1
|
Ravingerova T, Adameova A, Lonek L, Farkasova V, Ferko M, Andelova N, Kura B, Slezak J, Galatou E, Lazou A, Zohdi V, Dhalla NS. Is Intrinsic Cardioprotection a Laboratory Phenomenon or a Clinically Relevant Tool to Salvage the Failing Heart? Int J Mol Sci 2023; 24:16497. [PMID: 38003687 PMCID: PMC10671596 DOI: 10.3390/ijms242216497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases, especially ischemic heart disease, as a leading cause of heart failure (HF) and mortality, will not reduce over the coming decades despite the progress in pharmacotherapy, interventional cardiology, and surgery. Although patients surviving acute myocardial infarction live longer, alteration of heart function will later lead to HF. Its rising incidence represents a danger, especially among the elderly, with data showing more unfavorable results among females than among males. Experiments revealed an infarct-sparing effect of ischemic "preconditioning" (IPC) as the most robust form of innate cardioprotection based on the heart's adaptation to moderate stress, increasing its resistance to severe insults. However, translation to clinical practice is limited by technical requirements and limited time. Novel forms of adaptive interventions, such as "remote" IPC, have already been applied in patients, albeit with different effectiveness. Cardiac ischemic tolerance can also be increased by other noninvasive approaches, such as adaptation to hypoxia- or exercise-induced preconditioning. Although their molecular mechanisms are not yet fully understood, some noninvasive modalities appear to be promising novel strategies for fighting HF through targeting its numerous mechanisms. In this review, we will discuss the molecular mechanisms of heart injury and repair, as well as interventions that have potential to be used in the treatment of patients.
Collapse
Affiliation(s)
- Tanya Ravingerova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Adriana Adameova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 10 Odbojárov St., 832 32 Bratislava, Slovakia
| | - Lubomir Lonek
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Miroslav Ferko
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Natalia Andelova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Jan Slezak
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Eleftheria Galatou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
- Department of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
| | - Vladislava Zohdi
- Department of Anatomy, Faculty of Medicine, Comenius University in Bratislava, 24 Špitalska, 813 72 Bratislava, Slovakia;
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC 3800, Australia
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada;
| |
Collapse
|
2
|
Liu S, Meng X, Li G, Gokulnath P, Wang J, Xiao J. Exercise Training after Myocardial Infarction Attenuates Dysfunctional Ventricular Remodeling and Promotes Cardiac Recovery. Rev Cardiovasc Med 2022; 23:148. [PMID: 39076229 PMCID: PMC11273682 DOI: 10.31083/j.rcm2304148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 07/31/2024] Open
Abstract
Recent evidences have shown that exercise training not only plays a necessary role in maintaining cardiac homeostasis, but also promotes cardiac repair after myocardial infarction. Post-myocardial infarction, exercise training has been observed to effectively increase the maximum cardiac output, and protect myocardial cells against necrosis and apoptosis, thus leading to an improved quality of life of myocardial infarction patients. In fact, exercise training has received more attention as an adjunct therapeutic strategy for both treatment and prevention of myocardial infarction. This review summarizes the experimental evidence of the effects of exercise training in ventricular remodeling after myocardial infarction, and tries to provide theoretical basis along with suitable references for the exercise prescription aimed at prevention and therapy of myocardial infarction.
Collapse
Affiliation(s)
- Shuqing Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, 226011 Nantong, Jiangsu, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 200444 Shanghai, China
| | - Xinxiu Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, 226011 Nantong, Jiangsu, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 200444 Shanghai, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jing Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, 226011 Nantong, Jiangsu, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 200444 Shanghai, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, 226011 Nantong, Jiangsu, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 200444 Shanghai, China
| |
Collapse
|
3
|
Feng L, Li G, An J, Liu C, Zhu X, Xu Y, Gao Y, Li J, Liu J, Yan J, Wang Y, Ren J, Yang L, Qi Z. Exercise Training Protects Against Heart Failure Via Expansion of Myeloid-Derived Suppressor Cells Through Regulating IL-10/STAT3/S100A9 Pathway. Circ Heart Fail 2021; 15:e008550. [PMID: 34911348 DOI: 10.1161/circheartfailure.121.008550] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Exercise training (ET) has a protective effect on the progression of heart failure, however, the specific mechanism has not been fully explored. Myeloid-derived suppressor cells (MDSCs) are a group of myeloid-derived immunosuppressive cells, which showed a protective effect in the progression of heart failure. Thus, we hypothesized that the protective effect of ET on heart failure may be related to the infiltration of MDSCs. METHODS C57BL/6 mice were made to run on a treadmill 6× a week for 4 weeks followed by isoproterenol injection from third week. Heart function was evaluated by echocardiography and the proportion of MDSCs was detected by flow cytometry. Hypertrophic markers, cardiac fibrosis, and inflammatory factors were detected by real-time PCR, ELISA, histological staining, and Western blot. RESULTS ET treatment in isoproterenol-induced heart failure mice (n=7) enhanced cardiac function (57% increase in FS%, P=0.002) and improved morphological changes compared with isoproterenol mice (n=17). ET further caused 79% increasing in cardiac MDSCs in isoproterenol mice (P<0.001). In addition, depletion of MDSCs by 5-Fluorouracil blunted the cardio-protective effect of ET. T-cell proliferation assay showed that ET did not affect the suppressive activity of MDSCs. Furthermore, we found that ET activated the secretion of IL (interleukin)-10 by macrophages in isoproterenol mice. MDSCs expansion and cardio protection was not present in tamoxifen-inducible macrophage-specific IL-10 knockout mice. Western blot results confirmed that IL-10 regulated the differentiation of MDSCs through the translocation of p-STAT3 (signal transducer and activator of transcription 3)/S100A9 (S100 calcium-binding protein A9) to the nucleus. CONCLUSIONS ET could increase MDSCs by stimulating the secretion of IL-10 from macrophage, which was through IL-10/STAT3/S100A9 signaling pathway, thereby achieving the role of heart protection.
