1
|
Maeda R, Kami D, Maeda H, Shikuma A, Gojo S. High throughput single cell analysis of mitochondrial heteroplasmy in mitochondrial diseases. Sci Rep 2020; 10:10821. [PMID: 32616755 PMCID: PMC7331593 DOI: 10.1038/s41598-020-67686-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/11/2020] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial heteroplasmy, which fundamentally means intracellular heterogeneity of mitochondrial DNA (mtDNA), has been measured in a group of cells, regardless of intercellular heterogeneity. Ordinal methods for mitochondrial heteroplasmy cannot discriminate between an intercellular homogenic population composed of cells with similar intracellular heterogeneity for mtDNA and an intercellular heterogenic population composed of cells with different rates of mutated mtDNA. A high-throughput method to determine mitochondrial heteroplasmy in a single cell was developed by using droplet digital PCR with TaqMan polymerase in this study. This technique revealed that there are three different cell populations of cultured fibroblasts derived from patients with mitochondrial disease carrying a mutation in the mtDNA; cells with homoplasmy of either mutated or healthy mtDNA; and cells mixed with mutated and healthy mtDNA. The presence of intercellular heterogeneity, even in uniformed cultured fibroblasts, suggests that heterogeneity should exist among different kinds of cells. The diagnosis of intercellular heterogeneity with respect to mitochondrial heteroplasmy by this methodology could provide novel insight into developing a treatment strategy for mitochondrial diseases.
Collapse
Affiliation(s)
- Ryotaro Maeda
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii cho, Kamigyo ku, Kyoto, 802-8566, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii cho, Kamigyo ku, Kyoto, 802-8566, Japan
| | - Hideki Maeda
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii cho, Kamigyo ku, Kyoto, 802-8566, Japan
| | - Akira Shikuma
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii cho, Kamigyo ku, Kyoto, 802-8566, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii cho, Kamigyo ku, Kyoto, 802-8566, Japan.
| |
Collapse
|
2
|
Yao Y, Nishimura M, Murayama K, Kuranobu N, Tojo S, Beppu M, Ishige T, Itoga S, Tsuchida S, Mori M, Takayanagi M, Yokoyama M, Yamagata K, Kishita Y, Okazaki Y, Nomura F, Matsushita K, Tanaka T. A simple method for sequencing the whole human mitochondrial genome directly from samples and its application to genetic testing. Sci Rep 2019; 9:17411. [PMID: 31757988 PMCID: PMC6874554 DOI: 10.1038/s41598-019-53449-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/31/2019] [Indexed: 12/23/2022] Open
Abstract
Next-generation sequencing (NGS) is a revolutionary sequencing technology for analyzing genomes. However, preprocessing methods for mitochondrial DNA (mtDNA) sequencing remain complex, and it is required to develop an authenticated preprocessing method. Here, we developed a simple and easy preprocessing method based on isothermal rolling circle mtDNA amplification using commercially available reagents. Isothermal amplification of mtDNA was successfully performed using both nanoliter quantities of plasma directly and 25 ng of total DNA extracted from blood or tissue samples. Prior to mtDNA amplification, it was necessary to treat the extracted total DNA with Exonuclease V, but it was not required to treat plasma. The NGS libraries generated from the amplified mtDNA provided sequencing coverage of the entire human mitochondrial genome. Furthermore, the sequencing results successfully detected heteroplasmy in patient samples, with called mutations and variants matching those from previous, independent, Sanger sequencing analysis. Additionally, a novel single nucleotide variant was detected in a healthy volunteer. The successful analysis of mtDNA using very small samples from patients is likely to be valuable in clinical medicine, as it could reduce patient discomfort by reducing sampling-associated damage to tissues. Overall, the simple and convenient preprocessing method described herein may facilitate the future development of NGS-based clinical and forensic mtDNA tests.
