department of Orthopedic Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| | - Shoufeng Wang
- Department of Orthopedic Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| |
Collapse
|
19
|
Djuričić GJ, Radulovic M, Sopta JP, Nikitović M, Milošević NT. Fractal and Gray Level Cooccurrence Matrix Computational Analysis of Primary Osteosarcoma Magnetic Resonance Images Predicts the Chemotherapy Response. Front Oncol 2017; 7:246. [PMID: 29098142 PMCID: PMC5653945 DOI: 10.3389/fonc.2017.00246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/29/2017] [Indexed: 01/16/2023] Open
Abstract
The prediction of induction chemotherapy response at the time of diagnosis may improve outcomes in osteosarcoma by allowing for personalized tailoring of therapy. The aim of this study was thus to investigate the predictive potential of the so far unexploited computational analysis of osteosarcoma magnetic resonance (MR) images. Fractal and gray level cooccurrence matrix (GLCM) algorithms were employed in retrospective analysis of MR images of primary osteosarcoma localized in distal femur prior to the OsteoSa induction chemotherapy. The predicted and actual chemotherapy response outcomes were then compared by means of receiver operating characteristic (ROC) analysis and accuracy calculation. Dbin, Λ, and SCN were the standard fractal and GLCM features which significantly associated with the chemotherapy outcome, but only in one of the analyzed planes. Our newly developed normalized fractal dimension, called the space-filling ratio (SFR) exerted an independent and much better predictive value with the prediction significance accomplished in two of the three imaging planes, with accuracy of 82% and area under the ROC curve of 0.20 (95% confidence interval 0-0.41). In conclusion, SFR as the newly designed fractal coefficient provided superior predictive performance in comparison to standard image analysis features, presumably by compensating for the tumor size variation in MR images.
Collapse
Affiliation(s)
- Goran J Djuričić
- Department of Diagnostic Imaging, University Children's Hospital, University of Belgrade, Belgrade, Serbia
| | - Marko Radulovic
- Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Jelena P Sopta
- Medical Faculty, Institute of Pathology, University of Belgrade, Belgrade, Serbia
| | | | - Nebojša T Milošević
- Medical Faculty, Department of Biophysics, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
20
|
Yoon N, Ahn S, Yong Yoo H, Jin Kim S, Seog Kim W, Hyeh Ko Y. Cell-of-origin of diffuse large B-cell lymphomas determined by the Lymph2Cx assay: better prognostic indicator than Hans algorithm. Oncotarget 2017; 8:22014-22022. [PMID: 28423544 PMCID: PMC5400642 DOI: 10.18632/oncotarget.15782] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/29/2017] [Indexed: 01/20/2023] Open
Abstract
Diffuse large B-cell lymphomas (DLBCLs) are clinically heterogeneous and need a biomarker that can predict the outcome of treatments accurately. To assess the prognostic significance of the cell-of-origin type for DLBCLs, we applied the Lymph2Cx assay using a NanoString gene expression platform on formalin-fixed paraffin wax-embedded pretreatment tissues obtained from 82 patients with de novo DLBCL, not otherwise specified. All patients were treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) as the first line of chemotherapy. Based on the expression levels of Bcl-6, CD10, and MUM-1 measured by immunohistochemistry, cases were subdivided into germinal center B-cell (GCB) and non-GCB types according to the Hans algorithm. NanoString assay was performed on 82 cases. The Lymph2Cx assay successfully classified 82 cases into three categories: activated B-cell (ABC), GCB, and unclassified types. The concordance rate between the Lymph2Cx assay and the Hans algorithm was 73.6%. The Lymph2Cx-defined ABC type had significantly poorer outcomes compared with the GCB type (5-year overall survival, GCB vs. ABC, 96.6% vs. 77.1%, P = 0.020; 5-year disease-free survival, GCB vs. ABC, 96.6% vs. 79.2%, P = 0.018). In contrast, no significant differences were observed in survival between the two patient subgroups with DLBCL types classified by the Hans algorithm. The Lymph2Cx assay is a robust, reliable method for predicting the outcome of patients with DLBCL treated with R-CHOP chemotherapy.
Collapse
Affiliation(s)
- Nara Yoon
- Departments of Pathology, The Catholic University of Korea Incheon St. Mary's Hospital, Incheon, Korea
| | - Soomin Ahn
- Departments of Patholgy, Ewha Womans University Medical Center, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hae Yong Yoo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Suk Jin Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Hyeh Ko
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Tang Z, Zeng Q, Li Y, Zhang X, Suto MJ, Xu B, Yi N. Predicting radiotherapy response for patients with soft tissue sarcoma by developing a molecular signature. Oncol Rep 2017; 38:2814-2824. [PMID: 29048650 PMCID: PMC5780036 DOI: 10.3892/or.2017.5999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022] Open
Abstract
Soft tissue sarcomas are rare and aggressive tumors arising from connective tissues. Adjuvant radiotherapy is a commonly used treatment approach for the majority of sarcomas. We attempted to identify a gene signature that can predict radiosensitive patients who are most likely to have a better treatment response from radiotherapy, compared with disease progression. Using the publicly available data of soft tissue sarcoma from The Cancer Genome Atlas, we developed a cross-validation procedure to identify a predictive gene signature for radiosensitivity. The results showed that the predicted radiosensitive patients who received radiotherapy had significantly improved treatment response. We further provide supportive evidence to validate our sensitivity prediction. Results showed that the predicted radiosensitive patients who received radiotherapy had significantly improved survival than patients who did not. ROC analysis showed that the developed gene signature had a powerful prediction on treatment response. We further found that predicted radiosensitive patients who received radiotherapy had a significantly reduced rate of new tumor events. Finally, we validated our gene signature using a hierarchical cluster analysis, and found that the predicted sensitivities were well-matched with results from the cluster analysis. These results are consistent with our expectation, suggesting that the identified gene signature and radiosensitivity prediction are effective. The genes involved in the signature may provide a molecular basis for prognostic studies and radiotherapy target discovery.