Collapse
Affiliation(s)
- Lifeng Feng
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Guangru Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Jiale An
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Chang Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Xiaolong Zhu
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, China. (X.Z., J.R.).,Department of Cardiovascular Surgery, Tianjin Chest Hospital, China (X.Z.)
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.).,Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, China (Y.G., L.Y., Z.Q.)
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Yachen Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.)
| | - Jiling Ren
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, China. (X.Z., J.R.).,Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, China. (J.R.)
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.).,Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, China (Y.G., L.Y., Z.Q.)
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China (L.F., G.L., J.A., C.L., Y.X., Y.G., J. Li, J. Liu, J.Y., Y.W., L.Y., Z.Q.).,Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, China (Y.G., L.Y., Z.Q.).,School of Tropical Medicine and Laboratory Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, China (Z.Q.)
| |
Collapse
|
4
|
Shanmugam G, Challa AK, Devarajan A, Athmanathan B, Litovsky SH, Krishnamurthy P, Davidson CJ, Rajasekaran NS. Exercise Mediated Nrf2 Signaling Protects the Myocardium From Isoproterenol-Induced Pathological Remodeling. Front Cardiovasc Med 2019; 6:68. [PMID: 31245386 PMCID: PMC6563599 DOI: 10.3389/fcvm.2019.00068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/07/2019] [Indexed: 12/14/2022] Open
Abstract
Although exercise derived activation of Nrf2 signaling augments myocardial antioxidant signaling, the molecular mechanisms underlying the benefits of moderate exercise training (MET) in the heart remain elusive. Here we hypothesized that exercise training stabilizes Nrf2-dependent antioxidant signaling, which then protects the myocardium from isoproterenol-induced damage. The present study assessed the effects of 6 weeks of MET on the Nrf2/antioxidant function, glutathione redox state, and injury in the myocardium of C57/BL6J mice that received isoproterenol (ISO; 50 mg/kg/day for 7 days). ISO administration significantly reduced the Nrf2 promoter activity (p < 0.05) and downregulated the expression of cardiac antioxidant genes (Gclc, Nqo1, Cat, Gsr, and Gst-μ) in the untrained (UNT) mice. Furthermore, increased oxidative stress with severe myocardial injury was evident in UNT+ISO when compared to UNT mice receiving PBS under basal condition. Of note, MET stabilized the Nrf2-promoter activity and upheld the expression of Nrf2-dependent antioxidant genes in animals receiving ISO, and attenuated the oxidative stress-induced myocardial damage. Echocardiography analysis revealed impaired diastolic ventricular function in UNT+ISO mice, but this was partially normalized in the MET animals. Interestingly, while there was a marginal reduction in ubiquitinated proteins in MET mice that received ISO, the pathological signs were attenuated along with near normal cardiac function in response to exercise training. Thus, moderate intensity exercise training conferred protection against ISO-induced myocardial injury by augmentation of Nrf2-antioxidant signaling and attenuation of isoproterenol-induced oxidative stress.
Collapse
Affiliation(s)
- Gobinath Shanmugam
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anil K. Challa
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Asokan Devarajan
- Department of Medicine, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Baskaran Athmanathan
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Silvio H. Litovsky
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christopher J. Davidson
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Namakkal Soorappan Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, United States
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Enhanced Keap1-Nrf2 signaling protects the myocardium from isoproterenol-induced pathological remodeling in mice. Redox Biol 2019; 27:101212. [PMID: 31155513 PMCID: PMC6859568 DOI: 10.1016/j.redox.2019.101212] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (NFE2L2/Nrf2) is an inducible transcription factor that is essential for maintenance of redox signaling in response to stress. This suggests that if Nrf2 expression response could be enhanced for a defined physiological pro-oxidant stress then it would be protective. This has important implications for the therapeutic manipulation of the Keap1/Nrf2 signaling pathway which is now gaining a lot of attention. We tested this hypothesis through the generation of Nrf2 transgene expression mouse model with and without isoproterenol-induced cardiac stress. Cardiac-specific mouse Nrf2 transgenic (mNrf2-TG) and non-transgenic (NTG) mice were subjected to isoproterenol (ISO) treatment and assessed for myocardial structure, function (echocardiography and electrocardiography), and glutathione redox state. Myocardial infarction and fibrosis along with increased inflammation leading to myocardial dysfunction was noted in NTG mice exposed to ISO, while mNrf2-TG hearts were resistant to the ISO insult. Preservation of myocardial structure and function in the mNrf2-TG mice was associated with the enhanced Nrf2 expression displayed in these hearts with an increased basal and post-treatment expression of redox modulatory genes and an overall enhanced antioxidant status. Of note, myocardium of ISO-treated TG mice displayed significantly increased stabilization of the KEAP1-NRF2 complex and enhanced release of NRF2 to the nucleus resulting in overall decreased pro-oxidant markers. Taken together, we suggest that a basal enhanced Nrf2 expression in mouse heart results in maintenance of redox homeostasis and counteracts ISO-induced oxidative stress, and suppresses pathological remodeling. These data suggest that an alternative therapeutic approach to enhance the efficacy of the Keap1-Nrf2 system is to stimulate basal expression of Nrf2. Isoproterenol induces oxidative/inflammatory stresses and leading to myocardial remodeling. Cardiac specific expression of Nrf2 augments Keap1-Nrf2 association, thereby timely responds to isoproterenol-induced stress. Augmented levels of Keap1-Nrf2 signaling is crucial to combat isoproterenol toxicity in the heart. Enhanced Nrf2-dependent antioxidant defense suppresses oxidative stress and prevents pathological cardiac remodeling. A controlled activation of global antioxidant signaling is vital for myocardial protection in stress conditions.
