1
|
Reis LG, Teeple K, Schoonmaker JL, Davis C, Scinto S, Schinckel A, Casey T. Constant light and high fat diet alter daily patterns of activity, feed intake and fecal corticosterone levels in pregnant and lactating female ICR mice. PLoS One 2024; 19:e0312419. [PMID: 39565751 PMCID: PMC11578523 DOI: 10.1371/journal.pone.0312419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/05/2024] [Indexed: 11/22/2024] Open
Abstract
The prevalence of constant light exposure and high-fat diet in modern society raises concerns regarding their impact on maternal and offspring health outcomes. In rodents, exposure to maternal high-fat diet or continuous light negatively program metabolic and stress response outcomes of offspring. A 2x3 factorial study was conducted to investigate the impact of diet (control-CON, 10% fat, or high fat-HF, 60% fat) and exposure to different lighting conditions: regular 12-hour light-dark cycles (LD), continuous dim light (L5), or continuous bright light (L100) on female ICR mice daily patterns of time in and out of the nest, feed intake, and fecal corticosterone levels during gestation and lactation. Our previous analysis of these mice found HF diet decreased number of pups born, but increased litter growth rate to postnatal (PN) d12. Whereas continuous light increased gestation length and tended to increase PN litter growth. Here we report that patterns of grams of feed intake, an indicator of feeding activity, were affected by light, diet, period of the day (day versus night) and physiological state (gestation and lactation), with significant interactions among all these variables (P<0.05). HF diet and light treatment increased fecal corticosterone output (P<0.05) during lactation. Dams exhibited significant 12 h and 24 h rhythms of activity out of the nest in the first 48 h postnatal, with time outside of the nest greater in the second 24 h period. L100 treatment and HF diet attenuated rhythms and shifted phase of rhythms relative to LD and CON, respectively (P<0.05). Alterations in behavior affect maternal physiology, including level and timing of release of corticosteroids. Elevated fecal corticosterone levels due to high-fat diet and continuous light may have potential implications on maternal-offspring health, and potentially underlie some of the adverse effects of modern lifestyle factors on maternal and offspring health.
Collapse
Affiliation(s)
- Leriana Garcia Reis
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Kelsey Teeple
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Jenna Lynn Schoonmaker
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Corrin Davis
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Sara Scinto
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Allan Schinckel
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| | - Theresa Casey
- Department of Animal Science, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
2
|
Spišská V, Kubištová A, Novotný J, Bendová Z. Impact of Prenatal LPS and Early-life Constant Light Exposure on Circadian Gene Expression Profiles in Various Rat Tissues. Neuroscience 2024; 551:17-30. [PMID: 38777136 DOI: 10.1016/j.neuroscience.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Exposure to lipopolysaccharide (LPS) during prenatal development leads to various changes in neurobiological and behavioural patterns. Similarly, continuous exposure to constant light (LL) during the critical developmental period of the circadian system affects gene expression in various tissues in adulthood. Given the reciprocal nature of the interaction between the circadian and the immune systems, our study primarily investigated the individual effects of both interventions and, more importantly, their combined effect. We aimed to explore whether there might be a potential synergistic effect on circadian rhythms and their parameters, focussing on the expression of clock genes, immune-related genes, and specific genes in the hippocampus, pineal gland, spleen and adrenal gland of rats at postnatal day 30. Our results show a significant influence of prenatal LPS and postnatal LL on the expression profiles of all genes assessed. However, the combination of prenatal LPS and postnatal LL only revealed an enhanced negative effect in a minority of the comparisons. In most cases, it appeared to attenuate the changes induced by the individual interventions, restoring the measured parameters to values closer to those of the control group. In particular, genes such as Nr1d1, Aanat and Tph1 showed increased amplitude in the pineal gland and spleen, while the kynurenine enzymes Kynu and KatII developed circadian rhythmicity in the adrenal glands only after the combined interventions. Our data suggest that a mild immunological challenge during prenatal development may play a critical role in triggering an adaptive response of the circadian clock later in life.
