1
|
Lonare S, Gupta DN, Kaur H, Rode S, Verma S, Gubyad M, Ghosh DK, Kumar P, Sharma AK. Characterization of Cationic Amino Acid Binding Protein from Candidatus Liberibacter Asiaticus and in Silico Study to Identify Potential Inhibitor Molecules. Protein J 2024; 43:967-982. [PMID: 39306651 DOI: 10.1007/s10930-024-10233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
Cationic amino acid binding protein (CLasArgBP), one of the two amino acid binding receptor in Candidatus Liberibacter asiaticus (CLas), is predominately expressed in citrus psyllids as a part of ATP-binding cassette transport system. The present study describes characterization of CLasArgBP by various biophysical techniques and in silico study, to identify potential inhibitor molecules against CLasArgBP through virtual screening and MD simulations. Further, in planta study was carried out to assess the effect of selected inhibitors on Huanglongbing infected Mosambi plants. The results showed that CLasArgBP exhibits pronounced specificity for arginine, histidine and lysine. Surface plasmon resonance (SPR) study reports highest binding affinity for arginine (Kd, 0.14 µM), compared to histidine and lysine (Kd, 15 µΜ and 26 µΜ, respectively). Likewise, Differential Scanning Calorimetry (DSC) study showed higher stability of CLasArgBP for arginine, compared to histidine and lysine. N(omega)-nitro-L-arginine, Gamma-hydroxy-L-arginine and Gigartinine emerged as lead compounds through in silico study displaying higher binding energy and stability compared to arginine. SPR reports elevated binding affinities for N(omega)-nitro-L-arginine and Gamma-hydroxy-L-arginine (Kd, 0.038 µΜ and 0.061 µΜ, respectively) relative to arginine. DSC studies showed enhanced thermal stability for CLasArgBP in complex with selected inhibitors. Circular dichroism and fluorescence studies showed pronounced conformational changes in CLasArgBP with selected inhibitors than with arginine. In planta study demonstrated a substantial decrease in CLas titer in treated plants as compared to control plants. Overall, the study provides the first comprehensive characterization of cationic amino acid binding protein from CLas, as a potential drug target to manage HLB disease.
Collapse
Affiliation(s)
- Sapna Lonare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shalja Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Mrugendra Gubyad
- Plant Virology Laboratory, ICAR Central Citrus Research Institute, Nagpur, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR Central Citrus Research Institute, Nagpur, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
2
|
Izzi G, Paladino A, Oliva R, Barra G, Ruggiero A, Del Vecchio P, Vitagliano L, Graziano G. Destabilization of the D2 domain of Thermotoga maritima arginine binding protein induced by guanidinium thiocyanate and its counteraction by stabilizing agents. Protein Sci 2024; 33:e5146. [PMID: 39150147 PMCID: PMC11328109 DOI: 10.1002/pro.5146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
D2 is a structural and cooperative domain of Thermotoga maritima Arginine Binding Protein, that possesses a remarkable conformational stability, with a denaturation temperature of 102.6°C, at pH 7.4. The addition of potassium thiocyanate causes a significant decrease in the D2 denaturation temperature. The interactions of thiocyanate ions with D2 have been studied by means of isothermal titration calorimetry measurements and molecular dynamics simulations. It emerged that: (a) 20-30 thiocyanate ions interact with the D2 surface and are present in its first solvation shell; (b) each of them makes several contacts with protein groups, both polar and nonpolar ones. The addition of guanidinium thiocyanate causes a marked destabilization of the D2 native state, because both the ions are denaturing agents. However, on adding to the solution containing D2 and guanidinium thiocyanate a stabilizing agent, such as TMAO, sucrose or sodium sulfate, a significant increase in denaturation temperature occurs. The present results confirm that counteraction is a general phenomenon for globular proteins.
Collapse
Affiliation(s)
- Guido Izzi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Giovanni Barra
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | | | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Giuseppe Graziano
- Department of Science and Technology, University of Sannio, via Francesco de Sanctis snc, Benevento, Italy
| |
Collapse
|
3
|
Kramarska E, Toumi E, Squeglia F, Laverde D, Napolitano V, Frapy E, Autiero I, Sadones O, Huebner J, Skurnik D, Romero-Saavedra F, Berisio R. A rationally designed antigen elicits protective antibodies against multiple nosocomial Gram-positive pathogens. NPJ Vaccines 2024; 9:151. [PMID: 39155280 PMCID: PMC11330964 DOI: 10.1038/s41541-024-00940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
ESKAPE pathogens are responsible for complicated nosocomial infections worldwide and are often resistant to commonly used antibiotics in clinical settings. Among ESKAPE, vancomycin-resistant Enterococcus faecium (VREfm) and methicillin-resistant Staphylococcus aureus (MRSA) are two important Gram-positive pathogens for which non-antibiotic alternatives are urgently needed. We previously showed that the lipoprotein AdcA of E. faecium elicits opsonic and protective antibodies against E. faecium and E. faecalis. Prompted by our observation, reported here, that AdcA also elicits opsonic antibodies against MRSA and other clinically relevant Gram-positive pathogens, we identified the dominant epitope responsible for AdcA cross-reactive activity and designed a hyper-thermostable and multi-presenting antigen, Sc(EH)3. We demonstrate that antibodies raised against Sc(EH)3 mediate opsonic killing of a wide-spectrum of Gram-positive pathogens, including VREfm and MRSA, and confer protection both in passive and active immunisation models. Our data indicate that Sc(EH)3 is a promising antigen for the development of vaccines against different Gram-positive pathogens.
Collapse
Affiliation(s)
- Eliza Kramarska
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Eya Toumi
- CNRS, INSERM, Institut Necker-Enfants Malades, U1151-Equipe 11, Faculté de Médecine, University of Paris City, Paris, France
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Diana Laverde
- Division of Paediatric Infectious Disease, Hauner Children's Hospital LMU, LMU, Munich, Germany
| | - Valeria Napolitano
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Eric Frapy
- CNRS, INSERM, Institut Necker-Enfants Malades, U1151-Equipe 11, Faculté de Médecine, University of Paris City, Paris, France
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Oceane Sadones
- Division of Paediatric Infectious Disease, Hauner Children's Hospital LMU, LMU, Munich, Germany
| | - Johannes Huebner
- Division of Paediatric Infectious Disease, Hauner Children's Hospital LMU, LMU, Munich, Germany
| | - David Skurnik
- CNRS, INSERM, Institut Necker-Enfants Malades, U1151-Equipe 11, Faculté de Médecine, University of Paris City, Paris, France.