Collapse
Affiliation(s)
- Zaixiang Tang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Qinghua Zeng
- Drug Discovery Division, Southern Research Institute, Birmingham, AL 35294, USA
| | - Yan Li
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xinyan Zhang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mark J Suto
- Drug Discovery Division, Southern Research Institute, Birmingham, AL 35294, USA
| | - Bo Xu
- Drug Discovery Division, Southern Research Institute, Birmingham, AL 35294, USA
| | - Nengjun Yi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
Sun S, Cai J, Yang Q, Zhao S, Wang Z. The association between copper transporters and the prognosis of cancer patients undergoing chemotherapy: a meta-analysis of literatures and datasets. Oncotarget 2017; 8:16036-16051. [PMID: 27980217 PMCID: PMC5362544 DOI: 10.18632/oncotarget.13917] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022] Open
Abstract
Copper transporter 1 (CTR1), copper transporter 2 (CTR2), copper-transporting p-type adenosine triphosphatase 1 and 2 (ATP7A and ATP7B) are key mediators of cellular cisplatin, carboplatin and oxaliplatin accumulation. In this meta-analysis, we aimed to evaluate the relation of CTR1, CTR2, ATP7A and ATP7B to overall survival (OS), progression-free survival (PFS), disease-free survival (DFS) and treatment response (TR) of cancer patients who received chemotherapy based on published literatures, the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) datasets. Hazard ratios (HRs) and odds ratios (ORs) were pooled using random-effect models. Subgroup analysis and sensitivity analysis were conducted; heterogeneity and publication bias were assessed. Twelve literatures and eight datasets with 2149 patients were included. Our results suggested that high CTR1 expression was associated with favorable OS, PFS, DFS and TR in cancer patients who underwent chemotherapy with acceptable heterogeneity. The relationship of CTR1 to cancer prognosis remained significant in the subgroup of patients who underwent platinum-based chemotherapy, the patients with ovarian cancer and those with lung cancer. The significance of these relationships was not influenced by geological region of publication, data origin or detection method. However, there was no evidence for relation of CTR2, ATP7A or ATP7B to OS, PFS, DFS or TR. Test of publication bias and sensitivity analysis suggested a robustness of all the summary effect estimates. In conclusion, high CTR1 level predicts prolonged survival and enhanced response to chemotherapy in cancer patients who underwent chemotherapy and CTR1 might be a potential target to circumvent chemotherapy resistance.
Collapse
Affiliation(s)
- Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiang Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Simei Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
23
|
Xu JF, Wang YP, Zhang SJ, Chen Y, Gu HF, Dou XF, Xia B, Bi Q, Fan SW. Exosomes containing differential expression of microRNA and mRNA in osteosarcoma that can predict response to chemotherapy. Oncotarget 2017; 8:75968-75978. [PMID: 29100284 PMCID: PMC5652678 DOI: 10.18632/oncotarget.18373] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/15/2017] [Indexed: 01/08/2023] Open
Abstract
A major challenge in osteosarcoma (OS) is the selection of the most effective chemotherapeutic agents for individual patients, while the administration of ineffective chemotherapy increases mortality and decreases quality of life in patients. This emphasizes the need to evaluate every patient's probability of responding to each chemotherapeutic agent. We developed a profiling strategy for serum exosomal microRNAs and mRNAs in OS patients with differential chemotherapeutic responses. Twelve miRNAs were up regulated and 18 miRNAs were under regulated significantly in OS patient with poor chemotherapeutic response when compared with those in good chemotherapeutic response (p<0.05). In addition, miR-124, miR133a, miR-199a-3p, and miR-385 were validated and significantly reduced in poorly responded patients with an independent OS cohort. While miR-135b, miR-148a, miR-27a, and miR-9 were significantly over expressed in serum exosomes. Bioinformatic analysis by DIANA-mirPath demonstrated that Proteoglycans in cancer, Hippo signaling pathway, Pathways in cancer, Transcriptional misregulation in cancer, PI3K-Akt signaling pathway, Ras signaling pathway, Ubiquitin mediated proteolysis, Choline metabolism in cancer were the most prominent pathways enriched in quantiles with the miRNA patterns related to poor chemotherapeutic response. Messenger RNAs(mRNAs) includingAnnexin2, Smad2, Methylthioadenosine phosphorylase (MTAP), Cdc42-interacting protein 4 (CIP4), Pigment Epithelium-Derived Factor (PEDF), WW domain-containing oxidoreductase (WWOX), Cell division cycle 5-like (Cdc5L), P27 were differentially expressed in exosomes in OS patients with different chemotherapeutic response. These data demonstrated that exosomal RNA molecules are reliable biomarkers in classifying osteosarcoma with different chemotherapy sensitivity.
Collapse
Affiliation(s)
- Ji-Feng Xu
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China.,Department of Orthopedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Ya-Ping Wang
- Department of Cardiology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, P.R. China
| | - Shui-Jun Zhang
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yu Chen
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Hai-Feng Gu
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiao-Fan Dou
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Bing Xia
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qing Bi
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shun-Wu Fan
- Department of Orthopedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
24
|
Vega OA, Lucero CM, Araya HF, Jerez S, Tapia JC, Antonelli M, Salazar‐Onfray F, Las Heras F, Thaler R, Riester SM, Stein GS, van Wijnen AJ, Galindo MA. Wnt/β‐Catenin Signaling Activates Expression of the Bone‐Related Transcription Factor RUNX2 in Select Human Osteosarcoma Cell Types. J Cell Biochem 2017; 118:3662-3674. [DOI: 10.1002/jcb.26011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Oscar A. Vega
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
| | - Claudia M.J. Lucero
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
| | - Hector F. Araya
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
| | - Sofia Jerez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
| | - Julio C. Tapia
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
| | - Marcelo Antonelli
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
| | - Flavio Salazar‐Onfray
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
- Program of Immunology, Institute of Biomedical Sciences (ICBM)Faculty of Medicine, University of ChileSantiago 8380453Chile
| | - Facundo Las Heras
- Department of Anatomical PathologyUniversity of Chile Clinical HospitalSantiago 8380456Chile
- Department of PathologyClinica Las CondesSantiago 7591018Chile
| | - Roman Thaler
- Departments of Orthopedic Surgery and Biochemistry and Molecular BiologyMayo ClinicRochester 55905Minnesota
| | - Scott M. Riester
- Departments of Orthopedic Surgery and Biochemistry and Molecular BiologyMayo ClinicRochester 55905Minnesota
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer CenterThe Robert Larner College of Medicine, University of VermontBurlington 05405Vermont
