1
|
Adamik B, Frostell C, Dragan B, Paslawska U, Zielinski S, Paslawski R, Janiszewski A, Zielinska M, Ryniak S, Albert J, Gozdzik W. Abnormalities of Coagulation and Fibrinolysis Assessed by Thromboelastometry in an Endotoxic Shock Model in Piglets Treated with Nitric Oxide and Hydrocortisone. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0011. [PMID: 38847555 DOI: 10.2478/aite-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/18/2024] [Indexed: 06/24/2024]
Abstract
This is an animal model study to investigate changes in hemostasis during endotoxemic shock and to determine whether the combination of inhaled nitric oxide (iNO) + intravenous hydrocortisone had an effect on clot formation and fibrinolysis. iNO selectively decreases pulmonary artery pressure, without affecting cardiac index or systemic vascular resistance; however, the results of studies on the possible consequences of iNO administration on coagulation are inconsistent and require further research. Thirty-four piglets were included. Administering endotoxin caused severe hypodynamic shock. Half of the animals received iNO (30 ppm) + hydrocortisone, starting 3 h after endotoxin infusion and continuing to the end of the study. All animals developed coagulation disorders, manifested by a tendency to hypocoagulation; at the same time, fibrinolysis was impaired. Coagulation and fibrinolysis disorders persisted after endotoxin infusion was discontinued, with worse severity in the animals that died before the study was terminated. Administering iNO + hydrocortisone did not cause further changes in coagulation and fibrinolysis parameters, either during or after the endotoxin challenge, suggesting that potential therapeutic interventions with iNO to lower pulmonary arterial pressure will not affect hemostasis.
Collapse
Affiliation(s)
- Barbara Adamik
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, Poland
| | - Claes Frostell
- Department of Anesthesia and Intensive Care, Karolinska Institutet at Danderyd Hospital, Stockholm, Sweden
| | - Barbara Dragan
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, Poland
| | - Urszula Paslawska
- Nicolaus Copernicus University, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Torun, Poland
- Department of Internal Medicine and Clinic of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Stanislaw Zielinski
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, Poland
| | - Robert Paslawski
- Nicolaus Copernicus University, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Torun, Poland
| | - Adrian Janiszewski
- Department of Internal Disease and Diagnostics, Poznan University of Life Sciences, Faculty of Veterinary Medicine and Animal Sciences, Poznan, Poland
| | - Marzena Zielinska
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, Poland
| | - Stanislaw Ryniak
- Department of Anesthesia and Intensive Care, Karolinska Institutet at Danderyd Hospital, Stockholm, Sweden
| | - Johanna Albert
- Department of Anesthesia and Intensive Care, Karolinska Institutet at Danderyd Hospital, Stockholm, Sweden
| | - Waldemar Gozdzik
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
2
|
Kiczak L, Pasławska U, Goździk W, Adamik B, Zielińska M, Zieliński S, Nowak K, Płóciennik M, Bania J, Tabiś A, Nowak M, Pasławski R, Frostell C. Effect of low-dose hydrocortisone and inhaled nitric oxide on inflammatory mediators and local pulmonary metalloproteinases activity in LPS-induced sepsis in piglets. Sci Rep 2023; 13:11369. [PMID: 37443327 PMCID: PMC10344886 DOI: 10.1038/s41598-023-38311-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Hospital mortality in sepsis varies between 30-45%. It has been shown that administration of inhaled nitric oxide (iNO) and intravenous corticosteroid in a porcine endotoxemia model attenuated the systemic inflammatory response. We explored the anti-inflammatory effect of a double-treatment strategy (iNO + low-dose steroid) on the lungs in a long-term porcine endotoxic shock model. As metalloproteinases (MMPs) are involved in the initiation of multiple organ dysfunction in septic shock, we evaluated the influence of this combination therapy on MMP2 and MMP9 activity and proIL-1β maturation. A shock-like condition was established in 23 animals by continuous infusion of E. coli lipopolysaccharide (LPS) for 10 h. Then the animals were observed for 10 h. Twelve pigs received iNO and hydrocortisone (iNO treatment started 3 h after the initial LPS infusion and continued until the end of the experiment). Eleven pigs were controls. Pigs treated with iNO and hydrocortisone displayed less inflammatory infiltrates in the lungs than the controls and a lower level of IL-1β. The proMMP2 was significantly decreased in the iNO and hydrocortisone group. The amount of an active MMP9 (~ 60 kDa) was decreased in the iNO and hydrocortisone group. Total gelatinolytic activity was lower in the iNO and hydrocortisone group. Reduced MMP activity was accompanied by a 2.5-fold decrease of the active IL-1β form (17 kDa) in the pulmonary tissue of iNO combined with hydrocortisone exposed pigs. We demonstrated that in a porcine endotoxemia model the NO inhalation combined with intravenous hydrocortisone led to the attenuation of the inflammatory cascade induced by bacterial LPS. The decrease in pulmonary MMPs activities was accompanied by reduced proIL-1β processing.