Collapse
|
6
|
Cardiac adaptation to exercise training in health and disease. Pflugers Arch 2019; 472:155-168. [PMID: 31016384 DOI: 10.1007/s00424-019-02266-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/08/2023]
Abstract
The heart is the primary pump that circulates blood through the entire cardiovascular system, serving many important functions in the body. Exercise training provides favorable anatomical and physiological changes that reduce the risk of heart disease and failure. Compared with pathological cardiac hypertrophy, exercise-induced physiological cardiac hypertrophy leads to an improvement in heart function. Exercise-induced cardiac remodeling is associated with gene regulatory mechanisms and cellular signaling pathways underlying cellular, molecular, and metabolic adaptations. Exercise training also promotes mitochondrial biogenesis and oxidative capacity leading to a decrease in cardiovascular disease. In this review, we summarized the exercise-induced adaptation in cardiac structure and function to understand cellular and molecular signaling pathways and mechanisms in preclinical and clinical trials.
Collapse
|
7
|
Tian D, Meng J. Exercise for Prevention and Relief of Cardiovascular Disease: Prognoses, Mechanisms, and Approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3756750. [PMID: 31093312 PMCID: PMC6481017 DOI: 10.1155/2019/3756750] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/01/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
This review is aimed at summarizing the new findings about the multiple benefits of exercise on cardiovascular disease (CVD). We pay attention to the prevalence and risk factors of CVD and mechanisms and recommendations of physical activity. Physical activity can improve insulin sensitivity, alleviate plasma dyslipidemia, normalize elevated blood pressure, decrease blood viscosity, promote endothelial nitric oxide production, and improve leptin sensitivity to protect the heart and vessels. Besides, the protective role of exercise on the body involves not only animal models in the laboratory but also clinical studies which is demonstrated by WHO recommendations. The general exercise intensity for humans recommended by the American Heart Association to prevent CVD is moderate exercise of 30 minutes, 5 times a week. However, even the easiest activity is better than nothing. What is more, owing to the different physical fitness of individuals, a standard exercise training cannot provide the exact treatment for everyone. So personalization of exercise will be an irresistible trend and bring more beneficial effects with less inefficient physical activities. This paper reviews the benefits of exercise contributing to the body especially in CVD through the recent mechanism studies.
Collapse
Affiliation(s)
- Danyang Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Jinqi Meng
- Department of Sports, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
TaheriChadorneshin H, Rostamkhani F, Shirvani H. Long-term effects of sprint interval training on expression of cardiac genes involved in energy efficiency. SPORT SCIENCES FOR HEALTH 2019. [DOI: 10.1007/s11332-018-0480-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Daiber A, Xia N, Steven S, Oelze M, Hanf A, Kröller-Schön S, Münzel T, Li H. New Therapeutic Implications of Endothelial Nitric Oxide Synthase (eNOS) Function/Dysfunction in Cardiovascular Disease. Int J Mol Sci 2019; 20:ijms20010187. [PMID: 30621010 PMCID: PMC6337296 DOI: 10.3390/ijms20010187] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023] Open
Abstract
The Global Burden of Disease Study identified cardiovascular risk factors as leading causes of global deaths and life years lost. Endothelial dysfunction represents a pathomechanism that is associated with most of these risk factors and stressors, and represents an early (subclinical) marker/predictor of atherosclerosis. Oxidative stress is a trigger of endothelial dysfunction and it is a hall-mark of cardiovascular diseases and of the risk factors/stressors that are responsible for their initiation. Endothelial function is largely based on endothelial nitric oxide synthase (eNOS) function and activity. Likewise, oxidative stress can lead to the loss of eNOS activity or even “uncoupling” of the enzyme by adverse regulation of well-defined “redox switches” in eNOS itself or up-/down-stream signaling molecules. Of note, not only eNOS function and activity in the endothelium are essential for vascular integrity and homeostasis, but also eNOS in perivascular adipose tissue plays an important role for these processes. Accordingly, eNOS protein represents an attractive therapeutic target that, so far, was not pharmacologically exploited. With our present work, we want to provide an overview on recent advances and future therapeutic strategies that could be used to target eNOS activity and function in cardiovascular (and other) diseases, including life style changes and epigenetic modulations. We highlight the redox-regulatory mechanisms in eNOS function and up- and down-stream signaling pathways (e.g., tetrahydrobiopterin metabolism and soluble guanylyl cyclase/cGMP pathway) and their potential pharmacological exploitation.