- Department of Clinical Microbiology, Fédération Hospitalo-Universitaire Prématurité (FHU PREMA), Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris City, Paris, France.
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Felipe Romero-Saavedra
- Division of Paediatric Infectious Disease, Hauner Children's Hospital LMU, LMU, Munich, Germany.
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy.
| |
Collapse
|
4
|
van den Noort M, Drougkas P, Paulino C, Poolman B. The substrate-binding domains of the osmoregulatory ABC importer OpuA transiently interact. eLife 2024; 12:RP90996. [PMID: 38695350 PMCID: PMC11065425 DOI: 10.7554/elife.90996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.
Collapse
Affiliation(s)
- Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Panagiotis Drougkas
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of GroningenGroningenNetherlands
- Biochemistry Center, Heidelberg UniversityHeidelbergGermany
| | - Cristina Paulino
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of GroningenGroningenNetherlands
- Biochemistry Center, Heidelberg UniversityHeidelbergGermany
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of GroningenGroningenNetherlands
| |
Collapse
|
5
|
Ford BA, Ranjit P, Mabbutt BC, Paulsen IT, Shah BS. ProX from marine Synechococcus spp. show a sole preference for glycine-betaine with differential affinity between ecotypes. Environ Microbiol 2022; 24:6071-6085. [PMID: 36054310 PMCID: PMC10087775 DOI: 10.1111/1462-2920.16168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 01/12/2023]
Abstract
Osmotic stress, caused by high or fluctuating salt concentrations, is a crucial abiotic factor affecting microbial growth in aquatic habitats. Many organisms utilize common responses to osmotic stress, generally requiring active extrusion of toxic inorganic ions and accumulation of compatible solutes to protect cellular machinery. We heterologously expressed and purified predicted osmoprotectant, proline/glycine betaine-binding proteins (ProX) from two phylogenetically distinct Synechococcus spp. MITS9220 and WH8102. Homologues of this protein are conserved only among Prochlorococcus LLIV and Synechococcus clade I, III and CRD1 strains. Our biophysical characterization show Synechococcus ProX exists as a dimer, with specificity solely for glycine betaine but not to other osmoprotectants tested. We discovered that MITS9220_ProX has a 10-fold higher affinity to glycine betaine than WH8102_ProX, which is further elevated (24-fold) in high salt conditions. The stronger affinity and effect of ionic strength on MITS9220_ProX glycine betaine binding but not on WH8102_ProX alludes to a novel regulatory mechanism, providing critical functional insights into the phylogenetic divergence of picocyanobacterial ProX proteins that may be necessary for their ecological success.
Collapse
Affiliation(s)
- Benjamin A Ford
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Pramita Ranjit
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | | | - Ian T Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Bhumika S Shah
- School of Natural Sciences, Macquarie University, Sydney, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
6
|
East NJ, Clifton BE, Jackson CJ, Kaczmarski JA. The role of oligomerization in the optimization of cyclohexadienyl dehydratase conformational dynamics and catalytic activity. Protein Sci 2022; 31:e4510. [PMID: 36382881 PMCID: PMC9703590 DOI: 10.1002/pro.4510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 04/19/2025]
Abstract
The emergence of oligomers is common during the evolution and diversification of protein families, yet the selective advantage of oligomerization is often cryptic or unclear. Oligomerization can involve the formation of isologous head-to-head interfaces (e.g., in symmetrical dimers) or heterologous head-to-tail interfaces (e.g., in cyclic complexes), the latter of which is less well studied and understood. In this work, we retrace the emergence of the trimeric form of cyclohexadienyl dehydratase from Pseudomonas aeruginosa (PaCDT) by introducing residues that form the PaCDT trimer-interfaces into AncCDT-5 (a monomeric reconstructed ancestor of PaCDT). We find that single interface mutations can switch the oligomeric state of the variants and that trimerization corresponds with a reduction in the KM value of the enzyme from a promiscuous level to the physiologically relevant range. In addition, we find that removal of a C-terminal extension present in PaCDT leads to a variant with reduced catalytic activity, indicating that the C-terminal region has a role in tuning enzymatic activity. We show that these observations can be rationalized at the structural and dynamic levels, with trimerization and C-terminal extension leading to reduced sampling of non-catalytic conformational substates in molecular dynamics simulations. Overall, this work provides insight into how neutral sampling of distinct oligomeric states along an evolutionary trajectory can facilitate the evolution and optimization of enzyme function.
Collapse
Affiliation(s)
- Nicholas J. East
- ARC Centre of Excellence in Synthetic BiologyAustralian National UniversityCanberraAustralia
- Research School of BiologyAustralian National UniversityActonAustralian Capital TerritoryAustralia
| | - Ben E. Clifton
- Protein Engineering and Evolution UnitOkinawa Institute of Science and TechnologyOkinawaJapan
| | - Colin J. Jackson
- ARC Centre of Excellence in Synthetic BiologyAustralian National UniversityCanberraAustralia
- Research School of BiologyAustralian National UniversityActonAustralian Capital TerritoryAustralia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Research School of ChemistryAustralian National UniversityActonAustralian Capital TerritoryAustralia
| | - Joe A. Kaczmarski
- ARC Centre of Excellence in Synthetic BiologyAustralian National UniversityCanberraAustralia
- Research School of BiologyAustralian National UniversityActonAustralian Capital TerritoryAustralia
| |
Collapse
|
7
|
Santhakumar V, Manuel Mascarenhas N. The role of C-terminal helix in the conformational transition of an arginine binding protein. J Struct Biol X 2022; 6:100071. [PMID: 36035778 PMCID: PMC9402392 DOI: 10.1016/j.yjsbx.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022] Open
Abstract
Probe the role of C-ter. helix (CTH) in conformational transition of TmArgBP. Presence of CTH almost doubles the barrier to access the closed-state. In the absence of CTH, the protein can fluctuate between the two conformations. CTH not only constraints the open-state conformation but also guides in accessing it.