Collapse
Affiliation(s)
- Veronika Spišská
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Aneta Kubištová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zdeňka Bendová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic; National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
3
|
Ucuncu Egeli T, Tufekci KU, Ural C, Durur DY, Tuzun Erdogan F, Cavdar Z, Genc S, Keskinoglu P, Duman N, Ozkan H. A New Perspective on the Pathogenesis of Infantile Colic: Is Infantile Colic a Biorhythm Disorder? J Pediatr Gastroenterol Nutr 2023; 77:171-177. [PMID: 37098054 DOI: 10.1097/mpg.0000000000003815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
OBJECTIVES In this study, we investigated the relationship between infantile colic, migraine, and biorhythm regulation, by evaluating biochemical and molecular parameters. STUDY DESIGN Healthy infants with and without infantile colic were eligible for this prospective cohort study. A questionnaire was applied. Between the 6th and 8th postnatal weeks, day and night circadian histone gene H3f3b mRNA expression and spot urine excretion of serotonin, cortisol, and 6-sulphatoxymelatonin were analyzed. RESULTS Among the 95 infants included, 49 were diagnosed with infantile colic. In the colic group, defecation difficulty, sensitivity to light/sound, and maternal migraine frequency increased and sleep disruption was typical. In the melatonin analysis, the difference between day and night levels was significant in the control group, indicating an established circadian rhythm ( P = 0.014). In the colic group, there was no day-night difference ( P = 0.216) in melatonin, but serotonin levels were higher at night. In the cortisol analysis, day-night values were similar in both groups. Day-night variability of H3f3b mRNA levels between the groups was significant, indicating circadian rhythm disturbance in the colic group compared to the control group ( P = 0.003). Fluctuations in circadian genes and hormones expected in healthy rhythm were revealed in the control group, but were missing in the colic group. CONCLUSION Due to the gaps in the etipathogenesis in infantile colic, a unique effective agent has not been discovered so far. This study, which demonstrated for the first time that infantile colic is a biorhythm disorder using molecular methods, fills the gap in this regard and points to a completely different perspective in terms of treatment.
Collapse
Affiliation(s)
- Tugba Ucuncu Egeli
- From the Department of Neonatology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Kemal Ugur Tufekci
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
- Vocational School of Health Services, Izmir Democracy University, Izmir, Turkey
| | - Cemre Ural
- the Department of Molecular Medicine, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | - Devrim Yagmur Durur
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
- Michigan Technological Houghton, Houghton, MI
| | - Funda Tuzun Erdogan
- From the Department of Neonatology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Zahide Cavdar
- the Department of Molecular Medicine, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
- the Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | - Pembe Keskinoglu
- the Department of Biostatistics and Medical Informatics, Basic Medical Sciences, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Nuray Duman
- From the Department of Neonatology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Hasan Ozkan
- From the Department of Neonatology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
4
|
Early life circadian rhythm disruption in mice alters brain and behavior in adulthood. Sci Rep 2022; 12:7366. [PMID: 35513413 PMCID: PMC9072337 DOI: 10.1038/s41598-022-11335-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/15/2022] [Indexed: 11/08/2022] Open
Abstract
Healthy sleep supports robust development of the brain and behavior. Modern society presents a host of challenges that can impair and disrupt critical circadian rhythms that reinforce optimal physiological functioning, including the proper timing and consolidation of sleep. While the acute effects of inadequate sleep and disrupted circadian rhythms are being defined, the adverse developmental consequences of disrupted sleep and circadian rhythms are understudied. Here, we exposed mice to disrupting light–dark cycles from birth until weaning and demonstrate that such exposure has adverse impacts on brain and behavior as adults. Mice that experience early-life circadian disruption exhibit more anxiety-like behavior in the elevated plus maze, poorer spatial memory in the Morris Water Maze, and impaired working memory in a delayed match-to-sample task. Additionally, neuron morphology in the amygdala, hippocampus and prefrontal cortex is adversely impacted. Pyramidal cells in these areas had smaller dendritic fields, and pyramidal cells in the prefrontal cortex and hippocampus also exhibited diminished branching orders. Disrupted mice were also hyperactive as adults, but otherwise exhibited no alteration in adult circadian locomotor rhythms. These results highlight that circadian disruption early in life may have long lasting and far-reaching consequences for the development of behavior and the brain.