Collapse
Affiliation(s)
- Andreas Daiber
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany.
| | - Ning Xia
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Sebastian Steven
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Matthias Oelze
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Alina Hanf
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Swenja Kröller-Schön
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Thomas Münzel
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany.
| | - Huige Li
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
10
|
Exercise Training Has Contrasting Effects in Myocardial Infarction and Pressure Overload Due to Divergent Endothelial Nitric Oxide Synthase Regulation. Int J Mol Sci 2018; 19:ijms19071968. [PMID: 29986381 PMCID: PMC6073896 DOI: 10.3390/ijms19071968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022] Open
Abstract
The beneficial effects of exercise training (EX) on cardiac pathology are well recognized. Previously, we found that the effects of EX on cardiac dysfunction in mice critically depend on the underlying etiology. EX exerted beneficial effects after myocardial infarction (MI); however, cardiac pathology following pressure overload produced by transverse aortic constriction (TAC) was aggravated by EX. In the presented study, we investigated whether the contrasting effects of EX on cardiac dysfunction can be explained by an etiology-specific response of endothelial nitric oxide (NO) synthase (eNOS) to EX, which divergently affects the balance between nitric oxide and superoxide. For this purpose, mice were exposed to eight weeks of voluntary wheel running or sedentary housing (SED), immediately after sham, MI, or TAC surgery. Left ventricular (LV) function was assessed using echocardiography and hemodynamic measurements. EX ameliorated LV dysfunction and remodeling after MI, but not following TAC, in which EX even aggravated fibrosis. Strikingly, EX attenuated superoxide levels after MI, but exacerbated NOS-dependent superoxide levels following TAC. Similarly, elevated eNOS S-glutathionylation and eNOS monomerization, which were observed in both MI and TAC, were corrected by EX in MI, but aggravated by EX after TAC. Additionally, EX reduced antioxidant activity in TAC, while it was maintained following EX in MI. In conclusion, the present study shows that EX mitigates cardiac dysfunction after MI, likely by attenuating eNOS uncoupling-mediated oxidative stress, whereas EX tends to aggravate cardiac dysfunction following TAC, likely due to exacerbating eNOS-mediated oxidative stress.
Collapse
|
11
|
Siddiqi A, Parveen A, Dhyani N, Hussain ME, Fahim M. Effects of Coriandrum Sativum Extract and Simvastatin in Isopreterenol Induced Heart Failure in Rats. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2018. [DOI: 10.1515/sjecr-2017-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Abstract
Heart failure is a syndrome, caused due to structural and functional cardiac abnormalities, characterized by changes in the hemodynamic and neurohumoral mechanisms. It is becoming a major health burden worldwide. More effective therapies are desperately needed. Coriandrum sativum (C. sativum), a traditional spice crop has been known to possess many biological and medicinal properties. The present study was designed to investigate the cardioprotective efficacy of C. sativum in rat model of isoproterenol induced heart failure. Heart failure was produced by injecting isoproterenol subcutaneously (85 mg/kg twice at an interval of 24 h). Oral efficacy of seed extract was assessed on hemodynamic profile, antioxidant enzyme activities, lipid peroxidation, lipid profile, atherogenic indices, mRNA and protein expression of endothelin receptors (ETA and ETB) and histopathology. Treatment of heart failure rats with C. sativum orally (1g/kg b.wt) improved the altered hemodynamics, restored the cardiac antioxidant enzymes armory, attenuated oxidative stress, improved lipid profile, lowered atherogenic indices, decreased the levels of ETA and ETB receptor mRNA and protein, and restored the cardiac morphology. In conclusion, our results suggest C. sativum to be a cardioprotective agent in heart failure, possibly by the virtue of its ability to alleviate oxidative stress, improve lipid profile and endothelial dysfunction.
Collapse
Affiliation(s)
- Aisha Siddiqi
- Department of Physiology, Hamdard Institute of Medical Sciences and Research , Jamia Hamdard (Hamdard University) , Hamdard Nagar, New Delhi - 110062 , India
| | - Adila Parveen
- Centre for Physiotherapy and Rehabilitation Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi - 110025 , India
| | - Neha Dhyani
- Department of Physiology, Hamdard Institute of Medical Sciences and Research , Jamia Hamdard (Hamdard University) , Hamdard Nagar, New Delhi - 110062 , India
| | - M. Ejaz Hussain
- Centre for Physiotherapy and Rehabilitation Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi - 110025 , India
| | - Mohammad Fahim
- Department of Physiology, Hamdard Institute of Medical Sciences and Research , Jamia Hamdard (Hamdard University) , Hamdard Nagar, New Delhi - 110062 , India
| |
Collapse
|
12
|
Quindry JC, Franklin BA. Cardioprotective Exercise and Pharmacologic Interventions as Complementary Antidotes to Cardiovascular Disease. Exerc Sport Sci Rev 2018; 46:5-17. [PMID: 28885265 DOI: 10.1249/jes.0000000000000134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise and pharmacologic therapies to prevent and treat cardiovascular disease have advanced largely through independent efforts. Understanding of first-line drug therapies, findings from preclinical animal studies, and the need for research initiatives related to complementary cardioprotective exercise-pharma interventions are reviewed from the premise that contemporary cardioprotective therapies must include adjunctive exercise and lifestyle interventions in addition to pharmacologic agents.