| | - Andre J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry and Molecular BiologyMayo ClinicRochester 55905Minnesota
| | - Mario A. Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of MedicineUniversity of ChileSantiago8380453Chile
- Millennium Institute on Immunology and ImmunotherapyFaculty of Medicine, University of ChileSantiago 8380453Chile
| |
Collapse
|
25
|
Riester SM, Torres-Mora J, Dudakovic A, Camilleri ET, Wang W, Xu F, Thaler RR, Evans JM, Zwartbol R, Briaire-de Bruijn IH, Maran A, Folpe AL, Inwards CY, Rose PS, Shives TC, Yaszemski MJ, Sim FH, Deyle DR, Larson AN, Galindo MA, Cleven AGH, Oliveira AM, Cleton-Jansen AM, Bovée JVMG, van Wijnen AJ. Hypoxia-related microRNA-210 is a diagnostic marker for discriminating osteoblastoma and osteosarcoma. J Orthop Res 2017; 35:1137-1146. [PMID: 27324965 PMCID: PMC5413434 DOI: 10.1002/jor.23344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/20/2016] [Indexed: 02/04/2023]
Abstract
Osteoblastoma is a benign bone tumor that can often be difficult to distinguish from malignant osteosarcoma. Because misdiagnosis can result in unfavorable clinical outcomes, we have investigated microRNAs as potential diagnostic biomarkers for distinguishing between these two tumor types. Next generation RNA sequencing was used as an expression screen to evaluate >2,000 microRNAs present in tissue derived from rare formalin fixed paraffin embedded (FFPE) archival tumor specimens. MicroRNAs displaying the greatest ability to discriminate between these two tumors were validated on an independent tumor set, using qPCR assays. Initial screening by RNA-seq identified four microRNA biomarker candidates. Expression of three miRNAs (miR-451a, miR-144-3p, miR-486-5p) was higher in osteoblastoma, while the miR-210 was elevated in osteosarcoma. Validation of these microRNAs on an independent data set of 22 tumor specimens by qPCR revealed that miR-210 is the most discriminating marker. This microRNA displays low levels of expression across all of the osteoblastoma specimens and robust expression in the majority of the osteosarcoma specimens. Application of these biomarkers to a clinical test case showed that these microRNA biomarkers permit re-classification of a misdiagnosed FFPE tumor sample from osteoblastoma to osteosarcoma. Our findings establish that the hypoxia-related miR-210 is a discriminatory marker that distinguishes between osteoblastoma and osteosarcoma. This discovery provides a complementary molecular approach to support pathological classification of two diagnostically challenging musculoskeletal tumors. Because miR-210 is linked to the cellular hypoxia response, its detection may be linked to well-established pro-angiogenic and metastatic roles of hypoxia in osteosarcomas and other tumor cell types. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1137-1146, 2017.
Collapse
Affiliation(s)
- Scott M. Riester
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905
| | - Jorge Torres-Mora
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905
| | - Emily T. Camilleri
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905
| | - Wei Wang
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905,Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Fuhua Xu
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905
| | - Roman R. Thaler
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905
| | - Jared M. Evans
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - René Zwartbol
- Department of Pathology, Leiden University Medical Center in Leiden, Netherlands
| | | | - Avudaiappan Maran
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905
| | - Andrew L. Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Carrie Y. Inwards
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Peter S. Rose
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905
| | - Thomas C. Shives
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905
| | - Michael J. Yaszemski
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905
| | - Franklin H. Sim
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905
| | - David R. Deyle
- Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota
| | - Annalise N. Larson
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905
| | - Mario A. Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile,Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Arjen G. H. Cleven
- Department of Pathology, Leiden University Medical Center in Leiden, Netherlands
| | - Andre M. Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905
| |
Collapse
|
26
|
Gray C, McCowan LM, Patel R, Taylor RS, Vickers MH. Maternal plasma miRNAs as biomarkers during mid-pregnancy to predict later spontaneous preterm birth: a pilot study. Sci Rep 2017; 7:815. [PMID: 28400603 PMCID: PMC5429750 DOI: 10.1038/s41598-017-00713-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/10/2017] [Indexed: 12/27/2022] Open
Abstract
More than 10% of babies are born too early resulting in over 15 million preterm births and more than one million new-born deaths globally. Although women with a previous spontaneous preterm birth (SPTB) are considered at high risk for recurrence, the majority occur in women without prior history. Prediction of SPTB risk allows for improved care and potential for targeting novel and existing therapeutics to prevent SPTB, which may result in improved outcomes for infant and mother. In this pilot study, a miRNA array was used to analyse plasma from healthy women in their first pregnancy at 20 weeks of gestation who then went on to deliver either at term or experience SPTB at 28-32 weeks. We identified specific miRNA expression profiles that differentiated between those mothers who delivered at term or delivered following SPTB. miR302b, miR1253 and a clustering of miR548 miRNAs were underexpressed in SPTB cases compared to term controls. Conversely, miR223 was elevated in mothers that later experienced a SPTB. The circulating miRNAs identified in the present study may therefore be attractive candidates as non-invasive biomarkers for the early prediction of SPTB. Further larger studies are now warranted to investigate the potential clinical utility of these markers.
Collapse
Affiliation(s)
- Clint Gray
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Lesley M McCowan
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Rachna Patel
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Rennae S Taylor
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
27
|
Stark M, Heinrich SD, Sivashanmugam R, Mackey D, Wasilewska E, Craver R. Pediatric Chondromyxoid Fibroma-Like Osteosarcoma. Fetal Pediatr Pathol 2017; 36:154-161. [PMID: 27935335 DOI: 10.1080/15513815.2016.1259376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chondromyxoid fibroma-like osteosarcoma (CMF-OS) is a low-grade osteosarcoma, often misdiagnosed on initial biopsy as a benign lesion, with five cases previously described. We report a 13-year-old male with an intramedullary lytic CMF-OS of the right tibial proximal metaphysis with cortical destruction and soft tissue extension. Diagnosis was based on malignant new bone formation, increased mitotic figures, lamellar bone permeation with bony destruction, and correlation with imaging studies. There were no metastasis at presentation and the tumor showed good response to standard chemotherapy with >95% necrosis.