Collapse
|
5
|
Hao J, Hao W, Liu Z, Shi P. The toggle switch model for gene expression change during the prenatal-to-postnatal transition in mammals. Mol Biol Evol 2022; 39:6526405. [PMID: 35143657 PMCID: PMC8892945 DOI: 10.1093/molbev/msac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The prenatal-to-postnatal transition is a pivotal process in the life cycle whereby an organism shifts from responding to intrauterine cues to undergoing extrauterine stresses with many physiological adaptations. However, the molecular basis underlying the evolutionarily conserved physiological adaptations remains elusive. Here, we analyze the transcriptomes of seven organs across developmental time points from five mammalian species by constructing computational coexpression networks and report a developmental shift of gene expression at the perinatal stage. The low-to-high and high-to-low expressed genes tightly coalesce in the functional categories and gene regulatory pathways that implicate the physiological adaptions during the prenatal-to-postnatal transition, including lipid metabolism, circadian rhythm, immune response, cell cycle, and cell division. The low-to-high and high-to-low expressed genes around the perinatal stage tend to form the mutually inhibitory toggle switch gene pairs linking the gene regulatory networks in response to the environmental changes. We thus propose the toggle switch model for the developmental shift of gene expression as a mechanic framework to investigate how the physiological adaptations occur during the prenatal-to-postnatal transition.
Collapse
Affiliation(s)
- Junjun Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wuling Hao
- College of Mathematics, Yunnan Normal University, Kunming 650500, China
| | - Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
6
|
Kubištová A, Spišská V, Petrželková L, Hrubcová L, Moravcová S, Maierová L, Bendová Z. Constant Light in Critical Postnatal Days Affects Circadian Rhythms in Locomotion and Gene Expression in the Suprachiasmatic Nucleus, Retina, and Pineal Gland Later in Life. Biomedicines 2020; 8:biomedicines8120579. [PMID: 33297440 PMCID: PMC7762254 DOI: 10.3390/biomedicines8120579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
The circadian clock regulates bodily rhythms by time cues that result from the integration of genetically encoded endogenous rhythms with external cycles, most potently with the light/dark cycle. Chronic exposure to constant light in adulthood disrupts circadian system function and can induce behavioral and physiological arrhythmicity with potential clinical consequences. Since the developing nervous system is particularly vulnerable to experiences during the critical period, we hypothesized that early-life circadian disruption would negatively impact the development of the circadian clock and its adult function. Newborn rats were subjected to a constant light of 16 lux from the day of birth through until postnatal day 20, and then they were housed in conditions of L12 h (16 lux): D12 h (darkness). The circadian period was measured by locomotor activity rhythm at postnatal day 60, and the rhythmic expressions of clock genes and tissue-specific genes were detected in the suprachiasmatic nuclei, retinas, and pineal glands at postnatal days 30 and 90. Our data show that early postnatal exposure to constant light leads to a prolonged endogenous period of locomotor activity rhythm and affects the rhythmic gene expression in all studied brain structures later in life.
Collapse
Affiliation(s)
- Aneta Kubištová
- Department of Physiology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Veronika Spišská
- Department of Physiology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Lucie Petrželková
- Department of Physiology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Leona Hrubcová
- Department of Physiology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Simona Moravcová
- Department of Physiology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
- Department of Sleep Medicine and Chronobiology, National Institute of Mental Health, 250 67 Klecany, Czech Republic; (A.K.); (V.S.); (L.P.); (L.H.); (S.M.)
| | - Lenka Maierová
- University Center for Energy Efficient Buildings, Czech Technical University in Prague, 273 43 Buštěhrad, Czech Republic;
| | - Zdeňka Bendová
- Department of Physiology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
- Department of Sleep Medicine and Chronobiology, National Institute of Mental Health, 250 67 Klecany, Czech Republic; (A.K.); (V.S.); (L.P.); (L.H.); (S.M.)