The thermotoga maritima arginine binding protein (TmArgBP) is a periplasmic binding protein that has a short helix at the C-terminal end (CTH), which is swapped between the two chains. We apply a coarse-grained structure-based model (SBM) and all-atom MD simulation on this protein to understand the mechanism and the role of CTH in the conformational transition. When the results of SBM simulations of TmArgBP in the presence and absence of CTH are compared, we find that CTH is strategically located at the back of the binding pocket restraining the open-state conformation thereby disengaging access to the closed-state. We also ran all-atom MD simulations of open-state TmArgBP with and without CTH and discovered that in the absence of CTH the protein could reach the closed-state within 250 ns, while in its presence, the protein remained predominantly in its open-state conformation. In the simulation started from unliganded closed-state conformation without CTH, the protein exhibited multiple transitions between the two states, suggesting CTH as an essential structural element to stabilize the open-state conformation. In another simulation that began with an unliganded closed-state conformation with CTH, the protein was able to access the open-state. In this simulation the CTH was observed to reorient itself to interact with the protein emphasizing its role in assisting the conformational change. Based on our findings, we believe that CTH not only acts as a structural element that constraints the protein in its open-state but it may also guide the protein back to its open-state conformation upon ligand unbinding.
Collapse
|
8
|
Davies JS, Currie MJ, Wright JD, Newton-Vesty MC, North RA, Mace PD, Allison JR, Dobson RCJ. Selective Nutrient Transport in Bacteria: Multicomponent Transporter Systems Reign Supreme. Front Mol Biosci 2021; 8:699222. [PMID: 34268334 PMCID: PMC8276074 DOI: 10.3389/fmolb.2021.699222] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
Multicomponent transporters are used by bacteria to transport a wide range of nutrients. These systems use a substrate-binding protein to bind the nutrient with high affinity and then deliver it to a membrane-bound transporter for uptake. Nutrient uptake pathways are linked to the colonisation potential and pathogenicity of bacteria in humans and may be candidates for antimicrobial targeting. Here we review current research into bacterial multicomponent transport systems, with an emphasis on the interaction at the membrane, as well as new perspectives on the role of lipids and higher oligomers in these complex systems.
Collapse
Affiliation(s)
- James S Davies
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael J Currie
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Joshua D Wright
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael C Newton-Vesty
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Rachel A North
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jane R Allison
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, Digital Life Institute, University of Auckland, Auckland, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Kaczmarski JA, Mahawaththa MC, Feintuch A, Clifton BE, Adams LA, Goldfarb D, Otting G, Jackson CJ. Altered conformational sampling along an evolutionary trajectory changes the catalytic activity of an enzyme. Nat Commun 2020; 11:5945. [PMID: 33230119 PMCID: PMC7683729 DOI: 10.1038/s41467-020-19695-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Several enzymes are known to have evolved from non-catalytic proteins such as solute-binding proteins (SBPs). Although attention has been focused on how a binding site can evolve to become catalytic, an equally important question is: how do the structural dynamics of a binding protein change as it becomes an efficient enzyme? Here we performed a variety of experiments, including propargyl-DO3A-Gd(III) tagging and double electron-electron resonance (DEER) to study the rigid body protein dynamics of reconstructed evolutionary intermediates to determine how the conformational sampling of a protein changes along an evolutionary trajectory linking an arginine SBP to a cyclohexadienyl dehydratase (CDT). We observed that primitive dehydratases predominantly populate catalytically unproductive conformations that are vestiges of their ancestral SBP function. Non-productive conformational states, including a wide-open state, are frozen out of the conformational landscape via remote mutations, eventually leading to extant CDT that exclusively samples catalytically relevant compact states. These results show that remote mutations can reshape the global conformational landscape of an enzyme as a mechanism for increasing catalytic activity.
Collapse
Affiliation(s)
- Joe A Kaczmarski
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Mithun C Mahawaththa
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Akiva Feintuch
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ben E Clifton
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia.,Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0412, Japan
| | - Luke A Adams
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Gottfried Otting
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia. .,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia.
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia. .,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia. .,Australian Research Council Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia.
| |
Collapse
|
10
|
Guanidinium binding to proteins: The intriguing effects on the D1 and D2 domains of Thermotoga maritima Arginine Binding Protein and a comprehensive analysis of the Protein Data Bank. Int J Biol Macromol 2020; 163:375-385. [PMID: 32629051 DOI: 10.1016/j.ijbiomac.2020.06.290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Thermotoga maritima Arginine Binding Protein has been extensively characterized because of its peculiar features and its possible use as a biosensor. In this characterization, deletion of the C-terminal helix to obtain the monomeric protein TmArgBP20-233 and dissection of the monomer in its two domains, D1 and D2, have been performed. In the present study the stability of these three forms against guanidinium chloride is investigated by means of circular dichroism and differential scanning calorimetry measurements. All three proteins show a high conformational stability; moreover, D1 shows an unusual behavior in the presence of low concentrations of guanidinium chloride. This finding has led us to investigate a possible binding interaction by means of isothermal titration calorimetry and X-ray crystallography; the results indicate that D1 is able to bind the guanidinium ion (GuH+), due to its similarity with the arginine terminal moiety. The analysis of the structural and dynamic properties of the D1-GuH+ complex indicates that the protein binds the ligand through multiple and diversified interactions. An exhaustive survey of the binding modes of GuH+ to proteins indicates that this is a rather common feature. These observations provide interesting insights into the effects that GuH+ is able to induce in protein structures.
Collapse
|
11
|
Smaldone G, Ruggiero A, Balasco N, Vitagliano L. Development of a Protein Scaffold for Arginine Sensing Generated through the Dissection of the Arginine-Binding Protein from Thermotoga maritima. Int J Mol Sci 2020; 21:ijms21207503. [PMID: 33053818 PMCID: PMC7589609 DOI: 10.3390/ijms21207503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Arginine is one of the most important nutrients of living organisms as it plays a major role in important biological pathways. However, the accumulation of arginine as consequence of metabolic defects causes hyperargininemia, an autosomal recessive disorder. Therefore, the efficient detection of the arginine is a field of relevant biomedical/biotechnological interest. Here, we developed protein variants suitable for arginine sensing by mutating and dissecting the multimeric and multidomain structure of Thermotoga maritima arginine-binding protein (TmArgBP). Indeed, previous studies have shown that TmArgBP domain-swapped structure can be manipulated to generate simplified monomeric and single domain scaffolds. On both these stable scaffolds, to measure tryptophan fluorescence variations associated with the arginine binding, a Phe residue of the ligand binding pocket was mutated to Trp. Upon arginine binding, both mutants displayed a clear variation of the Trp fluorescence. Notably, the single domain scaffold variant exhibited a good affinity (~3 µM) for the ligand. Moreover, the arginine binding to this variant could be easily reverted under very mild conditions. Atomic-level data on the recognition process between the scaffold and the arginine were obtained through the determination of the crystal structure of the adduct. Collectively, present data indicate that TmArgBP scaffolds represent promising candidates for developing arginine biosensors.