Collapse
Affiliation(s)
- Matthew Stark
- a Department of Pathology , Children's Hospital New Orleans , New Orleans , LA , USA
| | | | | | - Dane Mackey
- d Department of Radiology , LSUHSC , New Orleans , LA , USA
| | - Ewa Wasilewska
- e Department of Radiology , Children's Hospital New Orleans , New Orleans , LA , USA
| | - Randall Craver
- a Department of Pathology , Children's Hospital New Orleans , New Orleans , LA , USA.,f Department of Pathology , LSUHSC , New Orleans , LA , USA
| |
Collapse
|
28
|
Walter RFH, Vollbrecht C, Werner R, Wohlschlaeger J, Christoph DC, Schmid KW, Mairinger FD. microRNAs are differentially regulated between MDM2-positive and negative malignant pleural mesothelioma. Oncotarget 2017; 7:18713-21. [PMID: 26918730 PMCID: PMC4951323 DOI: 10.18632/oncotarget.7666] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/02/2016] [Indexed: 12/14/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a highly aggressive tumour first-line treated with a combination of cisplatin and pemetrexed. MDM2 and P14/ARF (CDKN2A) are upstream regulators of TP53 and may contribute to its inactivation. In the present study, we now aimed to define the impact of miRNA expression on this mechanism. Material and Methods 24 formalin-fixed paraffin-embedded (FFPE) tumour specimens were used for miRNA expression analysis of the 800 most important miRNAs using the nCounter technique (NanoString). Significantly deregulated miRNAs were identified before a KEGG-pathway analysis was performed. Results 17 miRNAs regulating TP53, 18 miRNAs regulating MDM2, and 11 miRNAs directly regulating CDKN2A are significantly downregulated in MDM2-expressing mesotheliomas. TP53 is downregulated in MDM2-negative tumours through miRNAs with a miSVR prediction score of 11.67, RB1 with a prediction score of 8.02, MDM2 with a prediction score of 4.50 and CDKN2A with a prediction score of 1.27. Conclusion MDM2 expression seems to impact miRNA expression levels in MPM. Especially, miRNAs involved in TP53-signaling are strongly decreased in MDM2-positive mesotheliomas. A better understanding of its tumour biology may open the chance for new therapeutic approaches and thereby augment patients' outcome.
Collapse
Affiliation(s)
- Robert Fred Henry Walter
- Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Claudia Vollbrecht
- Institute of Pathology, University Hospital Cologne, Germany.,Institute of Pathology, Division of Molecular Pathology, Charité, Berlin, Germany
| | - Robert Werner
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniel Christian Christoph
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Fabian Dominik Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Pathology, Division of Molecular Pathology, Charité, Berlin, Germany
| |
Collapse
|
29
|
Chen JY, Yang H, Wen J, Luo KJ, Liu QW, Lei JY, Zhen YZ, Fu JH. Association between positive murine double minute 2 expression and clinicopathological characteristics of esophageal squamous cell carcinoma: a meta-analysis. Dis Esophagus 2016; 29:856-863. [PMID: 25873358 DOI: 10.1111/dote.12361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The correlations of murine double minute 2 (MDM2) T309G and esophageal cancer were elucidated because the association between MDM2 expression states and clinicopathological parameters of esophageal squamous cell carcinoma (ESCC) is controversial. We conducted a meta-analysis on studies screened from PubMed, Web of Science, Embase, the Cochrane Library, and the Chinese Biomedical Literature Databases that were published before October 2014. All studies describing the association between MDM2 and ESCC were traced. Meta-analysis was performed using the STATA software (Stata Corp., College Station, TX, USA). A total of 9 studies with 707 cases and 324 controls were included. MDM2 expression was higher in ESCC than in normal esophageal epithelium (odds ratio [OR] 10.38, 95% confidence interval [CI] 6.42-16.78, P < 0.001). High MDM2 expression was associated with early primary tumor stage (T1/T2 vs. T3/T4, OR 0.59, 95% CI 0.38-0.92, P = 0.018) and increased risk of regional lymph node metastasis (N0 vs. N1, OR 1.66, 95% CI 1.03-2.67, P = 0.039). However, no relationship was observed between MDM2 expression and the risk of distant metastasis (OR = 2.09, 95% CI 1.00-4.36, P = 0.050), and MDM2 was not significantly correlated with TP53 expression (OR 1.22, 95% CI 0.53-2.77, P = 0.643). Our analysis suggests that MDM2 acts as a potent marker of early primary tumor stage but higher risk of regional lymph node metastasis in ESCC. However, because of the limited number of studies included, the result should be further clarified by well-designed prospective studies.
Collapse
Affiliation(s)
- J Y Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - H Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - J Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - K J Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Q W Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - J Y Lei
- Clinical Epidemiology and Biostatistics Department, Karolinska Institute, Stockholm, Sweden
| | - Y Z Zhen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - J H Fu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China. .,Guangdong Esophageal Cancer Institute, Guangzhou, China.
| |
Collapse
|
30
|
Mohammadi M, Goudarzi PK, Rahmani O, Kaghazian P, Yahaghi E, Taheriazam A, Ahmadi K. Evaluation of gene expression level of CDC5L and MACC1 in poor prognosis and progression of osteosarcoma. Tumour Biol 2016; 37:8153-7. [PMID: 26715275 DOI: 10.1007/s13277-015-4726-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/21/2015] [Indexed: 12/30/2022] Open
Abstract
Current evidences have indicated that osteosarcoma is strongly associated with abnormal genetic and epigenetic changes that lead to the abnormal expression of oncogenes or methylation of tumor suppressor genes. In the present study, MACC1 and CDC5L mRNA levels in the patients with osteosarcoma were evaluated using quantitative real-time PCR. Our results demonstrated that CDC5L mRNA levels were higher in tumor tissues than in adjacent normal tissues (2.713 ± 0.738 vs. 1.071 ± 0.629; P < 0.05). Moreover, MACC1 was upregulated in tumor bone tissues than in adjacent normal tissues (3.221 ± 0. 624 vs. 1.427 ± 0.456; P < 0.05). Our result demonstrated that high expression of CDC5L was significantly related to advanced TNM stage (P = 0.032). No significant difference was determined between CDC5L mRNA expression and other clinicopathological parameters including age, gender, tumor diameter, location, tumor grade, and histological type. In addition, overexpression of MACC1 was strongly correlated with advanced TNM stage (P = 0.027) and high tumor grade (P = 0.035). Our findings indicated that mRNA level of CDC5L is correlated with advanced TNM stage, and MACC1 may be involved in progression of osteosarcoma.