- Correspondence: ; Tel.: +420-2-2195-1796
| |
Collapse
|
7
|
Björkqvist J, Kuula J, Kuula L, Nurhonen M, Hovi P, Räikkönen K, Pesonen A, Kajantie E. Chronotype in very low birth weight adults - a sibling study. Chronobiol Int 2020; 37:1023-1033. [PMID: 32354238 DOI: 10.1080/07420528.2020.1754847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronotype is the temporal preference for activity and sleep during the 24 h day and is linked to mental and physical health, quality of life, and mortality. Later chronotypes, so-called "night owls", consistently display poorer health outcomes than "larks". Previous studies have suggested that preterm birth (<37 weeks of gestation) is associated with an earlier chronotype in children, adolescents, and young adults, but studies beyond this age are absent. Our aim was to determine if adults born preterm at very low birth weight (VLBW, ≤1500 g) display different chronotypes than their siblings. We studied VLBW adults, aged 29.9 years (SD 2.8), matched with same-sex term-born siblings as controls. A total of 123 participants, consisting of 53 sibling pairs and 17 unmatched participants, provided actigraphy-derived data on the timing, duration, and quality of sleep from 1640 nights (mean 13.3 per participant, SD 2.7). Mixed effects models provided estimates and significance tests. Compared to their siblings, VLBW adults displayed 27 min earlier sleep midpoint during free days (95% CI: 3 to 51 min, p =.029). This was also reflected in the timing of falling asleep, waking up, and sleep-debt corrected sleep midpoint. The findings were emphasized in VLBW participants born small for gestational age. VLBW adults displayed an earlier chronotype than their siblings still at age 30, which suggests that the earlier chronotype is an enduring individual trait not explained by shared family factors. This preference could provide protection from risks associated with preterm birth. ABBREVIATIONS AGA: Appropriate for gestational age; ELBW: Extremely low birth weight, ≤ 1000 grams; FMBR: Finnish Medical Birth Registry; HeSVA: Helsinki Study of Very low birth weight Adults; MSFsc: Midsleep on free days, corrected for sleep debt; SGA: Small for gestational age, ≤ -2 SD; VLBW: Very low birth weight, ≤ 1500 grams; WASO: Wake after sleep onset.
Collapse
Affiliation(s)
- Johan Björkqvist
- Children's Hospital, and Pediatric Research Center, University of Helsinki and Helsinki University Hospital , Helsinki, Finland.,Department of Public Health Promotion, Finnish Institute for Health and Welfare , Helsinki, Finland
| | - Juho Kuula
- Department of Public Health Promotion, Finnish Institute for Health and Welfare , Helsinki, Finland.,Department of Radiology, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital , Helsinki, Finland
| | - Liisa Kuula
- SleepWell Research Program, Faculty of Medicine, University of Helsinki , Helsinki, Finland
| | - Markku Nurhonen
- Department of Public Health Promotion, Finnish Institute for Health and Welfare , Helsinki, Finland
| | - Petteri Hovi
- Children's Hospital, and Pediatric Research Center, University of Helsinki and Helsinki University Hospital , Helsinki, Finland.,Department of Public Health Promotion, Finnish Institute for Health and Welfare , Helsinki, Finland
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki , Helsinki, Finland
| | - Anu Pesonen
- SleepWell Research Program, Faculty of Medicine, University of Helsinki , Helsinki, Finland
| | - Eero Kajantie
- Children's Hospital, and Pediatric Research Center, University of Helsinki and Helsinki University Hospital , Helsinki, Finland.,Department of Public Health Promotion, Finnish Institute for Health and Welfare , Helsinki, Finland.,PEDEGO Research Unit, University of Oulu , Oulu, Finland.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology , Trondheim, Norway
| |
Collapse
|
8
|
Munteanu T, Noronha KJ, Leung AC, Pan S, Lucas JA, Schmidt TM. Light-dependent pathways for dopaminergic amacrine cell development and function. eLife 2018; 7:39866. [PMID: 30403373 PMCID: PMC6221543 DOI: 10.7554/elife.39866] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/26/2018] [Indexed: 11/13/2022] Open
Abstract
Retinal dopamine is a critical modulator of high acuity, light-adapted vision and photoreceptor coupling in the retina. Dopaminergic amacrine cells (DACs) serve as the sole source of retinal dopamine, and dopamine release in the retina follows a circadian rhythm and is modulated by light exposure. However, the retinal circuits through which light influences the development and function of DACs are still unknown. Intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged as a prime target for influencing retinal dopamine levels because they costratify with DACs in the inner plexiform layer and signal to them in a retrograde manner. Surprisingly, using genetic mouse models lacking specific phototransduction pathways, we find that while light influences the total number of DACs and retinal dopamine levels, this effect does not require ipRGCs. Instead, we find that the rod pathway is a critical modulator of both DAC number and retinal dopamine levels.