Collapse
Affiliation(s)
- Giovanni Smaldone
- IRCCS SDN, Via Emanuele Gianturco, 113 80143 Naples, Italy
- Correspondence: (G.S.); (A.R.)
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16. I-80134 Naples, Italy; (N.B.); (L.V.)
- Correspondence: (G.S.); (A.R.)
| | - Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16. I-80134 Naples, Italy; (N.B.); (L.V.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16. I-80134 Naples, Italy; (N.B.); (L.V.)
| |
Collapse
|
12
|
Leveraging nature's biomolecular designs in next-generation protein sequencing reagent development. Appl Microbiol Biotechnol 2020; 104:7261-7271. [PMID: 32617618 DOI: 10.1007/s00253-020-10745-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 01/18/2023]
Abstract
Next-generation approaches for protein sequencing are now emerging that could have the potential to revolutionize the field in proteomics. One such sequencing method involves fluorescence-based imaging of immobilized peptides in which the N-terminal amino acid of a polypeptide is readout sequentially by a series of fluorescently labeled biomolecules. When selectively bound to a specific N-terminal amino acid, the NAAB (N-terminal amino acid binder) affinity reagent identifies the amino acid through its associated fluorescence tag. A key technical challenge in implementing this fluoro-sequencing approach is the need to develop NAAB affinity reagents with the high affinity and selectivity for specific N-terminal amino acids required for this biotechnology application. One approach to develop such a NAAB affinity reagent is to leverage naturally occurring biomolecules that bind amino acids and/or peptides. Here, we describe several candidate biomolecules that could be considered for this purpose and discuss the potential for developability of each. Key points • Next-generation sequencing methods are emerging that could revolutionize proteomics. • Sequential readout of N-terminal amino acids by fluorescent-tagged affinity reagents. • Native peptide/amino acid binders can be engineered into affinity reagents. • Protein size and structure contribute to feasibility of reagent developability.
Collapse
|
13
|
Jaworek MW, Ruggiero A, Graziano G, Winter R, Vitagliano L. On the extraordinary pressure stability of the Thermotoga maritima arginine binding protein and its folded fragments - a high-pressure FTIR spectroscopy study. Phys Chem Chem Phys 2020; 22:11244-11248. [PMID: 32400824 DOI: 10.1039/d0cp01618g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The arginine binding protein from T. maritima (ArgBP) exhibits several distinctive biophysical and structural properties. Here we show that ArgBP is also endowed with a ramarkable pressure stability as it undergoes minor structural changes only, even at 10 kbar. A similar stability is also observed for its folded fragments (truncated monomer and individual domains). A survey of literature data on the pressure stability of proteins highlights the uncommon behavior of ArgBP.
Collapse
Affiliation(s)
- Michel W Jaworek
- Faculty of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn Str. 4a, D-44227 Dortmund, Germany.
| | | | | | | | | |
Collapse
|
14
|
Kumar P, Dalal V, Kokane A, Singh S, Lonare S, Kaur H, Ghosh DK, Kumar P, Sharma AK. Mutation studies and structure-based identification of potential inhibitor molecules against periplasmic amino acid binding protein of Candidatus Liberibacter asiaticus (CLasTcyA). Int J Biol Macromol 2020; 147:1228-1238. [DOI: 10.1016/j.ijbiomac.2019.09.250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022]
|
15
|
Smaldone G, Ruggiero A, Balasco N, Abuhammad A, Autiero I, Caruso D, Esposito D, Ferraro G, Gelardi ELM, Moreira M, Quareshy M, Romano M, Saaret A, Selvam I, Squeglia F, Troisi R, Kroon-Batenburg LMJ, Esposito L, Berisio R, Vitagliano L. The non-swapped monomeric structure of the arginine-binding protein from Thermotoga maritima. Acta Crystallogr F Struct Biol Commun 2019; 75:707-713. [PMID: 31702584 PMCID: PMC6839819 DOI: 10.1107/s2053230x1901464x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023] Open
Abstract
Domain swapping is a widespread oligomerization process that is observed in a large variety of protein families. In the large superfamily of substrate-binding proteins, non-monomeric members have rarely been reported. The arginine-binding protein from Thermotoga maritima (TmArgBP), a protein endowed with a number of unusual properties, presents a domain-swapped structure in its dimeric native state in which the two polypeptide chains mutually exchange their C-terminal helices. It has previously been shown that mutations in the region connecting the last two helices of the TmArgBP structure lead to the formation of a variety of oligomeric states (monomers, dimers, trimers and larger aggregates). With the aim of defining the structural determinants of domain swapping in TmArgBP, the monomeric form of the P235GK mutant has been structurally characterized. Analysis of this arginine-bound structure indicates that it consists of a closed monomer with its C-terminal helix folded against the rest of the protein, as typically observed for substrate-binding proteins. Notably, the two terminal helices are joined by a single nonhelical residue (Gly235). Collectively, the present findings indicate that extending the hinge region and conferring it with more conformational freedom makes the formation of a closed TmArgBP monomer possible. On the other hand, the short connection between the helices may explain the tendency of the protein to also adopt alternative oligomeric states (dimers, trimers and larger aggregates). The data reported here highlight the importance of evolutionary control to avoid the uncontrolled formation of heterogeneous and potentially harmful oligomeric species through domain swapping.