Collapse
Affiliation(s)
- Mohsen Mohammadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Omid Rahmani
- Department of Pathology, Be'sat Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Peyman Kaghazian
- Department of Orthopedic and Traumatology, Universitätsklinikum Bonn, Bonn, Germany
| | - Emad Yahaghi
- Young Researchers and Elite Club, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Department of Orthopedic Surgery, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Koroosh Ahmadi
- Department of Emergency Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
31
|
Li P, Shi JX, Dai LP, Chai YR, Zhang HF, Kankonde M, Kankonde P, Yu BF, Zhang JY. Serum anti-MDM2 and anti-c-Myc autoantibodies as biomarkers in the early detection of lung cancer. Oncoimmunology 2016; 5:e1138200. [PMID: 27467958 DOI: 10.1080/2162402x.2016.1138200] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/17/2015] [Accepted: 12/29/2015] [Indexed: 12/12/2022] Open
Abstract
This study aims to investigate the clinical significance of serum autoantibodies against MDM2 and c-Myc and evaluate their feasibility in the immunodiagnosis of lung cancer. 50 sera samples with 43 available paired lung cancer tissue and adjacent normal tissue slides with follow up information and 44 sera from normal human controls (NHC) were used in the research group. Another 62 lung cancer sera and 43 NHC sera were used in the validation group. The results of IHC showed that MDM2 and c-Myc protein were overexpressed in lung cancer tissues compared to adjacent normal tissues (p < 0.001). Likewise, significantly higher levels of serum autoantibodies against MDM2 and c-Myc were found in lung cancer compared to NHC both in research and validation groups. Further analysis on IHC and ELISA results showed that serum level of autoantibodies against these two TAAs were positively associated with tissue staining scores (both p < 0.05). The area under curve (AUC) values of anti-MDM2 and anti-cMyc autoantibodies for discriminating lung cancers from NHC were 0.698 and 0.636 in research group, 0.777 and 0.815 in the validation group, respectively. Both anti-MDM2 and anti-c-Myc autoantibodies can discriminate stage I lung cancer patients from NHC with AUC values of 0.703 and 0.662. Kaplan-Meier analysis showed that higher level of serum anti-c-Myc autoantibodies was significantly related to shortened disease-free survival (DFS) (p = 0.041). In conclusion, our finding suggested that serum MDM2 and c-Myc autoantibodies may have the potential to serve as non-invasive diagnostic biomarkers in patients with lung cancer.
Collapse
Affiliation(s)
- Pei Li
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave, El Paso, TX, USA
| | - Jian-Xiang Shi
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave, El Paso, TX, USA; Henan Key Laboratory for Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Li-Ping Dai
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave, El Paso, TX, USA; Henan Key Laboratory for Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu-Rong Chai
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave, El Paso, TX, USA
| | - Hong-Fei Zhang
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave, El Paso, TX, USA; Henan Key Laboratory for Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Mutombo Kankonde
- Greater East Cancer Center & Coalition for the Reversal of Breast Cancer Mortality in African American Women , El Paso, TX, USA
| | - Peggy Kankonde
- Greater East Cancer Center & Coalition for the Reversal of Breast Cancer Mortality in African American Women , El Paso, TX, USA
| | - Bao-Fa Yu
- Beijing Baofa Tumor Hospital , Changping Dist, Beijing, China
| | - Jian-Ying Zhang
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave, El Paso, TX, USA; Henan Key Laboratory for Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
32
|
Expression and Clinical Role of Cdc5L as a Novel Cell Cycle Protein in Hepatocellular Carcinoma. Dig Dis Sci 2016; 61:795-805. [PMID: 26553251 DOI: 10.1007/s10620-015-3937-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/22/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cell division cycle 5-like (Cdc5L), as a pre-mRNA splicing factor, is a regulator of mitotic progression. Previous study found that deletion of endogenous Cdc5L decreases the cell viability via dramatic mitotic arrest, while the role of Cdc5L in cancer biology remains under debate. AIMS To investigate the involvement of Cdc5L in the progression of hepatocellular carcinoma (HCC). METHODS In this study, the expression of Cdc5L was evaluated by Western blot in 8 paired fresh HCC tissues and immunohistochemistry on 116 paraffin-embedded slices. We treated HCC cells by nocodazole to analyze the role of Cdc5L in mitotic progress. To determine whether Cdc5L could regulate the proliferation of HCC cells, we increased endogenous Cdc5L and analyzed the proliferation of HCC cells using Western blot, CCK8, flow cytometry assays, and colony formation analyses. Furthermore, Cdc5L-siRNA oligos were used to confirm that Cdc5L plays an essential role in HCC development. RESULTS Cdc5L was highly expressed in HCC and significantly associated with multiple clinicopathological factors, including AJCC stage, tumor size, and Ki-67. Besides, univariate and multivariate survival analyses demonstrated that high Cdc5L expression was an independent prognostic factor for HCC patients' poor survival. Overexpression of Cdc5L favors cell cycle progress of HCC cells, while downregulation of Cdc5L results in cell cycle arrest at G2/M phase and reduced cell proliferation of HCC cells. CONCLUSIONS Our findings suggested that Cdc5L could play an important role in the tumorigenesis of HCC and thus be a potential therapeutical target to prevent HCC progression.
Collapse
|
33
|
Kovac M, Blattmann C, Ribi S, Smida J, Mueller NS, Engert F, Castro-Giner F, Weischenfeldt J, Kovacova M, Krieg A, Andreou D, Tunn PU, Dürr HR, Rechl H, Schaser KD, Melcher I, Burdach S, Kulozik A, Specht K, Heinimann K, Fulda S, Bielack S, Jundt G, Tomlinson I, Korbel JO, Nathrath M, Baumhoer D. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun 2015; 6:8940. [PMID: 26632267 PMCID: PMC4686819 DOI: 10.1038/ncomms9940] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/19/2015] [Indexed: 12/27/2022] Open
Abstract
Osteosarcomas are aggressive bone tumours with a high degree of genetic heterogeneity, which has historically complicated driver gene discovery. Here we sequence exomes of 31 tumours and decipher their evolutionary landscape by inferring clonality of the individual mutation events. Exome findings are interpreted in the context of mutation and SNP array data from a replication set of 92 tumours. We identify 14 genes as the main drivers, of which some were formerly unknown in the context of osteosarcoma. None of the drivers is clearly responsible for the majority of tumours and even TP53 mutations are frequently mapped into subclones. However, >80% of osteosarcomas exhibit a specific combination of single-base substitutions, LOH, or large-scale genome instability signatures characteristic of BRCA1/2-deficient tumours. Our findings imply that multiple oncogenic pathways drive chromosomal instability during osteosarcoma evolution and result in the acquisition of BRCA-like traits, which could be therapeutically exploited.