Collapse
Affiliation(s)
- Yue Yao
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Motoi Nishimura
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kei Murayama
- Division of Metabolism, Chiba Children's Hospital, Chiba, 266-0007, Japan
| | - Naomi Kuranobu
- Division of Metabolism, Chiba Children's Hospital, Chiba, 266-0007, Japan
| | - Satomi Tojo
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Minako Beppu
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Takayuki Ishige
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Sakae Itoga
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Sachio Tsuchida
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Masato Mori
- Department of Pediatrics, Matsudo City Hospital, Matsudo, 270-2296, Japan
| | - Masaki Takayanagi
- Division of Metabolism, Chiba Children's Hospital, Chiba, 266-0007, Japan
| | - Masataka Yokoyama
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kazuyuki Yamagata
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Fumio Nomura
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kazuyuki Matsushita
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
3
|
|
4
|
Smith DR, Stanley CM, Foss T, Boles RG, McKernan K. Rare genetic variants in the endocannabinoid system genes CNR1 and DAGLA are associated with neurological phenotypes in humans. PLoS One 2017; 12:e0187926. [PMID: 29145497 PMCID: PMC5690672 DOI: 10.1371/journal.pone.0187926] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022] Open
Abstract
Rare genetic variants in the core endocannabinoid system genes CNR1, CNR2, DAGLA, MGLL and FAAH were identified in molecular testing data from 6,032 patients with a broad spectrum of neurological disorders. The variants were evaluated for association with phenotypes similar to those observed in the orthologous gene knockouts in mice. Heterozygous rare coding variants in CNR1, which encodes the type 1 cannabinoid receptor (CB1), were found to be significantly associated with pain sensitivity (especially migraine), sleep and memory disorders—alone or in combination with anxiety—compared to a set of controls without such CNR1 variants. Similarly, heterozygous rare variants in DAGLA, which encodes diacylglycerol lipase alpha, were found to be significantly associated with seizures and neurodevelopmental disorders, including autism and abnormalities of brain morphology, compared to controls. Rare variants in MGLL, FAAH and CNR2 were not associated with any neurological phenotypes in the patients tested. Diacylglycerol lipase alpha synthesizes the endocannabinoid 2-AG in the brain, which interacts with CB1 receptors. The phenotypes associated with rare CNR1 variants are reminiscent of those implicated in the theory of clinical endocannabinoid deficiency syndrome. The severe phenotypes associated with rare DAGLA variants underscore the critical role of rapid 2-AG synthesis and the endocannabinoid system in regulating neurological function and development. Mapping of the variants to the 3D structure of the type 1 cannabinoid receptor, or primary structure of diacylglycerol lipase alpha, reveals clustering of variants in certain structural regions and is consistent with impacts to function.
Collapse
Affiliation(s)
- Douglas R. Smith
- Courtagen Life Sciences, Inc., Woburn, MA, United States of America
- * E-mail:
| | | | - Theodore Foss
- Courtagen Life Sciences, Inc., Woburn, MA, United States of America
| | - Richard G. Boles
- Courtagen Life Sciences, Inc., Woburn, MA, United States of America
| | - Kevin McKernan
- Courtagen Life Sciences, Inc., Woburn, MA, United States of America
| |
Collapse
|
5
|
McKernan K, Spangler J, Helbert Y, Lynch RC, Devitt-Lee A, Zhang L, Orphe W, Warner J, Foss T, Hudalla CJ, Silva M, Smith DR. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests. F1000Res 2016; 5:2471. [PMID: 27853518 PMCID: PMC5089129 DOI: 10.12688/f1000research.9662.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2016] [Indexed: 12/26/2022] Open
Abstract
Background: The presence of bacteria and fungi in medicinal or recreational
Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM) testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR) approach marketed by Medicinal Genomics Corporation. Methods: A set of 15 medicinal
Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results: Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including
Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and
Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of
Aspergillus species to grow well on either platform. Substantial growth of
Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial) fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions: These findings have important implications for the
Cannabis and food safety testing industries.
Collapse
Affiliation(s)
| | | | | | - Ryan C Lynch
- Medicinal Genomics Corporation, Woburn, MA, 01801, USA
| | | | - Lei Zhang
- Medicinal Genomics Corporation, Woburn, MA, 01801, USA
| | - Wendell Orphe
- Medicinal Genomics Corporation, Woburn, MA, 01801, USA
| | - Jason Warner
- Medicinal Genomics Corporation, Woburn, MA, 01801, USA
| | - Theodore Foss
- Medicinal Genomics Corporation, Woburn, MA, 01801, USA
| | | | | | | |
Collapse
|
6
|
Workalemahu T, Enquobahrie DA, Yohannes E, Sanchez SE, Gelaye B, Qiu C, Williams MA. Placental telomere length and risk of placental abruption. J Matern Fetal Neonatal Med 2016; 29:2767-72. [PMID: 26611732 PMCID: PMC4984533 DOI: 10.3109/14767058.2015.1103224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the associations of placental telomere length with placental abruption (PA) risk and interactions between placental telomere length and placental mitochondrial DNA (mtDNA) copy number on PA risk. MATERIALS AND METHODS Relative telomere length and mtDNA copy number in placental samples collected from 105 cases and 73 controls were measured in two batches using qRT-PCR. Mean differences in relative telomere length between PA cases and controls were examined. After creating batch-specific median cutoffs for relative telomere length (84.92 and 102.53) and mtDNA copy number (2.32 and 1.42), interaction between the two variables was examined using stratified logistic regression models. RESULTS Adjusted mean difference in relative telomere length between PA cases and controls was -0.07 (p > 0.05). Among participants with low mtDNA copy number, participants with short relative telomere length had a 3.07-fold higher odds (95% CI: 1.13-8.38) of PA as compared with participants with long relative telomere length (the reference group). Among participants with high mtDNA copy number, participants with short relative telomere length had a 0.71-fold lower odds (95% CI: 0.28-1.83) of PA as compared with the reference group (interaction p values = 0.03). CONCLUSION Findings suggest complex relationships between placental telomere length, mtDNA copy number and PA risk which warrant further larger studies.