Collapse
Affiliation(s)
- Giovanni Smaldone
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- IRCCS SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Alessia Ruggiero
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Nicole Balasco
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Areej Abuhammad
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Ida Autiero
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Daniela Caruso
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Università degli Studi della Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Davide Esposito
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Giarita Ferraro
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | | | - Miguel Moreira
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Mussa Quareshy
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | - Maria Romano
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | - Annica Saaret
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | - Irwin Selvam
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | - Flavia Squeglia
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Romualdo Troisi
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
| | - Loes M. J. Kroon-Batenburg
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Crystal and Structural Chemistry, Utrecht University, Padualaan 8, Utrecht, The Netherlands
| | - Luciana Esposito
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Rita Berisio
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Luigi Vitagliano
- AIC School Crystallographic Information Fiesta 2019, Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| |
Collapse
|
16
|
Kumar P, Kesari P, Kokane S, Ghosh DK, Kumar P, Sharma AK. Crystal structures of a putative periplasmic cystine-binding protein from Candidatus Liberibacter asiaticus: insights into an adapted mechanism of ligand binding. FEBS J 2019; 286:3450-3472. [PMID: 31063259 DOI: 10.1111/febs.14921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/20/2019] [Accepted: 05/03/2019] [Indexed: 11/28/2022]
Abstract
The amino acid-binding receptors, a component of ABC transporters, have evolved to cater to different specificities and functions. Of particular interest are cystine-binding receptors, which have shown broad specificity. In the present study, a putative periplasmic cystine-binding protein from Candidatus Liberibacter asiaticus (CLasTcyA) was characterized. Analysis of the CLasTcyA sequence and crystal structures in the ligand-bound state revealed novel features of CLasTcyA in comparison to related proteins. One of the unique features found in CLasTcyA structure was the positioning of the C-terminal extended loop of one chain very close to the substrate-binding site of the adjacent monomer in the asymmetric unit. The presence of a disulphide bond, unique to Candidatus Liberibacter family, holds the C-terminal extended loop in position. Analysis of the substrate-binding pocket of CLasTcyA suggested a broad specificity and a completely different orientation of the bound substrates in comparison to related protein structures. The open conformation for one of the two chains of the asymmetric unit in the Arg-bound structure revealed a limited open state (18.4°) for CLasTcyA as compared to open state of other related proteins (~ 60°). The strong interaction between Asp126 on helix-α5 of small domain and Arg82 (bigger domain) restricts the degree of opening in ligand-free open state. The dissociation constant of 1.26 μm by SPR and 3.7 μm by MST exhibited low affinity for the cystine. This is the first structural characterization of an l-cystine ABC transporter from plant pathogen and our results suggest that CLasTcyA may have evolved to cater to its specific needs for its survival in the host.
Collapse
Affiliation(s)
- Pranav Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Pooja Kesari
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Sunil Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | | |
Collapse
|
17
|
Balasco N, Smaldone G, Vigorita M, Del Vecchio P, Graziano G, Ruggiero A, Vitagliano L. The characterization of Thermotoga maritima Arginine Binding Protein variants demonstrates that minimal local strains have an important impact on protein stability. Sci Rep 2019; 9:6617. [PMID: 31036855 PMCID: PMC6488590 DOI: 10.1038/s41598-019-43157-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
The Ramachandran plot is a versatile and valuable tool that provides fundamental information for protein structure determination, prediction, and validation. The structural/thermodynamic effects produced by forcing a residue to adopt a conformation predicted to be forbidden were here explored using Thermotoga maritima Arginine Binding Protein (TmArgBP) as model. Specifically, we mutated TmArgBP Gly52 that assumes a conformation believed to be strictly disallowed for non-Gly residues. Surprisingly, the crystallographic characterization of Gly52Ala TmArgBP indicates that the structural context forces the residue to adopt a non-canonical conformation never observed in any of the high-medium resolution PDB structures. Interestingly, the inspection of this high resolution structure demonstrates that only minor alterations occur. Nevertheless, experiments indicate that Gly52 replacements in TmArgBP produce destabilizations comparable to those observed upon protein truncation or dissection in domains. Notably, we show that force-fields commonly used in computational biology do not reproduce this non-canonical state. Using TmArgBP as model system we here demonstrate that the structural context may force residues to adopt conformations believed to be strictly forbidden and that barely detectable alterations produce major destabilizations. Present findings highlight the role of subtle strains in governing protein stability. A full understanding of these phenomena is essential for an exhaustive comprehension of the factors regulating protein structures.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, Italy
| | | | - Marilisa Vigorita
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, Benevento, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, Napoli, Italy
| | - Giuseppe Graziano
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, Benevento, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, Italy.
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, Italy.
| |
Collapse
|
18
|
Esposito L, Donnarumma F, Ruggiero A, Leone S, Vitagliano L, Picone D. Structure, stability and aggregation propensity of a Ribonuclease A-Onconase chimera. Int J Biol Macromol 2019; 133:1125-1133. [PMID: 31026530 DOI: 10.1016/j.ijbiomac.2019.04.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 01/05/2023]
Abstract
Structural roles of loop regions are frequently overlooked in proteins. Nevertheless, they may be key players in the definition of protein topology and in the self-assembly processes occurring through domain swapping. We here investigate the effects on structure and stability of replacing the loop connecting the last two β-strands of RNase A with the corresponding region of the more thermostable Onconase. The crystal structure of this chimeric variant (RNaseA-ONC) shows that its terminal loop size better adheres to the topological rules for the design of stabilized proteins, proposed by Baker and coworkers [43]. Indeed, RNaseA-ONC displays a thermal stability close to that of RNase A, despite the lack of Pro at position 114, which, due to its propensity to favor a cis peptide bond, has been identified as an important stabilizing factor of the native protein. Accordingly, RNaseA-ONC is significantly more stable than RNase A variants lacking Pro114; RNaseA-ONC also displays a higher propensity to form oligomers in native conditions when compared to either RNase A or Onconase. This finding demonstrates that modifications of terminal loops should to be carefully controlled in terms of size and sequence to avoid unwanted and/or potentially harmful aggregation processes.
Collapse
Affiliation(s)
- Luciana Esposito
- CNR Istituto di Biostrutture e Bioimmagini, Via Mezzocannone 16, I-80134 Napoli, Italy.
| | - Federica Donnarumma
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Via Cintia, I-80126 Napoli, Italy
| | - Alessia Ruggiero
- CNR Istituto di Biostrutture e Bioimmagini, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Serena Leone
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Via Cintia, I-80126 Napoli, Italy
| | - Luigi Vitagliano
- CNR Istituto di Biostrutture e Bioimmagini, Via Mezzocannone 16, I-80134 Napoli, Italy.
| | - Delia Picone
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Via Cintia, I-80126 Napoli, Italy.
| |
Collapse
|
19
|
Deka RK, Liu WZ, Tso SC, Norgard MV, Brautigam CA. Biophysical insights into a highly selective l-arginine-binding lipoprotein of a pathogenic treponeme. Protein Sci 2018; 27:2037-2050. [PMID: 30242931 DOI: 10.1002/pro.3510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 11/11/2022]
Abstract
Biophysical and biochemical studies on the lipoproteins and other periplasmic proteins from the spirochetal species Treponema pallidum have yielded numerous insights into the functioning of the organism's peculiar membrane organization, its nutritional requirements, and intermediary metabolism. However, not all T. pallidum proteins have proven to be amenable to biophysical studies. One such recalcitrant protein is Tp0309, a putative polar-amino-acid-binding protein of an ABC transporter system. To gain further information on its possible function, a homolog of the protein from the related species T. vincentii was used as a surrogate. This protein, Tv2483, was crystallized, resulting in the determination of its crystal structure at a resolution of 1.75 Å. The protein has a typical fold for a ligand-binding protein, and a single molecule of l-arginine was bound between its two lobes. Differential scanning fluorimetry and isothermal titration calorimetry experiments confirmed that l-arginine bound to the protein with unusually high selectivity. However, further comparison to Tp0309 showed differences in key amino-acid-binding residues may impart an alternate specificity for the T. pallidum protein.