Collapse
Affiliation(s)
- Teona Munteanu
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Katelyn J Noronha
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Amanda C Leung
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Simon Pan
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Jasmine A Lucas
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, United States
| |
Collapse
|
9
|
Yates J. PERSPECTIVE: The Long-Term Effects of Light Exposure on Establishment of Newborn Circadian Rhythm. J Clin Sleep Med 2018; 14:1829-1830. [PMID: 30353824 DOI: 10.5664/jcsm.7426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
ABSTRACT Development of newborns continues postnatally. Evidence has accumulated on the early life programming effects of light exposure on the maturing visual axis and the developing circadian rhythm. Consideration of the effects of light at night and insufficient light during the day should occur when giving anticipatory guidance in the care of newborn infants. Long-term health consequences of light imprinting may occur with inappropriate light-dark environments during the newborn period.
Collapse
|
10
|
Lewis P, Erren TC. Perinatal light imprinting of circadian clocks and systems (PLICCS): A signature of photoperiod around birth on circadian system stability and association with cancer. Chronobiol Int 2017; 34:782-801. [PMID: 28430521 DOI: 10.1080/07420528.2017.1315125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recent findings from animal models suggest that plasticity of human circadian clocks and systems may be differentially affected by different paradigms of perinatal photoperiod exposure to the detriment of health in later life, including cancer development. Focusing on the example of cancer, we carry out a series of systematic literature reviews concerning perinatal light imprinting of circadian clocks and systems (PLICCS) in animal models, and concerning the risk of cancer development with the primary determinants of the perinatal photoperiod, namely season of birth or latitude of birth. The results from these systematic reviews provide supporting evidence of the PLICCS and cancer rationale and highlight that investigations of PLICCS in humans are warranted. Overall, we discuss findings from experimental research and insights from epidemiological studies. Considerations as to how to "test" PLICCS in epidemiological studies and as to the potential for non-invasive preventative measures during perinatal periods close our synthesis. If the PLICCS rationale holds true, it opens the exciting prospect for amenable, early-life, preventative measures against cancer development (and other disorders) in later life. Indeed, non-invasive anthropogenic light exposure may have enormous potential to alleviate the public health and economic burden of circadian-related diseases.
Collapse
Affiliation(s)
- Philip Lewis
- a Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research , University Hospital of Cologne , Cologne , Germany
| | - Thomas C Erren
- a Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research , University Hospital of Cologne , Cologne , Germany
| |
Collapse
|
11
|
Coleman G, Canal MM. Postnatal Light Effects on Pup Stress Axis Development Are Independent of Maternal Behavior. Front Neurosci 2017; 11:46. [PMID: 28239333 PMCID: PMC5300984 DOI: 10.3389/fnins.2017.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/23/2017] [Indexed: 01/03/2023] Open
Abstract
Postnatal environment shapes brain development during key critical periods. We have recently found that postnatal light environment has long-term effects on the stress and circadian systems, which can lead to altered stress responses, circadian behavior and a depressive phenotype in adulthood. However, it is still unclear how light experience affects the postnatal development of specific stress markers in the pup brain and the role played by maternal behavior and stress. To test this, we raised mice under either light-dark cycles (LD), constant light (LL) or constant darkness (DD) during the suckling stage. After weaning, all mice were exposed to LD until adulthood. Results show that postnatal light environment does not have any significant effects on dam stress levels (plasma corticosterone concentration, Arginine-vasopressin and Glucocorticoid receptor (GR) protein expression in the brain) or maternal behavior, including licking and grooming. Light environment does not have a major effect on litter characteristics or pup growth either. Interestingly, light environment during the suckling stage significantly impacted Corticotrophin-releasing hormone (CRH) and Gr mRNA expression in pup brain during development. Furthermore, a difference in Crh mRNA expression between LL- and DD-raised mice was still observed in adulthood, long after the exposure to abnormal light environments had stopped. Taken together, these data suggest that the long-term effects of postnatal light environment on the pups' stress system cannot be attributed to alterations in either maternal behavior and/or stress axis function. Instead, postnatal light experience may act directly on the pup stress axis and/or indirectly via circadian system alterations.