Collapse
Affiliation(s)
| | - Daniel A. Enquobahrie
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Center for Perinatal Studies, Swedish Medical Center, Seattle, Washington
| | - Ermias Yohannes
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | | | - Bizu Gelaye
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Chunfang Qiu
- Center for Perinatal Studies, Swedish Medical Center, Seattle, Washington
| | - Michelle A. Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
7
|
Qiu C, Sanchez SE, Hevner K, Enquobahrie DA, Williams MA. Placental mitochondrial DNA content and placental abruption: a pilot study. BMC Res Notes 2015; 8:447. [PMID: 26377917 PMCID: PMC4571073 DOI: 10.1186/s13104-015-1340-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/12/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mitochondrial biogenesis and adequate energy production are important for embryogenesis and placentation. Previous studies documented alterations in maternal blood mitochondrial DNA (mtDNA) copy number-a marker of mitochondrial dysfunction-in pregnancies complicated by placental abruption. To further understand the role of mitochondrial dysfunction in the pathogenesis of placental abruption, we conducted a pilot study using placental specimen collected from 103 placental abruption cases and 102 non-abruption controls. Real-time quantitative polymerase chain reaction (PCR) was used to assess the relative copy number of mtDNA in DNA extracted from placental samples collected immediately after delivery. Logistic regression procedures were used to estimate adjusted odds ratios (OR) and 95% confidence intervals (CI). RESULTS Higher odds of placental abruption was observed with increasing mtDNA copy number (p value for trend = 0.05). The odds of placental abruption was elevated among women who delivered placentas with higher mtDNA copy number (≥120.5, the median) as compared with those with lower values (<120.5) (adjusted OR = 2.38; 95% CI 1.11-5.08). CONCLUSION We found preliminary evidence for associations of target tissue-specific mitochondrial dysfunction with an adverse perinatal outcome, placental abruption. Larger studies and replication of findings in other populations will further our understanding of relationships between cellular and genomic biomarkers of normal and abnormal placental function and vascular placental disorders.
Collapse
Affiliation(s)
- Chunfang Qiu
- Center for Perinatal Studies, Swedish Medical Center, Seattle, WA, USA.
| | - Sixto E Sanchez
- Sección de Post Grado, Facultad de Medicina Humana, Universidad San Martín de Porres, Lima, Peru. .,A.C. PROESA, Lima, Peru.
| | - Karin Hevner
- Center for Perinatal Studies, Swedish Medical Center, Seattle, WA, USA.
| | - Daniel A Enquobahrie
- Center for Perinatal Studies, Swedish Medical Center, Seattle, WA, USA. .,Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA.
| | - Michelle A Williams
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
8
|
Jayaprakash AD, Benson EK, Gone S, Liang R, Shim J, Lambertini L, Toloue MM, Wigler M, Aaronson SA, Sachidanandam R. Stable heteroplasmy at the single-cell level is facilitated by intercellular exchange of mtDNA. Nucleic Acids Res 2015; 43:2177-87. [PMID: 25653158 PMCID: PMC4344500 DOI: 10.1093/nar/gkv052] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic cells carry two genomes, nuclear (nDNA) and mitochondrial (mtDNA), which are ostensibly decoupled in their replication, segregation and inheritance. It is increasingly appreciated that heteroplasmy, the occurrence of multiple mtDNA haplotypes in a cell, plays an important biological role, but its features are not well understood. Accurately determining the diversity of mtDNA has been difficult, due to the relatively small amount of mtDNA in each cell (<1% of the total DNA), the intercellular variability of mtDNA content and mtDNA pseudogenes (Numts) in nDNA. To understand the nature of heteroplasmy, we developed Mseek, a novel technique to purify and sequence mtDNA. Mseek yields high purity (>90%) mtDNA and its ability to detect rare variants is limited only by sequencing depth, providing unprecedented sensitivity and specificity. Using Mseek, we confirmed the ubiquity of heteroplasmy by analyzing mtDNA from a diverse set of cell lines and human samples. Applying Mseek to colonies derived from single cells, we find heteroplasmy is stably maintained in individual daughter cells over multiple cell divisions. We hypothesized that the stability of heteroplasmy could be facilitated by intercellular exchange of mtDNA. We explicitly demonstrate this exchange by co-culturing cell lines with distinct mtDNA haplotypes. Our results shed new light on the maintenance of heteroplasmy and provide a novel platform to investigate features of heteroplasmy in normal and diseased states.
Collapse
Affiliation(s)
- Anitha D Jayaprakash
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY 10029, USA
| | - Erica K Benson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY 10029, USA
| | - Swapna Gone
- Bioo Scientific Corporation, 7050 Burleson Road, Austin, TX 78744, USA
| | - Raymond Liang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY 10029, USA
| | - Jaehee Shim
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY 10029, USA
| | - Luca Lambertini
- Department of Preventive Medicine and Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY 10029, USA
| | - Masoud M Toloue
- Bioo Scientific Corporation, 7050 Burleson Road, Austin, TX 78744, USA
| | - Mike Wigler
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY 10029, USA
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY 10029, USA
| |
Collapse
|