Collapse
Affiliation(s)
- John C Quindry
- Health and Human Performance, University of Montana, Missoula, MT
| | - Barry A Franklin
- Health and Human Performance, University of Montana, Missoula, MT
| |
Collapse
|
13
|
Burgos JI, Yeves AM, Barrena JP, Portiansky EL, Vila-Petroff MG, Ennis IL. Nitric oxide and CaMKII: Critical steps in the cardiac contractile response To IGF-1 and swim training. J Mol Cell Cardiol 2017; 112:16-26. [DOI: 10.1016/j.yjmcc.2017.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
|
14
|
Qiao Y, Zhu B, Tian A, Li Z. PEG-coated gold nanoparticles attenuate β-adrenergic receptor-mediated cardiac hypertrophy. Int J Nanomedicine 2017; 12:4709-4719. [PMID: 28740379 PMCID: PMC5503492 DOI: 10.2147/ijn.s130951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gold nanoparticles (AuNPs) are widely used as a drug delivery vehicle, which can accumulate in the heart through blood circulation. Therefore, it is very important to understand the effect of AuNPs on the heart, especially under pathological conditions. In this study, we found that PEG-coated AuNPs attenuate β-adrenergic receptor (β-AR)-mediated acute cardiac hypertrophy and inflammation. However, both isoproterenol, a non-selective β-AR agonist, and AuNPs did not induce cardiac function change or cardiac fibrosis. AuNPs exerted an anti-cardiac hypertrophy effect by decreasing β1-AR expression and its downstream ERK1/2 hypertrophic pathway. Our results indicated that AuNPs might be safe and have the potential to be used as multi-functional materials (drug carrier systems and anti-cardiac hypertrophy agents).
Collapse
Affiliation(s)
- Yuhui Qiao
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, People's Republic of China
| | - Baoling Zhu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, People's Republic of China
| | - Aiju Tian
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, People's Republic of China
| | - Zijian Li
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, People's Republic of China
| |
Collapse
|
15
|
Vega RB, Konhilas JP, Kelly DP, Leinwand LA. Molecular Mechanisms Underlying Cardiac Adaptation to Exercise. Cell Metab 2017; 25:1012-1026. [PMID: 28467921 PMCID: PMC5512429 DOI: 10.1016/j.cmet.2017.04.025] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Exercise elicits coordinated multi-organ responses including skeletal muscle, vasculature, heart, and lung. In the short term, the output of the heart increases to meet the demand of strenuous exercise. Long-term exercise instigates remodeling of the heart including growth and adaptive molecular and cellular re-programming. Signaling pathways such as the insulin-like growth factor 1/PI3K/Akt pathway mediate many of these responses. Exercise-induced, or physiologic, cardiac growth contrasts with growth elicited by pathological stimuli such as hypertension. Comparing the molecular and cellular underpinnings of physiologic and pathologic cardiac growth has unveiled phenotype-specific signaling pathways and transcriptional regulatory programs. Studies suggest that exercise pathways likely antagonize pathological pathways, and exercise training is often recommended for patients with chronic stable heart failure or following myocardial infarction. Herein, we summarize the current understanding of the structural and functional cardiac responses to exercise as well as signaling pathways and downstream effector molecules responsible for these adaptations.
Collapse
Affiliation(s)
- Rick B Vega
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - John P Konhilas
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | - Daniel P Kelly
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Leslie A Leinwand
- Molecular, Cellular and Developmental Biology, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
16
|
Geng X, Zhao H, Zhang S, Li J, Tian F, Feng N, Fan R, Jia M, Guo H, Cheng L, Liu J, Chen W, Pei J. κ-opioid receptor is involved in the cardioprotection induced by exercise training. PLoS One 2017; 12:e0170463. [PMID: 28301473 PMCID: PMC5354247 DOI: 10.1371/journal.pone.0170463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 02/27/2017] [Indexed: 02/02/2023] Open
Abstract
The present study was designed to test the hypothesis that exercise training elicited a cardioprotective effect against ischemia and reperfusion (I/R) via the κ-opioid receptor (κ-OR)-mediated signaling pathway. Rats were randomly divided into four groups: the control group, the moderate intensity exercise (ME) group, the high intensity exercise (HE) group, and the acute exercise (AE) group. For the exercise training protocols, the rats were subjected to one week of adaptive treadmill training, while from the second week, the ME and HE groups were subjected to eight weeks of exercise training, and the AE group was subjected to three days of adaptive treadmill training and one day of vigorous exercise. After these protocols, the three exercise training groups were divided into different treatment groups, and the rats were subjected to 30 min of ischemia and 120 min of reperfusion. Changes in infarct size and serum cTnT (cardiac troponin T) caused by I/R were reduced by exercise training. Moreover, cardiac dysfunction caused by I/R was also alleviated by exercise training. These effects of exercise training were reversed by nor-BNI (a selective κ-OR antagonist), Compound C (a selective AMPK inhibitor), Akt inhibitor and L-NAME (a non-selective eNOS inhibitor). Expression of κ-OR and phosphorylation of AMPK, Akt and eNOS were significantly increased in the ME, HE and AE groups. These findings demonstrated that the cardioprotective effect of exercise training is possibly mediated by the κ-OR-AMPK-Akt-eNOS signaling pathway.