Collapse
Affiliation(s)
- Georgia Coleman
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre Manchester, UK
| | - Maria M Canal
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre Manchester, UK
| |
Collapse
|
12
|
Coleman G, Gigg J, Canal MM. Postnatal light alters hypothalamic-pituitary-adrenal axis function and induces a depressive-like phenotype in adult mice. Eur J Neurosci 2016; 44:2807-2817. [PMID: 27591429 DOI: 10.1111/ejn.13388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 01/31/2023]
Abstract
The postnatal light environment that a mouse experiences during the critical first three postnatal weeks has long-term effects on both its circadian rhythm output and clock gene expression. Furthermore, data from our lab suggest that postnatal light may also impact the hypothalamic-pituitary-adrenal (HPA) axis, which is a key regulator of stress. To test the effect of postnatal light exposure on adult stress responses and circadian rhythmicity, we raised mice under either 24-h light-dark cycles (LD), constant light (LL) or constant dark (DD) during the first three postnatal weeks. After weaning we then exposed all animals to LD cycles (basal conditions), followed by LL (stressed conditions) environments. We examined brain neuropeptide and glucocorticoid receptor (GR) expression, plasma corticosterone concentration rhythm and body temperature rhythm, together with depression- and anxiety-related behaviour. Results showed that LL- and DD-raised mice exhibited decreased GR expression in the hippocampus, increased plasma corticosterone concentration at the onset of the dark phase and a depressive phenotype when exposed to LD cycles later in life. Furthermore, LL-raised mice showed increased corticotrophin-releasing hormone mRNA expression in the paraventricular nucleus of the hypothalamus. When exposed to LL as adults, LL-raised mice showed a significant circadian rhythm of plasma corticosterone concentration, together with a shorter period and stronger circadian rhythm of body temperature compared to DD-raised mice. Taken together, these data suggest that altered postnatal light environments have long-term effects on the HPA axis and the circadian system, which can lead to altered stress responses and a depressive phenotype in adulthood.
Collapse
Affiliation(s)
- Georgia Coleman
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, M13 9PT, Manchester, UK
| | - John Gigg
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, M13 9PT, Manchester, UK
| | - Maria Mercè Canal
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, M13 9PT, Manchester, UK
| |
Collapse
|
13
|
|
14
|
Hughes ATL, Croft CL, Samuels RE, Myung J, Takumi T, Piggins HD. Constant light enhances synchrony among circadian clock cells and promotes behavioral rhythms in VPAC2-signaling deficient mice. Sci Rep 2015; 5:14044. [PMID: 26370467 PMCID: PMC4642707 DOI: 10.1038/srep14044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022] Open
Abstract
Individual neurons in the suprachiasmatic nuclei (SCN) contain an intracellular molecular clock and use intercellular signaling to synchronize their timekeeping activities so that the SCN can coordinate brain physiology and behavior. The neuropeptide vasoactive intestinal polypeptide (VIP) and its VPAC2 receptor form a key component of intercellular signaling systems in the SCN and critically control cellular coupling. Targeted mutations in either the intracellular clock or intercellular neuropeptide signaling mechanisms, such as VIP-VPAC2 signaling, can lead to desynchronization of SCN neuronal clocks and loss of behavioral rhythms. An important goal in chronobiology is to develop interventions to correct deficiencies in circadian timekeeping. Here we show that extended exposure to constant light promotes synchrony among SCN clock cells and the expression of ~24 h rhythms in behavior in mice in which intercellular signaling is disrupted through loss of VIP-VPAC2 signaling. This study highlights the importance of SCN synchrony for the expression of rhythms in behavior and reveals how non-invasive manipulations in the external environment can be used to overcome neurochemical communication deficits in this important brain system.
Collapse
Affiliation(s)
- Alun T L Hughes
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Cara L Croft
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Rayna E Samuels
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Jihwan Myung
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Alves-Simoes M, Coleman G, Canal MM. Effects of type of light on mouse circadian behaviour and stress levels. Lab Anim 2015; 50:21-9. [PMID: 25979911 DOI: 10.1177/0023677215588052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Light is the principal synchronizing environmental factor for the biological clock. Light quantity (intensity), and light quality (type of light source) can have different effects. The aim of this study was to determine the effects of the type of light experienced from the time of birth on mouse growth, circadian behaviour and stress levels. We raised pigmented and albino mice under 24 h light-dark cycles of either fluorescent or white light-emitting diode (LED) light source during the suckling stage, and the animals were then exposed to various light environments after weaning and their growth rate, locomotor activity and plasma corticosterone concentration were measured. We found that the type of light the animals were exposed to did not affect the animals' growth rates or stress levels. However, we observed significant effects on the expression of the locomotor activity rhythm under low contrast light-dark cycles in pigmented mice, and under constant light in both albino and pigmented mice. These results highlight the importance of environmental light quality (light source) on circadian behavioural rhythms, and the need for close monitoring of light environments in animal facilities.