Collapse
Affiliation(s)
- Ranjit K Deka
- Departments of Microbiology, 5323 Harry Hines Blvd., Dallas, Texas, 75390
| | - Wei Z Liu
- Departments of Microbiology, 5323 Harry Hines Blvd., Dallas, Texas, 75390
| | - Shih-Chia Tso
- Departments of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, 75390
| | - Michael V Norgard
- Departments of Microbiology, 5323 Harry Hines Blvd., Dallas, Texas, 75390
| | - Chad A Brautigam
- Departments of Microbiology, 5323 Harry Hines Blvd., Dallas, Texas, 75390.,Departments of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, 75390
| |
Collapse
|
20
|
Smaldone G, Balasco N, Vigorita M, Ruggiero A, Cozzolino S, Berisio R, Del Vecchio P, Graziano G, Vitagliano L. Domain communication in Thermotoga maritima Arginine Binding Protein unraveled through protein dissection. Int J Biol Macromol 2018; 119:758-769. [PMID: 30059738 DOI: 10.1016/j.ijbiomac.2018.07.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022]
Abstract
Substrate binding proteins represent a large protein family that plays fundamental roles in selective transportation of metabolites across membrane. The function of these proteins relies on the relative motions of their two domains. Insights into domain communication in this class of proteins have been here collected using Thermotoga maritima Arginine Binding Protein (TmArgBP) as model system. TmArgBP was dissected into two domains (D1 and D2) that were exhaustively characterized using a repertoire of different experimental and computational techniques. Indeed, stability, crystalline structure, ability to recognize the arginine substrate, and dynamics of the two individual domains have been here studied. Present data demonstrate that, although in the parent protein both D1 and D2 cooperate for the arginine anchoring; only D1 is intrinsically able to bind the substrate. The implications of this finding on the mechanism of arginine binding and release by TmArgBP have been discussed. Interestingly, both D1 and D2 retain the remarkable thermal/chemical stability of the parent protein. The analysis of the structural and dynamic properties of TmArgBP and of the individual domains highlights possible routes of domain communication. Finally, this study generated two interesting molecular tools, the two stable isolated domains that could be used in future investigations.
Collapse
Affiliation(s)
| | - Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Marilisa Vigorita
- Department of Sciences and Technologies, Università del Sannio, via Port'arsa 11, 82100 Benevento, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Serena Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126 Napoli, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126 Napoli, Italy
| | - Giuseppe Graziano
- Department of Sciences and Technologies, Università del Sannio, via Port'arsa 11, 82100 Benevento, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Napoli, Italy.
| |
Collapse
|
21
|
Balasco N, Smaldone G, Ruggiero A, De Simone A, Vitagliano L. Local structural motifs in proteins: Detection and characterization of fragments inserted in helices. Int J Biol Macromol 2018; 118:1924-1930. [PMID: 30017977 DOI: 10.1016/j.ijbiomac.2018.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 11/26/2022]
Abstract
The global/local fold of protein structures is stabilized by a variety of specific interactions. A primary role in this context is played by hydrogen bonds. In order to identify novel motifs in proteins, we searched Protein Data Bank structures looking for backbone H-bonds formed by NH groups of two (or more) consecutive residues with consecutive CO groups of distant residues in the sequence. The present analysis unravels the occurrence of recurrent structural motifs that, to the best of our knowledge, had not been characterized in literature. Indeed, these H-bonding patterns are found (i) in a specific parallel β-sheet capping, (ii) in linking of β-hairpins to α-helices, and (iii) in α-helix insertions. Interestingly, structural analyses of these motifs indicate that Gly residues frequently occupy prominent positions. The formation of these motifs is likely favored by the limited propensity of Gly to be embodied in helices/sheets. Of particular interest is the motif corresponding to insertions in helices that was detected in 1% of analyzed structures. Inserted fragments may assume different structures and aminoacid compositions and usually display diversified evolutionary conservation. Since inserted regions are physically separated from the rest of the protein structure, they represent hot spots for ad-hoc protein functionalization.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy.
| | | | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College South Kensington Campus, London SW7 2AZ, UK
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy.
| |
Collapse
|
22
|
Domain swapping dissection in Thermotoga maritima arginine binding protein: How structural flexibility may compensate destabilization. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:952-962. [PMID: 29860047 DOI: 10.1016/j.bbapap.2018.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/11/2018] [Accepted: 05/28/2018] [Indexed: 11/21/2022]
Abstract
Thermotoga maritima Arginine Binding Protein (TmArgBP) is a valuable candidate for arginine biosensing in diagnostics. This protein is endowed with unusual structural properties that include an extraordinary thermal/chemical stability, a domain swapped structure that undergoes large tertiary and quaternary structural transition, and the ability to form non-canonical oligomeric species. As the intrinsic stability of TmArgBP allows for extensive protein manipulations, we here dissected its structure in two parts: its main body deprived of the swapping fragment (TmArgBP20-233) and the C-terminal peptide corresponding to the helical swapping element. Both elements have been characterized independently or in combination using a repertoire of biophysical/structural techniques. Present investigations clearly indicate that TmArgBP20-233 represents a better scaffold for arginine sensing compared to the wild-type protein. Moreover, our data demonstrate that the ligand-free and the ligand-bound forms respond very differently to this helix deletion. This drastic perturbation has an important impact on the ligand-bound form of TmArgBP20-233 stability whereas it barely affects its ligand-free state. The crystallographic structures of these forms provide a rationale to this puzzling observation. Indeed, the arginine-bound state is very rigid and virtually unchanged upon protein truncation. On the other hand, the flexible ligand-free TmArgBP20-233 is able to adopt a novel state as a consequence of the helix deletion. Therefore, the flexibility of the ligand-free form endows this state with a remarkable robustness upon severe perturbations. In this scenario, TmArgBP dissection highlights an intriguing connection between destabilizing/stabilizing effects and the overall flexibility that could operate also in other proteins.
