1
|
Desai RH, Hackett CT, Johari K, Lai VT, Riccardi N. Spatiotemporal characteristics of the neural representation of event concepts. BRAIN AND LANGUAGE 2023; 246:105328. [PMID: 37847931 PMCID: PMC10873121 DOI: 10.1016/j.bandl.2023.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
Events are a fundamentally important part of our understanding of the world. How lexical concepts denoting events are represented in the brain remains controversial. We conducted two experiments using event and object nouns matched on a range of psycholinguistic variables, including concreteness, to examine spatial and temporal characteristics of event concepts. Both experiments used magnitude and valence tasks on event and object nouns. The fMRI experiment revealed a distributed set of regions for events, including the angular gyrus, anterior temporal lobe, and posterior cingulate across tasks. In the EEG experiment, events and objects differed in amplitude within the 300-500 ms window. Together these results shed light into the spatiotemporal characteristics of event concept representation and show that event concepts are represented in the putative hubs of the semantic system. While these hubs are typically associated with object semantics, they also represent events, and have a likely role in temporal integration.
Collapse
Affiliation(s)
- Rutvik H Desai
- Department of Psychology, University of South Carolina, United States; Institute for Mind and Brain, University of South Carolina, United States.
| | | | - Karim Johari
- Department of Communication Sciences & Disorders, Louisiana State University, United States
| | - Vicky T Lai
- Department of Psychology, University of Arizona, United States
| | - Nicholas Riccardi
- Department of Psychology, University of South Carolina, United States
| |
Collapse
|
2
|
MacLean MW, Hadid V, Spreng RN, Lepore F. Revealing robust neural correlates of conscious and unconscious visual processing: activation likelihood estimation meta-analyses. Neuroimage 2023; 273:120088. [PMID: 37030413 DOI: 10.1016/j.neuroimage.2023.120088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Our ability to consciously perceive information from the visual scene relies on a myriad of intrinsic neural mechanisms. Functional neuroimaging studies have sought to identify the neural correlates of conscious visual processing and to further dissociate from those pertaining to preconscious and unconscious visual processing. However, delineating what core brain regions are involved in eliciting a conscious percept remains a challenge, particularly regarding the role of prefrontal-parietal regions. We performed a systematic search of the literature that yielded a total of 54 functional neuroimaging studies. We conducted two quantitative meta-analyses using activation likelihood estimation to identify reliable patterns of activation engaged by i. conscious (n = 45 studies, comprising 704 participants) and ii. unconscious (n = 16 studies, comprising 262 participants) visual processing during various task performances. Results of the meta-analysis specific to conscious percepts quantitatively revealed reliable activations across a constellation of regions comprising the bilateral inferior frontal junction, intraparietal sulcus, dorsal anterior cingulate, angular gyrus, temporo-occipital cortex and anterior insula. Neurosynth reverse inference revealed conscious visual processing to be intertwined with cognitive terms related to attention, cognitive control and working memory. Results of the meta-analysis on unconscious percepts revealed consistent activations in the lateral occipital complex, intraparietal sulcus and precuneus. These findings highlight the notion that conscious visual processing readily engages higher-level regions including the inferior frontal junction and unconscious processing reliably recruits posterior regions, mainly the lateral occipital complex.
Collapse
|
3
|
Schenke KC, Wyer NA, Bach P. The Things You Do: Internal Models of Others' Expected Behaviour Guide Action Observation. PLoS One 2016; 11:e0158910. [PMID: 27434265 PMCID: PMC4951130 DOI: 10.1371/journal.pone.0158910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/23/2016] [Indexed: 11/19/2022] Open
Abstract
Predictions allow humans to manage uncertainties within social interactions. Here, we investigate how explicit and implicit person models-how different people behave in different situations-shape these predictions. In a novel action identification task, participants judged whether actors interacted with or withdrew from objects. In two experiments, we manipulated, unbeknownst to participants, the two actors action likelihoods across situations, such that one actor typically interacted with one object and withdrew from the other, while the other actor showed the opposite behaviour. In Experiment 2, participants additionally received explicit information about the two individuals that either matched or mismatched their actual behaviours. The data revealed direct but dissociable effects of both kinds of person information on action identification. Implicit action likelihoods affected response times, speeding up the identification of typical relative to atypical actions, irrespective of the explicit knowledge about the individual's behaviour. Explicit person knowledge, in contrast, affected error rates, causing participants to respond according to expectations instead of observed behaviour, even when they were aware that the explicit information might not be valid. Together, the data show that internal models of others' behaviour are routinely re-activated during action observation. They provide first evidence of a person-specific social anticipation system, which predicts forthcoming actions from both explicit information and an individuals' prior behaviour in a situation. These data link action observation to recent models of predictive coding in the non-social domain where similar dissociations between implicit effects on stimulus identification and explicit behavioural wagers have been reported.
Collapse
Affiliation(s)
- Kimberley C. Schenke
- School of Psychology, Plymouth University, Drake Circus, Plymouth, Devon, United Kingdom
- * E-mail:
| | - Natalie A. Wyer
- School of Psychology, Plymouth University, Drake Circus, Plymouth, Devon, United Kingdom
| | - Patric Bach
- School of Psychology, Plymouth University, Drake Circus, Plymouth, Devon, United Kingdom
| |
Collapse
|
4
|
Bzdok D, Heeger A, Langner R, Laird AR, Fox PT, Palomero-Gallagher N, Vogt BA, Zilles K, Eickhoff SB. Subspecialization in the human posterior medial cortex. Neuroimage 2014; 106:55-71. [PMID: 25462801 DOI: 10.1016/j.neuroimage.2014.11.009] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/02/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022] Open
Abstract
The posterior medial cortex (PMC) is particularly poorly understood. Its neural activity changes have been related to highly disparate mental processes. We therefore investigated PMC properties with a data-driven exploratory approach. First, we subdivided the PMC by whole-brain coactivation profiles. Second, functional connectivity of the ensuing PMC regions was compared by task-constrained meta-analytic coactivation mapping (MACM) and task-unconstrained resting-state correlations (RSFC). Third, PMC regions were functionally described by forward/reverse functional inference. A precuneal cluster was mostly connected to the intraparietal sulcus, frontal eye fields, and right temporo-parietal junction; associated with attention and motor tasks. A ventral posterior cingulate cortex (PCC) cluster was mostly connected to the ventromedial prefrontal cortex and middle left inferior parietal cortex (IPC); associated with facial appraisal and language tasks. A dorsal PCC cluster was mostly connected to the dorsomedial prefrontal cortex, anterior/posterior IPC, posterior midcingulate cortex, and left dorsolateral prefrontal cortex; associated with delay discounting. A cluster in the retrosplenial cortex was mostly connected to the anterior thalamus and hippocampus. Furthermore, all PMC clusters were congruently coupled with the default mode network according to task-unconstrained but not task-constrained connectivity. We thus identified distinct regions in the PMC and characterized their neural networks and functional implications.
Collapse
Affiliation(s)
- Danilo Bzdok
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Adrian Heeger
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Brent A Vogt
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Cingulum NeuroSciences Institute and Boston University School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|