Collapse
Affiliation(s)
- Xiao Geng
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
- Department of Physical Education, Chang’an University, Xi'an, Shaanxi Province, China
| | - Honglin Zhao
- Department of Cardiovascular Surgery, First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Shumiao Zhang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Juan Li
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Fei Tian
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Na Feng
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Rong Fan
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Min Jia
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Haitao Guo
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Liang Cheng
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Wensheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
- * E-mail: (JP); (W C)
| | - Jianming Pei
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
- * E-mail: (JP); (W C)
| |
Collapse
|
17
|
Oliveira VGCD, Maifrino LBM, Pithon-Curi TC, França ED, Souza RRD. EFFECTS OF AEROBIC TRAINING ON THE CARDIOMYOCYTES OF THE RIGHT ATRIUM OF MICE. REV BRAS MED ESPORTE 2016. [DOI: 10.1590/1517-869220162205155776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: Polypeptide hormones (natriuretic peptides, NPs) are secreted by the cardiac atria and play an important role in the regulation of blood pressure. Objective: To evaluate the effects of aerobic training on the secretory apparatus of NPs in cardiomyocytes of the right atrium. Methods: Nine-month-old mice were divided in two groups (n=10): control group (CG) and trained group (TG). The training protocol was performed on a motor treadmill for 8 weeks. Systolic blood pressure was measured at the beginning of the experiment (9 months of age) and at moment of the sacrifice (11 months of age). Electron micrographs were used to quantify the following variables: the quantitative density and area of NP granules, the relative volumes of the mitochondria, endoplasmic reticulum, and Golgi complex and the relative volume of euchromatin in the nucleus and the number of pores per 10 µm of the nuclear membrane. The results were compared by Student's t test (p< 0.05). Results: The cardiomyocytes obtained from TG mice showed increased density and sectional area of secretory granules of NP, higher relative volume of endoplasmic reticulum, mitochondria, and Golgi complex compared with the CG mice. Furthermore, the quantitative density of nuclear pores and the relative volume of euchromatin in the nucleus were significantly higher compared with the CG mice. Conclusion: Aerobic training caused hypertrophy of the secretory apparatus in the cardiomyocytes of right atrium, which could explain the intense synthesis of natriuretic peptides in trained mice with respect to the untrained mice.
Collapse
|
18
|
Fallahi AA, Shekarfroush S, Rahimi M, Jalali A, Khoshbaten A. Alteration in cardiac uncoupling proteins and eNOS gene expression following high-intensity interval training in favor of increasing mechanical efficiency. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:258-64. [PMID: 27114795 PMCID: PMC4834115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES High-intensity interval training (HIIT) increases energy expenditure and mechanical energy efficiency. Although both uncoupling proteins (UCPs) and endothelial nitric oxide synthase (eNOS) affect the mechanical efficiency and antioxidant capacity, their effects are inverse. The aim of this study was to determine whether the alterations of cardiac UCP2, UCP3, and eNOS mRNA expression following HIIT are in favor of increased mechanical efficiency or decreased oxidative stress. MATERIALS AND METHODS Wistar rats were divided into five groups: control group (n=12), HIIT for an acute bout (AT1), short term HIIT for 3 and 5 sessions (ST3 and ST5), long-term training for 8 weeks (LT) (6 in each group). The rats of the training groups were made to run on a treadmill for 60 min in three stages: 6 min running for warm-up, 7 intervals of 7 min running on treadmill with a slope of 5° to 20° (4 min with an intensity of 80-110% VO2max and 3 min at 50-60% VO2max), and 5-min running for cool-down. The control group did not participate in any exercise program. Rats were sacrificed and the hearts were extracted to analyze the levels of UCP2, UCP3 and eNOS mRNA by RT-PCR. RESULTS UCP3 expression was increased significantly following an acute training bout. Repeated HIIT for 8 weeks resulted in a significant decrease in UCPs mRNA and a significant increase in eNOS expression in cardiac muscle. CONCLUSION This study indicates that Long term HIIT through decreasing UCPs mRNA and increasing eNOS mRNA expression may enhance energy efficiency and physical performance.