Collapse
Affiliation(s)
- Liliana Kiczak
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland.
| | - Urszula Pasławska
- Veterinary Center, Nicoalus Copernicus University in Toruń, 87-100, Toruń, Poland
- Department of Internal Diseases and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland
| | - Waldemar Goździk
- Clinical Department of Anesthesiology and Intensive Therapy, Wrocław Medical University, 50-556, Wrocław, Poland
| | - Barbara Adamik
- Clinical Department of Anesthesiology and Intensive Therapy, Wrocław Medical University, 50-556, Wrocław, Poland
| | - Marzena Zielińska
- Clinical Department of Anesthesiology and Intensive Therapy, Wrocław Medical University, 50-556, Wrocław, Poland
| | - Stanisław Zieliński
- Clinical Department of Anesthesiology and Intensive Therapy, Wrocław Medical University, 50-556, Wrocław, Poland
| | - Kacper Nowak
- Department of Internal Diseases and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland
| | - Michał Płóciennik
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland
| | - Aleksandra Tabiś
- Department of Food Hygiene and Consumer Health Protection, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland
| | - Marcin Nowak
- Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland
| | - Robert Pasławski
- Veterinary Center, Nicoalus Copernicus University in Toruń, 87-100, Toruń, Poland
| | - Claes Frostell
- Department of Anesthesia and Intensive Care, Karolinska Institutet Danderyd Hospital, 182-88, Stockholm, Sweden
| |
Collapse
|
3
|
Skirecki T, Adamik B, Frostell C, Pasławska U, Zieliński S, Glatzel-Plucińska N, Olbromski M, Dzięgiel P, Gozdzik W. Compartment-Specific Differences in the Activation of Monocyte Subpopulations Are Not Affected by Nitric Oxide and Glucocorticoid Treatment in a Model of Resuscitated Porcine Endotoxemic Shock. J Clin Med 2022; 11:2641. [PMID: 35566768 PMCID: PMC9100570 DOI: 10.3390/jcm11092641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Inhaled nitric oxide (iNO) remains one of the treatment modalities in shock, and in addition to its vasoactive properties, iNO exerts immunomodulatory effects. We used a porcine model of endotoxemia with shock resuscitation (control) and additional treatment with iNO and a steroid (treatment group). After 20 h, bone marrow (BM), peripheral blood (PB), and bronchoalveolar lavage fluid (BALF) were collected to analyze the immunophenotype and mitochondrial membrane potential (Δφ) in three subsets of monocytes. In both groups, SLA-DR expression decreased twofold on the circulating CD14+CD163+ and CD14−CD163+ monocytes, while it did not change on the CD14+CD163+. Δφ increased only in the CD14−CD163+ subpopulation (0.8 vs. 2.0, p < 0.001). The analysis of compartment-specific alterations showed that nearly 100% of BALF CD14+CD163+ and CD14−CD163+ monocytes expressed SLA-DR, and it was higher compared to PB (32% and 20%, p < 0.0001) and BM (93% and 67%, p < 0.001, respectively) counterparts. BALF CD14+CD163+ had a threefold higher Δφ than PB and BM monocytes, while the Δφ of the other subsets was highest in PB monocytes. We confirmed the compartmentalization of the monocyte response during endotoxemic shock, which highlights the importance of studying tissue-resident cells in addition to their circulating counterparts. The iNO/steroid treatment did not further impair monocyte fitness.
Collapse
Affiliation(s)
- Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Barbara Adamik
- Clinical Department of the Anaesthesiology and Intensive Therapy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (B.A.); (S.Z.); (W.G.)
| | - Claes Frostell
- Department of Anaesthesia and Intensive Care, Karolinska Institutet, Danderyd Hospital, 182 57 Stockholm, Sweden;
| | - Urszula Pasławska
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
- Department of Internal Medicine and Clinic for Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Stanisław Zieliński
- Clinical Department of the Anaesthesiology and Intensive Therapy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (B.A.); (S.Z.); (W.G.)
| | - Natalia Glatzel-Plucińska
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (N.G.-P.); (M.O.); (P.D.)
| | - Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (N.G.-P.); (M.O.); (P.D.)
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (N.G.-P.); (M.O.); (P.D.)