Collapse
Affiliation(s)
| | - Georgia Coleman
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
16
|
Bauer M, Glenn T, Alda M, Andreassen OA, Angelopoulos E, Ardau R, Baethge C, Bauer R, Baune BT, Bellivier F, Belmaker RH, Berk M, Bjella TD, Bossini L, Bersudsky Y, Wo Cheung EY, Conell J, Del Zompo M, Dodd S, Etain B, Fagiolini A, Frye MA, Fountoulakis KN, Garneau-Fournier J, Gonzalez-Pinto A, Gottlieb JF, Harima H, Hassel S, Henry C, Iacovides A, Isometsä ET, Kapczinski F, Kliwicki S, König B, Krogh R, Kunz M, Lafer B, Larsen ER, Lewitzka U, Lopez-Jaramillo C, MacQueen G, Manchia M, Marsh W, Martinez-Cengotitabengoa M, Melle I, Monteith S, Morken G, Munoz R, Nery FG, O'Donovan C, Osher Y, Pfennig A, Quiroz D, Ramesar R, Rasgon N, Reif A, Ritter P, Rybakowski JK, Sagduyu K, Miranda-Scippa Â, Severus E, Simhandl C, Stein DJ, Strejilevich S, Sulaiman AH, Suominen K, Tagata H, Tatebayashi Y, Torrent C, Vieta E, Viswanath B, Wanchoo MJ, Zetin M, Whybrow PC. Influence of light exposure during early life on the age of onset of bipolar disorder. J Psychiatr Res 2015; 64:1-8. [PMID: 25862378 DOI: 10.1016/j.jpsychires.2015.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND Environmental conditions early in life may imprint the circadian system and influence response to environmental signals later in life. We previously determined that a large springtime increase in solar insolation at the onset location was associated with a younger age of onset of bipolar disorder, especially with a family history of mood disorders. This study investigated whether the hours of daylight at the birth location affected this association. METHODS Data collected previously at 36 collection sites from 23 countries were available for 3896 patients with bipolar I disorder, born between latitudes of 1.4 N and 70.7 N, and 1.2 S and 41.3 S. Hours of daylight variables for the birth location were added to a base model to assess the relation between the age of onset and solar insolation. RESULTS More hours of daylight at the birth location during early life was associated with an older age of onset, suggesting reduced vulnerability to the future circadian challenge of the springtime increase in solar insolation at the onset location. Addition of the minimum of the average monthly hours of daylight during the first 3 months of life improved the base model, with a significant positive relationship to age of onset. Coefficients for all other variables remained stable, significant and consistent with the base model. CONCLUSIONS Light exposure during early life may have important consequences for those who are susceptible to bipolar disorder, especially at latitudes with little natural light in winter. This study indirectly supports the concept that early life exposure to light may affect the long term adaptability to respond to a circadian challenge later in life.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany.