Collapse
Affiliation(s)
| | - Shahnaz Shekarfroush
- Department of Physiology, Arsanjan Branch, Islamic Azad University, Fars, Iran,Corresponding author: Shahnaz Shekarforoush. Islamic Azad University, Arsanjan, Iran, Fars. Tel: 09173376859; Fax 071-43522483; ;
| | - Mostafa Rahimi
- Department of Physical Education, University of Kashan, Iran
| | - Amirhossain Jalali
- Institute of Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, Iran
| | - Ali Khoshbaten
- Sport Physiology Research Center, Baghiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Park SY, Rossman MJ, Gifford JR, Bharath LP, Bauersachs J, Richardson RS, Abel ED, Symons JD, Riehle C. Exercise training improves vascular mitochondrial function. Am J Physiol Heart Circ Physiol 2016; 310:H821-9. [PMID: 26825520 DOI: 10.1152/ajpheart.00751.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
Abstract
Exercise training is recognized to improve cardiac and skeletal muscle mitochondrial respiratory capacity; however, the impact of chronic exercise on vascular mitochondrial respiratory function is unknown. We hypothesized that exercise training concomitantly increases both vascular mitochondrial respiratory capacity and vascular function. Arteries from both sedentary (SED) and swim-trained (EX, 5 wk) mice were compared in terms of mitochondrial respiratory function, mitochondrial content, markers of mitochondrial biogenesis, redox balance, nitric oxide (NO) signaling, and vessel function. Mitochondrial complex I and complex I + II state 3 respiration and the respiratory control ratio (complex I + II state 3 respiration/complex I state 2 respiration) were greater in vessels from EX relative to SED mice, despite similar levels of arterial citrate synthase activity and mitochondrial DNA content. Furthermore, compared with the SED mice, arteries from EX mice displayed elevated transcript levels of peroxisome proliferative activated receptor-γ coactivator-1α and the downstream targets cytochrome c oxidase subunit IV isoform 1,isocitrate dehydrogenase(Idh)2, and Idh3a, increased manganese superoxide dismutase protein expression, increased endothelial NO synthase phosphorylation (Ser(1177)), and suppressed reactive oxygen species generation (all P< 0.05). Although there were no differences in EX and SED mice concerning endothelium-dependent and endothelium-independent vasorelaxation, phenylephrine-induced vasocontraction was blunted in vessels from EX compared with SED mice, and this effect was normalized by NOS inhibition. These training-induced increases in vascular mitochondrial respiratory capacity and evidence of improved redox balance, which may, at least in part, be attributable to elevated NO bioavailability, have the potential to protect against age- and disease-related challenges to arterial function.
Collapse
Affiliation(s)
- Song-Young Park
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Matthew J Rossman
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Leena P Bharath
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah; Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah; and Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - J David Symons
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah; Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Christian Riehle
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany; Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah; and Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
20
|
Ren J, Yang L, Tian W, Zhu M, Liu J, Lu P, Li J, Yang L, Qi Z. Nitric oxide synthase inhibition abolishes exercise-mediated protection against isoproterenol-induced cardiac hypertrophy in female mice. Cardiology 2015; 130:175-184. [PMID: 25720823 DOI: 10.1159/000370025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/20/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Exercise training (ET) provides a cardioprotective effect against pathological cardiac hypertrophy. Nitric oxide (NO) plays an important role in modulating cardiac hypertrophy. However, few studies explore the relationship between NO signaling and the inhibitory effect of ET on pathological cardiac remodeling. METHODS In this study, we evaluated ET effects on isoproterenol (ISO)-induced cardiac hypertrophy in female mice. Moreover, L-NAME (Nω-nitro-L-arginine methyl ester), a nonselective NO synthase (NOS) inhibitor, was used to assess the involvement of NO signaling in cardiac hypertrophy. Morphological and echocardiographic variables were assessed. Cardiac hypertrophy-related gene expression was detected by real-time PCR and the protein levels of NOS signaling molecules were determined by Western blot. RESULTS L-NAME treatment prevented the beneficial effects of ET against the increase in heart weight (HW)/body weight (BW), HW/tibia length and lung weight/BW and echocardiographic variables following ISO injection. Also, L-NAME co-administration reversed ET-induced inhibition of myocardial fibrosis and fetal gene reactivation in ISO-treated mice. Furthermore, L-NAME treatment prevented ET-mediated up-regulation of phosphorylated endothelial NOS and plasma NO in ISO-treated mice. CONCLUSIONS Our findings demonstrate that L-NAME treatment could abolish ET-induced cardioprotection against pathological cardiac hypertrophy and that NOS modulation may be involved in the antihypertrophic effects induced by ET.
Collapse
|
21
|
FALLAHI A, GAEINI A, SHEKARFROUSH S, KHOSHBATEN A. Cardioprotective Effect of High Intensity Interval Training and Nitric Oxide Metabolites (NO2 (-), NO3 (-)). IRANIAN JOURNAL OF PUBLIC HEALTH 2015; 44:1270-6. [PMID: 26587502 PMCID: PMC4645785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effects of High-Intensity Interval Training (HIIT) on nitric oxide metabolites (NO2(-), NO3(-)) and myocardial infarct size after Ischemia/Reperfusion (I/R) injury in healthy male rats. METHODS A total of 44 Wistar rats were randomly divided into 4 groups including HIIT (n=8), HIIT + IR protocol (n=14), control (n=8), and control + IR (n=14). Each training session of HIIT consisted of 1 hour of exercise in three stages: 6-minute running at 50-60% VO2max for warm-up; 7 intervals of 7-minute running on treadmill with a slope of 5° to 20° (4 minutes with an intensity of 80-100% VO2max and 3 minutes at 50-60% VO2max); and 5-minute running at 50-60% VO2max for cool-down. The control group did not participate in any exercise program. Nitric Oxide (NO) and its metabolites were measured by using Griess reaction test. RESULTS The results showed that eight weeks of exercise training exerted a significantly increasing effect on nitrite (8.55 μmol per liter, equivalent to 34.79%), nitrate (62.02 μmol per liter, equivalent to 149.48%), and NOx (66 μmol per liter, equivalent to 98.11%) in the HIIT group compared with the control group. The results showed myocardial infract size (IS) was significantly smaller (23.2%, P<0.001) in the exercise training group compared with the control group. CONCLUSION Incremental changes in NO-NO3 (-), NO2 (-) axis are one of mechanisms through which HIIT program can protect the heart from I/R injury and decrease myocardial infarction.