Collapse
Affiliation(s)
- Michal Kovac
- Bone Tumour Reference Center at the Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031 Basel, Switzerland
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Claudia Blattmann
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart Olgahospital, Kriegsbergstrasse 62, 70174 Stuttgart, Germany
- Department of Pediatric Hematology, Oncology, Immunology and Pulmology, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Sebastian Ribi
- Bone Tumour Reference Center at the Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031 Basel, Switzerland
| | - Jan Smida
- Institute of Radiation Biology, Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Pediatric Oncology Center, Department of Pediatrics, Technische Universität München and Comprehensive Cancer Center, Kölner Platz 1, 80804 Munich, Germany
| | - Nikola S. Mueller
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Florian Engert
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, 60528 Frankfurt, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Francesc Castro-Giner
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Joachim Weischenfeldt
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Monika Kovacova
- The Institute of Mathematics and Physics, Faculty of Mechanical Engineering, Slovak University of Technology, 84248 Bratislava, Slovak Republic
| | - Andreas Krieg
- Orthopaedic Department, Basel University Childrens Hospital (UKBB), Spitalstrasse 33, 4056 Basel, Switzerland
| | - Dimosthenis Andreou
- Department of Orthopedic Oncology, Sarcoma Center Berlin-Brandenburg, HELIOS Klinikum Berlin-Buch, Schwanebecker Chaussee 50, 13125 Berlin, Germany
| | - Per-Ulf Tunn
- Department of Orthopedic Oncology, Sarcoma Center Berlin-Brandenburg, HELIOS Klinikum Berlin-Buch, Schwanebecker Chaussee 50, 13125 Berlin, Germany
| | - Hans Roland Dürr
- Department of Orthopedic Surgery, Ludwig-Maximilians-University Munich, Campus Grosshadern, Marchionistrasse 15, 81377 Munich, Germany
| | - Hans Rechl
- Clinic and Policlinic of Orthopedics and Sports Orthopedics, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Klaus-Dieter Schaser
- Department of Orthopaedics and Trauma Surgery, University Hospital Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Ingo Melcher
- Center for Musculoskeletal Surgery, Charité—University Medicine Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Stefan Burdach
- Pediatric Oncology Center, Department of Pediatrics, Technische Universität München and Comprehensive Cancer Center, Kölner Platz 1, 80804 Munich, Germany
| | - Andreas Kulozik
- Department of Pediatric Hematology, Oncology, Immunology and Pulmology, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Katja Specht
- Institute of Pathology, Technische Universität München, Trogerstrasse 18, 81675 Munich, Germany
| | - Karl Heinimann
- Medical Genetics, University Hospital Basel, Burgfelderstrasse 101, 4055 Basel, Switzerland
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, 60528 Frankfurt, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Stefan Bielack
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart Olgahospital, Kriegsbergstrasse 62, 70174 Stuttgart, Germany
| | - Gernot Jundt
- Bone Tumour Reference Center at the Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031 Basel, Switzerland
| | - Ian Tomlinson
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jan O. Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Michaela Nathrath
- Institute of Radiation Biology, Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Pediatric Oncology Center, Department of Pediatrics, Technische Universität München and Comprehensive Cancer Center, Kölner Platz 1, 80804 Munich, Germany
- Department of Pediatric Oncology, Klinikum Kassel, Mönchebergstrasse 41-43, 34125 Kassel, Germany
| | - Daniel Baumhoer
- Bone Tumour Reference Center at the Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031 Basel, Switzerland
| |
Collapse
|
34
|
Expression of CDC5L is associated with tumor progression in gliomas. Tumour Biol 2015; 37:4093-103. [PMID: 26490980 DOI: 10.1007/s13277-015-4088-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/13/2015] [Indexed: 10/22/2022] Open
Abstract
Cell division cycle 5-like (CDC5L) protein is a cell cycle regulator of the G2/M transition and has been reported to participate in the catalytic step of pre-messenger RNA (mRNA) splicing and DNA damage repair. Recently, it was also found to act as a candidate oncogene in osteosarcoma and cervical tumors. However, the role of CDC5L expression in tumor biology was still unclear. Here, we analyzed the expression and clinical significance of CDC5L in gliomas. The expression of CDC5L in fresh glioma tissues and paraffin-embedded slices was evaluated by western blot and immunohistochemistry, respectively. We found that CDC5L was highly expressed in glioma tissues. The expression of CDC5L was significantly associated with glioma pathology grade and Ki-67 expression. Univariate and multivariate analyses showed that high CDC5L expression was an independent prognostic factor for glioma patients' survival. To determine whether CDC5L could regulate the proliferation of glioma cells, we transfected glioma cells with interfering RNA target CDC5L, then investigated cell proliferation with cell counting kit (CCK)-8, flow cytometry assays and colony formation analyses. Our results indicated that knockdown of CDC5L would inhibit proliferation of glioma cells. Besides, reduced expression of CDC5L could induce the apoptosis of glioma cells. These findings suggested that CDC5L might play an important role in glioma and thus be a promising therapeutic target of glioma.