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| | - Waldemar Gozdzik
- Clinical Department of the Anaesthesiology and Intensive Therapy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (B.A.); (S.Z.); (W.G.)
| |
Collapse
|
4
|
Spina S, Lei C, Pinciroli R, Berra L. Hemolysis and Kidney Injury in Cardiac Surgery: The Protective Role of Nitric Oxide Therapy. Semin Nephrol 2019; 39:484-495. [DOI: 10.1016/j.semnephrol.2019.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Gozdzik W, Zielinski S, Zielinska M, Ratajczak K, Skrzypczak P, Rodziewicz S, Kübler A, Löfström K, Dziegiel P, Olbromski M, Adamik B, Ryniak S, Harbut P, Albert J, Frostell C. Beneficial effects of inhaled nitric oxide with intravenous steroid in an ischemia-reperfusion model involving aortic clamping. Int J Immunopathol Pharmacol 2018; 32:394632017751486. [PMID: 29376749 PMCID: PMC5851102 DOI: 10.1177/0394632017751486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This study evaluated the effects of inhaled nitric oxide (iNO) therapy combined
with intravenous (IV) corticosteroids on hemodynamics, selected cytokines, and
kidney messenger RNA toll-like receptor 4 (mRNA TLR4) expression in
ischemia–reperfusion injury animal model. The primary endpoint was the
evaluation of circulatory, respiratory, and renal function over time. We also
investigated the profile of selected cytokines and high-mobility group box 1
(HMGB1) protein, as well as renal mRNA TLR4 activation determined by
quantitative real-time polymerase chain reaction analysis. Pigs (n = 19) under
sevoflurane AnaConDa anesthesia/sedation were randomized and subjected to
abdominal laparotomy and alternatively suprarenal aortic cross-clamping (SRACC)
for 90 min or sham surgery: Group 1 (n = 8) iNO (80 ppm) + IV corticosteroids
(25 mg ×3) started 30 min before SRACC and continued 2 h after SRACC release,
followed with decreased iNO (30 ppm) until the end of observation, Group 2
(n = 8) 90 min SRACC, Group 3 (n = 3)—sham surgery. Renal biopsies were sampled
1 hr before SRACC and at 3 and 20 h after SRACC release. Aortic clamping
increased TLR4 mRNA expression in ischemic kidneys, but significant changes were
recorded only in the control group (P = 0.016).
Treatment with iNO and hydrocortisone reduced TLR4 mRNA expression to
pre-ischemic conditions, and the difference observed in mRNA expression was
significant between control and treatment group after 3 h (P = 0.042). Moreover, animals subjected to treatment with iNO and
hydrocortisone displayed an attenuated systemic inflammatory response and
lowered pulmonary vascular resistance plus increased oxygen delivery. The
results indicated that iNO therapy combined with IV corticosteroids improved
central and systemic hemodynamics, oxygen delivery, and diminished the systemic
inflammatory response and renal mRNA TLR4 expression.
Collapse
Affiliation(s)
- Waldemar Gozdzik
- 1 Department of Anaesthesiology and Intensive Therapy, Wrocław Medical University, Wrocław, Poland
| | - Stanisław Zielinski
- 1 Department of Anaesthesiology and Intensive Therapy, Wrocław Medical University, Wrocław, Poland
| | - Marzena Zielinska
- 1 Department of Anaesthesiology and Intensive Therapy, Wrocław Medical University, Wrocław, Poland
| | - Kornel Ratajczak
- 2 Department and Clinic of Surgery, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Piotr Skrzypczak
- 2 Department and Clinic of Surgery, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Sylwia Rodziewicz
- 2 Department and Clinic of Surgery, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Andrzej Kübler
- 1 Department of Anaesthesiology and Intensive Therapy, Wrocław Medical University, Wrocław, Poland
| | - Kalle Löfström
- 3 Department of Anesthesia and Intensive Care, Danderyd Hospital, Stockholm, Sweden
| | - Piotr Dziegiel
- 4 Department of Histology and Embryology, Wrocław Medical University, Wrocław, Poland
| | - Mateusz Olbromski
- 4 Department of Histology and Embryology, Wrocław Medical University, Wrocław, Poland
| | - Barbara Adamik
- 1 Department of Anaesthesiology and Intensive Therapy, Wrocław Medical University, Wrocław, Poland
| | - Stanislaw Ryniak
- 3 Department of Anesthesia and Intensive Care, Danderyd Hospital, Stockholm, Sweden
| | - Piotr Harbut
- 3 Department of Anesthesia and Intensive Care, Danderyd Hospital, Stockholm, Sweden
| | - Johanna Albert
- 3 Department of Anesthesia and Intensive Care, Danderyd Hospital, Stockholm, Sweden
| | - Claes Frostell