Collapse
Affiliation(s)
- Aliasghar FALLAHI
- Dept. of Physical Education and Sport Science, School of Education and Psychology, Shiraz University, Shiraz, Iran, Sport Physiology Research Center, Baghiyatallah University of Medical Sciences, Tehran, Iran,Corresponding Author:
| | - Abbasali GAEINI
- Dept. Exercise Physiology, Faculty of Physical Education and Sport Science, Tehran University, Tehran, Iran
| | | | - Ali KHOSHBATEN
- Sport Physiology Research Center, Baghiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Exercise training improves insulin release during glucose tolerance testing in stable chronic heart failure patients. J Cardiopulm Rehabil Prev 2015; 35:37-46. [PMID: 25533903 DOI: 10.1097/hcr.0000000000000092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Chronic heart failure (CHF) patients often present with (pre)diabetes, which negatively influences prognosis. Unlike the proven effect of exercise on glucose regulation in the general population, its effect in CHF is unclear. Therefore, this study aimed at investigating the effect of exercise training on glucose regulation in stable CHF patients. METHODS Twenty-two CHF patients were randomized into training (EX, n = 15) and control (CON, n = 7) groups. Before and after a 12-week training intervention involving endurance and resistance training, glucose tolerance (2-hour oral glucose tolerance test), exercise tolerance (cardiopulmonary exercise test), muscle strength (isokinetic dynamometer), heart function (echocardiography), glycated hemoglobin, body composition (dual-energy x-ray absorptiometry), and quality of life (EQ5D) were assessed. RESULTS At baseline, glucose levels 2 hours after glucose intake were elevated in both groups. Whereas area under the glucose curve did not change, area under the insulin curve decreased following training (EX, -13 ± 23% vs CON, +22 ± 33%; P < .05). Changes in the ratio of mitral peak velocity of early filling/early diastolic mitral annular velocity and waist-to-hip fat mass ratio were related to changes in the insulin curve. Exercise training resulted in improved oxygen uptake at the second ventilatory threshold (EX, +10 ± 5% vs CON, -8 ± 5%; P < .05) and isokinetic strength endurance of the upper leg (EX, +25 ± 9% vs CON, -6 ± 5%; P < 0.05). Lean body tissue was increased by 2.2 ± 0.5% in EX versus 0.2 ± 0.6% in CON (P < .05). CONCLUSION Our data suggest that exercise training attenuates worsening of glucose regulation typically seen in a stable CHF population.
Collapse
|
23
|
Holloway TM, Bloemberg D, da Silva ML, Simpson JA, Quadrilatero J, Spriet LL. High intensity interval and endurance training have opposing effects on markers of heart failure and cardiac remodeling in hypertensive rats. PLoS One 2015; 10:e0121138. [PMID: 25803693 PMCID: PMC4372563 DOI: 10.1371/journal.pone.0121138] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/12/2015] [Indexed: 12/29/2022] Open
Abstract
There has been re-emerging interest and significant work dedicated to investigating the metabolic effects of high intensity interval training (HIIT) in recent years. HIIT is considered to be a time efficient alternative to classic endurance training (ET) that elicits similar metabolic responses in skeletal muscle. However, there is a lack of information on the impact of HIIT on cardiac muscle in disease. Therefore, we determined the efficacy of ET and HIIT to alter cardiac muscle characteristics involved in the development of diastolic dysfunction, such as ventricular hypertrophy, fibrosis and angiogenesis, in a well-established rodent model of hypertension-induced heart failure before the development of overt heart failure. ET decreased left ventricle fibrosis by ~40% (P < 0.05), and promoted a 20% (P<0.05) increase in the left ventricular capillary/fibre ratio, an increase in endothelial nitric oxide synthase protein (P<0.05), and a decrease in hypoxia inducible factor 1 alpha protein content (P<0.05). In contrast, HIIT did not decrease existing fibrosis, and HIIT animals displayed a 20% increase in left ventricular mass (P<0.05) and a 20% decrease in cross sectional area (P<0.05). HIIT also increased brain natriuretic peptide by 50% (P<0.05), in the absence of concomitant angiogenesis, strongly suggesting pathological cardiac remodeling. The current data support the longstanding belief in the effectiveness of ET in hypertension. However, HIIT promoted a pathological adaptation in the left ventricle in the presence of hypertension, highlighting the need for further research on the widespread effects of HIIT in the presence of disease.
Collapse
Affiliation(s)
- Tanya M. Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| | - Darin Bloemberg
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mayne L. da Silva
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy A. Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Lawrence L. Spriet
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
24
|
Lira VA. Exercise-induced cardioprotection: more to k‘NO’w. Cardiology 2015; 130:172-174. [PMID: 25720747 DOI: 10.1159/000375399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/19/2022]
Affiliation(s)
- Vitor A Lira
- Department of Health and Human Physiology, Obesity Research and Education Initiative, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|