Collapse
|
35
|
Gu R, Sun YF, Wu MF, Liu JB, Jiang JL, Wang SH, Wang XL, Guo Q. Biological roles of microRNA-140 in tumor growth, migration, and metastasis of osteosarcoma in vivo and in vitro. Tumour Biol 2015. [PMID: 26219893 DOI: 10.1007/s13277-015-3801-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The objective of this study was to explore the biological roles of microRNA-140 (miR-140) in tumor growth, migration, and metastasis of osteosarcoma (OS) in vivo and in vitro. Between 2007 and 2014, 47 cases of OS samples and normal bone tissue samples adjacent to OS were selected from our hospital. Tissue biopsies from OS patients were used to measure miR-140 levels to obtain a correlation between clinicopathological features and miR-140 expression. In vitro, MG63 human osteosarcoma cells were divided into four groups: blank group, miR-140 mimic group, miR-140 inhibitor group, and negative control (NC; empty plasmid) group. qRT-PCR was used to detect miR-140 expression, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect cell proliferation, flow cytometry was used to detect cell cycle distribution, and scratch migration assay was used to detect cell migration. In vivo, the relative expression of miR-140 level in OS tissue was lower than that in the adjacent normal bone tissue. miR-140 expression is inversely correlated with tumor size, Enneking stage, and tumor metastasis. In vitro, compared with blank group and NC group, relative miR-140 expression was increased, cell proliferation was inhibited, cell population in G0/G1 phase was increased, cell population in G2/M phase and S phases and proliferation index (PI), and cell migration distance were decreased in the miR-140 mimic group, but the relative expression and all the cell indexes were found opposite trend in the miR-140 inhibitor group. In conclusion, in vivo and vitro findings provided evidence that miR-140 could inhibit the growth, migration, and metastasis of OS cells.
Collapse
Affiliation(s)
- Rui Gu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Yi-Fu Sun
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Min-Fei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Jia-Bei Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Jin-Lan Jiang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China. .,Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| | - Shuai-Hua Wang
- Department of Orthopedics, The First People's Hospital of Yueyang, Yueyang, 414000, People's Republic of China
| | - Xin-Lei Wang
- Department of Orthopedics, The First People's Hospital of Yueyang, Yueyang, 414000, People's Republic of China
| | - Qiang Guo
- Department of Orthopedics, The First People's Hospital of Yueyang, Yueyang, 414000, People's Republic of China
| |
Collapse
|
36
|
Veldman-Jones MH, Brant R, Rooney C, Geh C, Emery H, Harbron CG, Wappett M, Sharpe A, Dymond M, Barrett JC, Harrington EA, Marshall G. Evaluating Robustness and Sensitivity of the NanoString Technologies nCounter Platform to Enable Multiplexed Gene Expression Analysis of Clinical Samples. Cancer Res 2015; 75:2587-93. [PMID: 26069246 DOI: 10.1158/0008-5472.can-15-0262] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/19/2015] [Indexed: 11/16/2022]
Abstract
Analysis of clinical trial specimens such as formalin-fixed paraffin-embedded (FFPE) tissue for molecular mechanisms of disease progression or drug response is often challenging and limited to a few markers at a time. This has led to the increasing importance of highly multiplexed assays that enable profiling of many biomarkers within a single assay. Methods for gene expression analysis have undergone major advances in biomedical research, but obtaining a robust dataset from low-quality RNA samples, such as those isolated from FFPE tissue, remains a challenge. Here, we provide a detailed evaluation of the NanoString Technologies nCounter platform, which provides a direct digital readout of up to 800 mRNA targets simultaneously. We tested this system by examining a broad set of human clinical tissues for a range of technical variables, including sensitivity and limit of detection to varying RNA quantity and quality, reagent performance over time, variability between instruments, the impact of the number of fields of view sampled, and differences between probe sequence locations and overlapping genes across CodeSets. This study demonstrates that Nanostring offers several key advantages, including sensitivity, reproducibility, technical robustness, and utility for clinical application.
Collapse
Affiliation(s)
- Margaret H Veldman-Jones
- AstraZeneca Oncology and Discovery Sciences Innovative Medicines, Alderley Park, Macclesfield, United Kingdom.
| | - Roz Brant
- AstraZeneca Oncology and Discovery Sciences Innovative Medicines, Alderley Park, Macclesfield, United Kingdom
| | - Claire Rooney
- AstraZeneca Oncology and Discovery Sciences Innovative Medicines, Alderley Park, Macclesfield, United Kingdom
| | - Catherine Geh
- AstraZeneca Oncology and Discovery Sciences Innovative Medicines, Alderley Park, Macclesfield, United Kingdom
| | - Hollie Emery
- AstraZeneca Oncology and Discovery Sciences Innovative Medicines, Alderley Park, Macclesfield, United Kingdom
| | - Chris G Harbron
- AstraZeneca Oncology and Discovery Sciences Innovative Medicines, Alderley Park, Macclesfield, United Kingdom
| | - Mark Wappett
- AstraZeneca Oncology and Discovery Sciences Innovative Medicines, Alderley Park, Macclesfield, United Kingdom
| | - Alan Sharpe
- AstraZeneca Oncology and Discovery Sciences Innovative Medicines, Alderley Park, Macclesfield, United Kingdom
| | - Michael Dymond
- AstraZeneca Oncology and Discovery Sciences Innovative Medicines, Alderley Park, Macclesfield, United Kingdom
| | | | - Elizabeth A Harrington
- AstraZeneca Oncology and Discovery Sciences Innovative Medicines, Alderley Park, Macclesfield, United Kingdom
| | - Gayle Marshall
- AstraZeneca Oncology and Discovery Sciences Innovative Medicines, Alderley Park, Macclesfield, United Kingdom
| |
Collapse
|
37
|
BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells. Sci Rep 2015; 5:10120. [PMID: 25944566 PMCID: PMC4421868 DOI: 10.1038/srep10120] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/27/2015] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma (OS) survival rates have plateaued in part due to a lack of new therapeutic options. Here we demonstrate that bromodomain inhibitors (BETi), JQ1, I-BET151, I-BET762, exert potent anti-tumour activity against primary and established OS cell lines, mediated by inhibition of BRD4. Strikingly, unlike previous observations in long-term established human OS cell lines, the antiproliferative activity of JQ1 in primary OS cells was driven by the induction of apoptosis, not cell cycle arrest. In further contrast, JQ1 activity in OS was mediated independently of MYC downregulation. We identified that JQ1 suppresses the transcription factor FOSL1 by displacement of BRD4 from its locus. Loss of FOSL1 phenocopied the antiproliferative effects of JQ1, identifying FOSL1 suppression as a potential novel therapeutic approach for OS. As a monotherapy JQ1 demonstrated significant anti-tumour activity in vivo in an OS graft model. Further, combinatorial treatment approaches showed that JQ1 increased the sensitivity of OS cells to doxorubicin and induced potent synergistic activity when rationally combined with CDK inhibitors. The greater level of activity achieved with the combination of BETi with CDK inhibitors demonstrates the efficacy of this combination therapy. Taken together, our studies show that BET inhibitors are a promising new therapeutic for OS.