Collapse
|
23
|
Crystallisation and Preliminary Crystallographic Analysis of Helicobacter pylori Periplasmic Binding Protein YckK. CRYSTALS 2017. [DOI: 10.3390/cryst7110330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Structural and Functional Analysis of the Escherichia coli Acid-Sensing Histidine Kinase EvgS. J Bacteriol 2017; 199:JB.00310-17. [PMID: 28674068 PMCID: PMC5573083 DOI: 10.1128/jb.00310-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/19/2017] [Indexed: 01/31/2023] Open
Abstract
The EvgS/EvgA two-component system of Escherichia coli is activated in response to low pH and alkali metals and regulates many genes, including those for the glutamate-dependent acid resistance system and a number of efflux pumps. EvgS, the sensor kinase, is one of five unconventional histidine kinases (HKs) in E. coli and has a large periplasmic domain and a cytoplasmic PAS domain in addition to phospho-acceptor, HK and dimerization, internal receiver, and phosphotransfer domains. Mutations that constitutively activate the protein at pH 7 map to the PAS domain. Here, we built a homology model of the periplasmic region of EvgS, based on the structure of the equivalent region of the BvgS homologue, to guide mutagenesis of potential key residues in this region. We show that histidine 226 is required for induction and that it is structurally colocated with a proline residue (P522) at the top of the predicted transmembrane helix that is expected to play a key role in passing information to the cytoplasmic domains. We also show that the constitutive mutations in the PAS domain can be further activated by low external pH. Expression of the cytoplasmic part of the protein alone also gives constitutive activation, which is lost if the constitutive PAS mutations are present. These findings are consistent with a model in which EvgS senses both external and internal pH and is activated by a shift from a tight inactive to a weak active dimer, and we present an analysis of the purified cytoplasmic portion of EvgS that supports this. IMPORTANCE One of the ways bacteria sense their environment is through two-component systems, which have one membrane-bound protein to do the sensing and another inside the cell to turn genes on or off in response to what the membrane-bound protein has detected. The membrane-bound protein must thus be able to detect the stress and signal this detection event to the protein inside the cell. To understand this process, we studied a protein that helps E. coli to survive exposure to low pH, which it must do before taking up residence in the gastrointestinal tract. We describe a predicted structure for the main sensing part of the protein and identify some key residues within it that are involved in the sensing and signaling processes. We propose a mechanism for how the protein may become activated and present some evidence to support our proposal.
Collapse
|
25
|
Donaldson T, Iozzino L, Deacon LJ, Billones H, Ausili A, D'Auria S, Dattelbaum JD. Engineering a switch-based biosensor for arginine using a Thermotoga maritima periplasmic binding protein. Anal Biochem 2017; 525:60-66. [PMID: 28259516 DOI: 10.1016/j.ab.2017.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 11/26/2022]
Abstract
The Thermotoga maritima arginine-binding protein (TmArgBP) has been modified to create a reagentless fluorescent protein biosensor. Two design methods for biosensor construction are compared: 1) solvent accessibility of environmentally-sensitive probes and 2) fluorescence deactivation due to photo-induced electron transfer (PET). Nine single cysteine TmArgBP mutants were created and labeled with three different environmentally sensitive fluorescent probes. These mutants demonstrated limited changes in fluorescence emission upon the addition of arginine. In contrast, the PET-based biosensor provides significant enhancements over the traditional approach and provides a fluorescence quenching mechanism that was capable of providing quantitative detection of arginine. Site-directed mutagenesis of TmArgBP was used to create attachment points for the fluorescent probe (K145C) and for an internal aromatic residue (D18X) to serve as the PET quencher. Both tyrosine and tryptophan, but not phenylalanine, were able to quench the emission of the fluorescent probe by more than 80% upon the addition of arginine. The dissociation constant for arginine ranged from 0.87 to 1.5 μM across the different sensors. This PET-based strategy provides a simple and broadly applicable approach for the analytical detection of small molecules that may be applied to any protein that exhibits conformational switching in a ligand dependent manner.
Collapse
Affiliation(s)
- Teraya Donaldson
- Department of Chemistry, University of Richmond, Richmond, VA, 23173, USA
| | - Luisa Iozzino
- Department of Chemistry, University of Richmond, Richmond, VA, 23173, USA; Laboratory for Molecular Sensing, ISA-CNR, Via Roma 64, 83100 Avellino, Italy
| | - Lindsay J Deacon
- Department of Chemistry, University of Richmond, Richmond, VA, 23173, USA
| | - Hilbert Billones
- Department of Chemistry, University of Richmond, Richmond, VA, 23173, USA
| | - Alessio Ausili
- Laboratory for Molecular Sensing, ISA-CNR, Via Roma 64, 83100 Avellino, Italy
| | - Sabato D'Auria
- Laboratory for Molecular Sensing, ISA-CNR, Via Roma 64, 83100 Avellino, Italy
| | | |
Collapse
|
26
|
Domínguez-Gil T, Lee M, Acebrón-Avalos I, Mahasenan KV, Hesek D, Dik DA, Byun B, Lastochkin E, Fisher JF, Mobashery S, Hermoso JA. Activation by Allostery in Cell-Wall Remodeling by a Modular Membrane-Bound Lytic Transglycosylase from Pseudomonas aeruginosa. Structure 2016; 24:1729-1741. [PMID: 27618662 DOI: 10.1016/j.str.2016.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 11/19/2022]
Abstract
Bacteria grow and divide without loss of cellular integrity. This accomplishment is notable, as a key component of their cell envelope is a surrounding glycopeptide polymer. In Gram-negative bacteria this polymer-the peptidoglycan-grows by the difference between concurrent synthesis and degradation. The regulation of the enzymatic ensemble for these activities is poorly understood. We report herein the structural basis for the control of one such enzyme, the lytic transglycosylase MltF of Pseudomonas aeruginosa. Its structure comprises two modules: an ABC-transporter-like regulatory module and a catalytic module. Occupancy of the regulatory module by peptidoglycan-derived muropeptides effects a dramatic and long-distance (40 Å) conformational change, occurring over the entire protein structure, to open its active site for catalysis. This discovery of the molecular basis for the allosteric control of MltF catalysis is foundational to further study of MltF within the complex enzymatic orchestration of the dynamic peptidoglycan.