- 5 Department of Clinical Sciences at Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Nilsson KF, Goździk W, Frostell C, Zieliński S, Zielińska M, Ratajczak K, Skrzypczak P, Rodziewicz S, Albert J, Gustafsson LE. Organic mononitrites of 1,2-propanediol act as an effective NO-releasing vasodilator in pulmonary hypertension and exhibit no cross-tolerance with nitroglycerin in anesthetized pigs. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:685-694. [PMID: 29636602 PMCID: PMC5881281 DOI: 10.2147/dddt.s149727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose Clinically available intravenous (IV) nitric oxide (NO) donor drugs such as nitroglycerin (GTN) cause systemic hypotension and/or tolerance development. In a porcine model, novel NO donor compounds – the organic mononitrites of 1,2-propanediol (PDNO) – were compared to GTN with regard to pulmonary selectivity and tolerance development. The vasodilatory effects of inorganic nitrite were investigated. Materials and methods In anesthetized piglets, central hemodynamics were monitored. At normal pulmonary vascular resistance (PVR), IV infusions of PDNO (15–60 nmol kg−1 min−1), GTN (13–132 nmol kg−1 min−1), and inorganic nitrite (dosed as PDNO) were administered. At increased PVR (by U46619 IV), IV infusions of PDNO (60–240 nmol kg−1 min−1) and GTN (75–300 nmol kg−1 min−1) before and after a 5 h infusion of GTN (45 nmol kg−1 min−1) were given. Results At normal PVR, PDNO (n=12) and GTN (n=7) caused significant dose-dependent decreases in mean systemic and pulmonary arterial pressures, whereas inorganic nitrite (n=13) had no significant effect. At increased PVR, PDNO (n=6) and GTN (n=6) significantly decreased mean systemic and pulmonary pressures and resistances, but only PDNO reduced the ratio between pulmonary and systemic vascular resistances significantly. After the 5 h GTN infusion, the hemodynamic response to GTN infusions (n=6) was significantly suppressed, whereas PDNO (n=6) produced similar hemodynamic effects to those observed before the GTN infusion. Conclusion PDNO is a vasodilator with selectivity for pulmonary circulation exhibiting no cross-tolerance to GTN, but GTN causes non selective vasodilatation with substantial tolerance development in the pulmonary and systemic circulations. Inorganic nitrite has no vasodilatory properties at relevant doses.
Collapse
Affiliation(s)
- Kristofer F Nilsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Cardiothoracic and Vascular Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Waldemar Goździk
- Department of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, Poland
| | - Claes Frostell
- Department of Anesthesia and Intensive Care, Danderyd Hospital, Stockholm, Sweden
| | - Stanisław Zieliński
- Department of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, Poland
| | - Marzena Zielińska
- Department of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, Poland
| | - Kornel Ratajczak
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Piotr Skrzypczak
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Sylwia Rodziewicz
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Johanna Albert
- Department of Surgery, Danderyd Hospital, Stockholm, Sweden
| | - Lars E Gustafsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Junot S, Keroak S, Del Castillo JRE, Ayoub JY, Paquet C, Bonnet-Garin JM, Troncy E. Inhaled nitric oxide prevents NSAID-induced renal impairment in pseudo-normovolaemic piglets. PLoS One 2017; 12:e0179475. [PMID: 28658254 PMCID: PMC5489163 DOI: 10.1371/journal.pone.0179475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/31/2017] [Indexed: 01/17/2023] Open
Abstract
Objective Inhaled nitric oxide (iNO) is commonly used as a treatment of pulmonary hypertension. Its action is purported to be specific to the lung, but extrapulmonary effects have been reported. The objective of this study was to evaluate if iNO could compensate the renal impairment induced by ketoprofen, a conventional non-steroidal anti-inflammatory drug (NSAID), during general anaesthesia. Methods Under pseudo-normovolaemic condition, thirty piglets were randomly assigned into 5 equal groups and equipped for renal and systemic parameters measurements. A first experiment was carried out to validate methods and reproduce the renal effects of iNO (40 ppm) in comparison with a placebo (100% oxygen). In a second experiment, iNO was inhaled for 120 minutes right after NSAID treatment (ketoprofen 2 mg×kg-1 IV, and 40 ppm iNO; group KiNO) and its effects were compared to ketoprofen alone (2 mg×kg-1 IV; group K) and placebo (saline; group C). Results In this model, iNO increased significantly renal blood flow measured by ultrasonic (RBFUL: +53.2±17.2%; p = 0.008) and by PAH clearance (RBFPAH:+78.6±37.6%; p = 0.004) methods, glomerular filtration rate (GFR: +72.6±32.5%; p = 0.006) and urinary output (UO: +47.4±24.2%; p = 0.01). In the second experiment, no significant temporal variation was noted for renal parameters in groups KiNO and C, whereas a significant and constant decrease was observed in the group K for RBFUL (max -19.0±7.1%), GFR (max -26.6±10.4%) and UO (max -30.3±10.5%). Clinical significance Our experiments show that iNO, released from its transport forms after its inhalation, can improve renal safety of NSAIDs. This result is promising regarding the use of NSAIDs in critical conditions, but needs to receive clinical confirmation.