Collapse
|
38
|
Koti M, Siu A, Clément I, Bidarimath M, Turashvili G, Edwards A, Rahimi K, Mes-Masson AM, Masson AMM, Squire JA. A distinct pre-existing inflammatory tumour microenvironment is associated with chemotherapy resistance in high-grade serous epithelial ovarian cancer. Br J Cancer 2015; 112:1215-22. [PMID: 25826225 PMCID: PMC4385963 DOI: 10.1038/bjc.2015.81] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 12/15/2022] Open
Abstract
Background: Chemotherapy resistance is a major determinant of poor overall survival rates in high-grade serous ovarian cancer (HGSC). We have previously shown that gene expression alterations affecting the NF-κB pathway characterise chemotherapy resistance in HGSC, suggesting that the regulation of an immune response may be associated with this phenotype. Methods: Given that intrinsic drug resistance pre-exists and is governed by both tumour and host factors, the current study was performed to examine the cross-talk between tumour inflammatory microenvironment and cancer cells, and their roles in mediating differential chemotherapy response in HGSC patients. Expression profiling of a panel of 184 inflammation-related genes was performed in 15 chemoresistant and 19 chemosensitive HGSC tumours using the NanoString nCounter platform. Results: A total of 11 significantly differentially expressed genes were found to distinguish the two groups. As STAT1 was the most significantly differentially expressed gene (P=0.003), we validated the expression of STAT1 protein by immunohistochemistry using an independent cohort of 183 (52 resistant and 131 sensitive) HGSC cases on a primary tumour tissue microarray. Relative expression levels were subjected to Kaplan–Meier survival analysis and Cox proportional hazard regression models. Conclusions: This study confirms that higher STAT1 expression is significantly associated with increased progression-free survival and that this protein together with other mediators of tumour–host microenvironment can be applied as a novel response predictive biomarker in HGSC. Furthermore, an overall underactive immune microenvironment suggests that the pre-existing state of the tumour immune microenvironment could determine response to chemotherapy in HGSC.
Collapse
Affiliation(s)
- M Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - A Siu
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - I Clément
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada, Institut du Cancer de Montréal, Montreal, QC H2X 0B9, Canada
| | - M Bidarimath
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - G Turashvili
- Department of Pathology and Molecular Medicine, Kingston General Hospital, Kingston, ON K7L3N6, Canada
| | - A Edwards
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - K Rahimi
- Department of Pathology, Centre Hospitalier de l'Université de Montréal, Montreal, QC H3C 3J7, Canada
| | | | - A-M M Masson
- 1] Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada, Institut du Cancer de Montréal, Montreal, QC H2X 0B9, Canada [2] Department of Medicine, Universite de Montreal, Montreal, QC H3C 3J7, Canada
| | - J A Squire
- Departments of Genetics and Pathology, Faculdade de Medicina de Ribeirão Preto USP, Av. Bandeirantes, 3900 Ribeirão Preto, SP Brazil
| |
Collapse
|
39
|
Zhang J, Yan YG, Wang C, Zhang SJ, Yu XH, Wang WJ. MicroRNAs in osteosarcoma. Clin Chim Acta 2015; 444:9-17. [PMID: 25661090 DOI: 10.1016/j.cca.2015.01.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 12/25/2022]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor with high morbidity that principally emerges in children and adolescents. Presently, the prognosis of OS patients remains poor due to resistance to chemotherapy, highlighting the need for new therapeutic approaches. MicroRNAs (miRNAs), a class of small noncoding RNA molecules, can negatively modulate protein expression at the post-transcriptional level. miRNAs regulate a variety of normal physiologic processes and are involved in tumorigenesis and development of multiple malignancies, including OS. Some miRNAs are differentially expressed in OS tissues, cell lines and serum, and have been shown to correlate with the malignant phenotype and prognosis. These altered miRNAs function as oncogenes or tumor suppressor genes in this process. Moreover, restoration of miRNA expression has shown promise for the treatment of OS. Here, we describe miRNA biochemistry with a focus on expression profile, role and therapeutic potential in OS. A better understanding will facilitate the identification and characterization of novel biomarkers and development of miRNA-targeted therapies.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Shu-Jun Zhang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
40
|
Sampson VB, Yoo S, Kumar A, Vetter NS, Kolb EA. MicroRNAs and Potential Targets in Osteosarcoma: Review. Front Pediatr 2015; 3:69. [PMID: 26380245 PMCID: PMC4547013 DOI: 10.3389/fped.2015.00069] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma is the most common bone cancer in children and young adults. Surgery and multi-agent chemotherapy are the standard treatment regimens for this disease. New therapies are being investigated to improve overall survival in patients. Molecular targets that actively modulate cell processes, such as cell-cycle control, cell proliferation, metabolism, and apoptosis, have been studied, but it remains a challenge to develop novel, effective-targeted therapies to treat this heterogeneous and complex disease. MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating cell processes including growth, development, and disease. miRNAs function as oncogenes or tumor suppressors to regulate gene and protein expression. Several studies have demonstrated the involvement of miRNAs in the pathogenesis of osteosarcoma with the potential for development in disease diagnostics and therapeutics. In this review, we discuss the current knowledge on the role of miRNAs and their target genes and evaluate their potential use as therapeutic agents in osteosarcoma. We also summarize the efficacy of inhibition of oncogenic miRNAs or expression of tumor suppressor miRNAs in preclinical models of osteosarcoma. Recent progress on systemic delivery as well as current applications for miRNAs as therapeutic agents has seen the advancement of miR-34a in clinical trials for adult patients with non-resectable primary liver cancer or metastatic cancer with liver involvement. We suggest a global approach to the understanding of the pathogenesis of osteosarcoma may identify candidate miRNAs as promising biomarkers for this rare disease.
Collapse
Affiliation(s)
- Valerie B Sampson
- Nemours Center for Cancer and Blood Disorders, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| | - Asmita Kumar
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| | - Nancy S Vetter
- Nemours Center for Cancer and Blood Disorders, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| |
Collapse
|