Collapse
Affiliation(s)
- Teresa Domínguez-Gil
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Iván Acebrón-Avalos
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Kiran V Mahasenan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - David A Dik
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Byungjin Byun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elena Lastochkin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Juan A Hermoso
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain.
| |
Collapse
|
27
|
Smaldone G, Vigorita M, Ruggiero A, Balasco N, Dattelbaum JD, D'Auria S, Del Vecchio P, Graziano G, Vitagliano L. Proline 235 plays a key role in the regulation of the oligomeric states of Thermotoga maritima Arginine Binding Protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:814-24. [PMID: 27087545 DOI: 10.1016/j.bbapap.2016.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 10/22/2022]
Abstract
The Arginine Binding Protein isolated from Thermotoga maritima (TmArgBP) is a protein endowed with several peculiar properties. We have previously shown that TmArgBP dimerization is a consequence of the swapping of the C-terminal helix. Here we explored the structural determinants of TmArgBP domain swapping and oligomerization. In particular, we report a mutational analysis of the residue Pro235, which is located in the hinge region of the swapping dimer. This residue was either replaced with a Gly-Lys dipeptide (TmArgBP(P235GK)) or a Gly residue (TmArgBP(P235G)). Different forms of these mutants were generated and extensively characterized using biophysical techniques. For both TmArgBP(P235GK) and TmArgBP(P235G) mutants, the occurrence of multiple oligomerization states (monomers, dimers and trimers) was detected. The formation of well-folded monomeric forms for these mutants indicates that the dimerization through C-terminal domain swapping observed in wild-type TmArgBP is driven by conformational restraints imposed by the presence of Pro235 in the hinge region. Molecular dynamics studies corroborate this observation by showing that Gly235 assumes conformational states forbidden for Pro residues in the TmArgBP(P235G) monomer. Unexpectedly, the trimeric forms present: (a) peculiar circular dichroism spectra, (b) a great susceptibility to heating, and (c) the ability to bind the Thioflavin T dye. The present findings clearly demonstrate that single-point mutations have an important impact on the TmArgBP oligomerization process. In a wider context, they also indicate that proteins endowed with an intrinsic propensity to swap have an easy access to states with altered structural and, possibly, functional properties.
Collapse
Affiliation(s)
| | - Marilisa Vigorita
- Department of Sciences and Technologies, Università del Sannio, Via Port'arsa 11, Benevento 82100, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy; DiSTABiF, Second University of Naples, Caserta 81100, Italy
| | | | - Sabato D'Auria
- Institute of Food Science, CNR, Via Roma, 64, Avellino, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Napoli, Italy
| | - Giuseppe Graziano
- Department of Sciences and Technologies, Università del Sannio, Via Port'arsa 11, Benevento 82100, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy.
| |
Collapse
|
28
|
Ruggiero A, Squeglia F, Romano M, Vitagliano L, De Simone A, Berisio R. The structure of Resuscitation promoting factor B from M. tuberculosis reveals unexpected ubiquitin-like domains. Biochim Biophys Acta Gen Subj 2015; 1860:445-51. [PMID: 26549874 DOI: 10.1016/j.bbagen.2015.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/26/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND RpfB is a key factor in resuscitation from dormancy of Mycobacterium tuberculosis. This protein is a cell-wall glycosidase, which cleaves cell-wall peptidoglycan. RpfB is structurally complex and is composed of three types of domains, including a catalytic, a G5 and three DUF348 domains. Structural information is currently limited to a portion of the protein including only the catalytic and G5 domains. To gain insights into the structure and function of all domains we have undertaken structural investigations on a large protein fragment containing all three types of domains that constitute RpfB (RpfB3D). METHODS The structural features of RpfB3D have been investigated combining x-ray crystallography and biophysical studies. RESULTS AND CONCLUSIONS The crystal structure of RpfB3D provides the first structural characterization of a DUF348 domain and revealed an unexpected structural relationship with ubiquitin. The crystal structure also provides specific structural features of these domains explaining their frequent association with G5 domains. GENERAL SIGNIFICANCE Results provided novel insights into the mechanism of peptidoglycan degradation necessary to the resuscitation of M. tuberculosis. Features of the DUF348 domain add structural data to a large set of proteins embedding this domain. Based on its structural similarity to ubiquitin and frequent association to the G5 domain, we propose to name this domain as G5-linked-Ubiquitin-like domain, UBLG5.
Collapse
Affiliation(s)
- Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, Napoli, Italy
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, Napoli, Italy
| | - Maria Romano
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, Napoli, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, Napoli, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College London, SW7 2AZ, UK
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, Napoli, Italy.
| |
Collapse
|
29
|
Whitfield JH, Zhang WH, Herde MK, Clifton BE, Radziejewski J, Janovjak H, Henneberger C, Jackson CJ. Construction of a robust and sensitive arginine biosensor through ancestral protein reconstruction. Protein Sci 2015; 24:1412-22. [PMID: 26061224 DOI: 10.1002/pro.2721] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/05/2015] [Indexed: 11/09/2022]
Abstract
Biosensors for signaling molecules allow the study of physiological processes by bringing together the fields of protein engineering, fluorescence imaging, and cell biology. Construction of genetically encoded biosensors generally relies on the availability of a binding "core" that is both specific and stable, which can then be combined with fluorescent molecules to create a sensor. However, binding proteins with the desired properties are often not available in nature and substantial improvement to sensors can be required, particularly with regard to their durability. Ancestral protein reconstruction is a powerful protein-engineering tool able to generate highly stable and functional proteins. In this work, we sought to establish the utility of ancestral protein reconstruction to biosensor development, beginning with the construction of an l-arginine biosensor. l-arginine, as the immediate precursor to nitric oxide, is an important molecule in many physiological contexts including brain function. Using a combination of ancestral reconstruction and circular permutation, we constructed a Förster resonance energy transfer (FRET) biosensor for l-arginine (cpFLIPR). cpFLIPR displays high sensitivity and specificity, with a Kd of ∼14 µM and a maximal dynamic range of 35%. Importantly, cpFLIPR was highly robust, enabling accurate l-arginine measurement at physiological temperatures. We established that cpFLIPR is compatible with two-photon excitation fluorescence microscopy and report l-arginine concentrations in brain tissue.
Collapse
Affiliation(s)
- Jason H Whitfield
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - William H Zhang
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Michel K Herde
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Ben E Clifton
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Johanna Radziejewski
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Harald Janovjak
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.,Institute of Neurology, University College London, London, United Kingdom
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australia
| |
Collapse
|
30
|
Lipska AG, Sieradzan AK, Krupa P, Mozolewska MA, D’Auria S, Liwo A. Studies of conformational changes of an arginine-binding protein from Thermotoga maritima in the presence and absence of ligand via molecular dynamics simulations with the coarse-grained UNRES force field. J Mol Model 2015; 21:64. [DOI: 10.1007/s00894-015-2609-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/08/2015] [Indexed: 11/30/2022]
|