Collapse
Affiliation(s)
- Stephane Junot
- VetAgro Sup - Veterinary Campus of Lyon - University of Lyon, APCSE unit, Marcy l’Etoile, France
- * E-mail:
| | - Stephanie Keroak
- Faculty of Veterinary Medicine - University of Montreal, GREPAQ (Research group in animal pharmacology of Quebec) - Department of Veterinary Biomedicine, Saint-Hyacinthe, Québec, Canada
| | - Jerome R. E. Del Castillo
- Faculty of Veterinary Medicine - University of Montreal, GREPAQ (Research group in animal pharmacology of Quebec) - Department of Veterinary Biomedicine, Saint-Hyacinthe, Québec, Canada
| | - Jean-Yves Ayoub
- VetAgro Sup - Veterinary Campus of Lyon - University of Lyon, APCSE unit, Marcy l’Etoile, France
| | - Christian Paquet
- VetAgro Sup - Veterinary Campus of Lyon - University of Lyon, APCSE unit, Marcy l’Etoile, France
| | | | - Eric Troncy
- Faculty of Veterinary Medicine - University of Montreal, GREPAQ (Research group in animal pharmacology of Quebec) - Department of Veterinary Biomedicine, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
8
|
Ruan SY, Huang TM, Wu HY, Wu HD, Yu CJ, Lai MS. Inhaled nitric oxide therapy and risk of renal dysfunction: a systematic review and meta-analysis of randomized trials. Crit Care 2015; 19:137. [PMID: 25887847 PMCID: PMC4384233 DOI: 10.1186/s13054-015-0880-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/13/2015] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Inhaled nitric oxide (iNO) is an important therapy for acute respiratory distress syndrome (ARDS), pulmonary hypertension and pediatric hypoxemic respiratory failure. Safety concerns regarding iNO and renal dysfunction have been reported; however, there are currently no systematic reviews on this issue. Our objective was to evaluate published randomized controlled trials (RCTs) to ascertain the risk of renal dysfunction associated with iNO therapy in patients with and without ARDS. METHODS A systematic review of databases was performed to identify RCTs which compared iNO with controls up to September 2014. Effect estimates for risk ratio (RR) of acute kidney injury (AKI) were pooled using a random-effects model. RESULTS Ten RCTs involving 1363 participants were included. Inhaled nitric oxide significantly increased the risk of AKI compared with controls (RR, 1.4, 95%CI, 1.06 to 1.83, p = 0.02). In the stratified analysis, a high cumulative-dose of iNO significantly increased the risk of AKI (RR, 1.52, 95%CI, 1.14 to 2.02, p = 0.004), whereas medium and low cumulative-doses did not (RR, 0.64, 95%CI, 0.23 to 1.81 and RR, 0.56, 95%CI, 0.11 to 2.86 respectively). In subgroup analysis by study population, an increased risk of AKI was observed in patients with ARDS (RR, 1.55, 95%CI, 1.15 to 2.09, p = 0.005) but not in those without (RR, 0.90, 95%CI, 0.49 to 1.67, p = 0.75). CONCLUSIONS The available data show that iNO therapy may increase the risk of renal dysfunction, especially with prolonged use and in patients with ARDS. The risk in pediatric population is unknown owing to limited data. We suggest monitoring renal function during iNO therapy, and that future trials of iNO should evaluate renal safety.
Collapse
Affiliation(s)
- Sheng-Yuan Ruan
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, No.17 Xu-Zhou Road, Taipei, 10020, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Tao-Min Huang
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, No.17 Xu-Zhou Road, Taipei, 10020, Taiwan.
| | - Hon-Yen Wu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, No.17 Xu-Zhou Road, Taipei, 10020, Taiwan.
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| | - Huey-Dong Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chong-Jen Yu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Mei-Shu Lai
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, No.17 Xu-Zhou Road, Taipei, 10020, Taiwan.
| |
Collapse
|