| | - Tasha Glenn
- ChronoRecord Association, Fullerton, CA, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Ole A Andreassen
- NORMENT - K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, Oslo, Norway
| | - Elias Angelopoulos
- Department of Psychiatry, University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University-Hospital of Cagliari, Italy
| | - Christopher Baethge
- Department of Psychiatry and Psychotherapy, University of Cologne Medical School, Cologne, Germany
| | - Rita Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Frank Bellivier
- Psychiatrie, GH Saint-Louis - Lariboisière - F. Widal, AP-HP, INSERM UMR-S1144, Faculté de Médecine, Université D. Diderot, Paris, France; Fondation FondaMental, Créteil, France
| | - Robert H Belmaker
- Department of Psychiatry, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva Mental Health Center, Beer Sheva, Israel
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria 3220, Australia; Department of Psychiatry, ORYGEN Youth Health Research Centre, Centre for Youth Mental Health and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Thomas D Bjella
- NORMENT - K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, Oslo, Norway
| | - Letizia Bossini
- Department of Molecular Medicine and Department of Mental Health (DAI), University of Siena and University of Siena Medical Center (AOUS), Siena, Italy
| | - Yuly Bersudsky
- Department of Psychiatry, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva Mental Health Center, Beer Sheva, Israel
| | | | - Jörn Conell
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Maria Del Zompo
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria 3220, Australia; Department of Psychiatry, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Bruno Etain
- AP-HP, Hôpitaux Universitaires Henri-Mondor, INSERM U955 (IMRB), Université Paris Est, Créteil, France; Fondation FondaMental, Créteil, France
| | - Andrea Fagiolini
- Department of Molecular Medicine and Department of Mental Health (DAI), University of Siena and University of Siena Medical Center (AOUS), Siena, Italy
| | - Mark A Frye
- Department of Psychiatry & Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Kostas N Fountoulakis
- 3rd Department of Psychiatry, Division of Neurosciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jade Garneau-Fournier
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Palo Alto, CA, USA
| | - Ana Gonzalez-Pinto
- Department of Psychiatry, University Hospital of Alava, University of the Basque Country, CIBERSAM, Vitoria, Spain
| | - John F Gottlieb
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hirohiko Harima
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Stefanie Hassel
- Department of Psychiatry, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chantal Henry
- AP-HP, Hôpitaux Universitaires Henri-Mondor, INSERM U955 (IMRB), Université Paris Est, Créteil, France; Fondation FondaMental, Créteil, France
| | - Apostolos Iacovides
- 3rd Department of Psychiatry, Division of Neurosciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Erkki T Isometsä
- Department of Psychiatry, Institute of Clinical Medicine, University of Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| | - Flávio Kapczinski
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sebastian Kliwicki
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Barbara König
- BIPOLAR Zentrum Wiener Neustadt, Wiener Neustadt, Austria
| | - Rikke Krogh
- Department of Affective Disorders, Q, Mood Disorders Research Unit, Aarhus University Hospital, Denmark
| | - Mauricio Kunz
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Beny Lafer
- Bipolar Disorder Research Program, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Erik R Larsen
- Department of Affective Disorders, Q, Mood Disorders Research Unit, Aarhus University Hospital, Denmark
| | - Ute Lewitzka
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Carlos Lopez-Jaramillo
- Mood Disorders Program, Fundacion San Vicente de Paul, Department of Psychiatry, Universidad de Antioquia, Medellín, Colombia
| | - Glenda MacQueen
- Department of Psychiatry, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mirko Manchia
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Wendy Marsh
- Department of Psychiatry, University of Massachusetts, Worcester, MA, USA
| | | | - Ingrid Melle
- NORMENT - K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, Oslo, Norway
| | - Scott Monteith
- Michigan State University College of Human Medicine, Traverse City Campus, Traverse City, MI, USA
| | - Gunnar Morken
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Research and Development, Psychiatry, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Rodrigo Munoz
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Fabiano G Nery
- Bipolar Disorder Research Program, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Yamima Osher
- Department of Psychiatry, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva Mental Health Center, Beer Sheva, Israel
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Danilo Quiroz
- Deparment of Psychiatry, Diego Portales University, Santiago, Chile
| | - Raj Ramesar
- UCT/MRC Human Genetics Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Natalie Rasgon
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Palo Alto, CA, USA
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe-University Frankfurt am Main, Germany
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Kemal Sagduyu
- Department of Psychiatry, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Ângela Miranda-Scippa
- Department of Neuroscience and Mental Health, Federal University of Bahia, Salvador, Brazil
| | - Emanuel Severus
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | | | - Dan J Stein
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Sergio Strejilevich
- Bipolar Disorder Program, Neuroscience Institute, Favaloro University, Buenos Aires, Argentina
| | - Ahmad Hatim Sulaiman
- Department of Psychological Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kirsi Suominen
- City of Helsinki, Department of Social Services and Health Care, Psychiatry, Helsinki, Finland
| | - Hiromi Tagata
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Yoshitaka Tatebayashi
- Schizophrenia & Affective Disorders Research Project, Tokyo Metropolitan Institute of Medical Science, Seatagaya, Tokyo, Japan
| | - Carla Torrent
- Bipolar Disorders Program, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Eduard Vieta
- Bipolar Disorders Program, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Biju Viswanath
- Department of Psychiatry, NIMHANS, Bangalore 560029, India
| | - Mihir J Wanchoo
- Department of Psychiatry & Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Mark Zetin
- Department of Psychology, Chapman University, Orange, CA, USA
| | - Peter C Whybrow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|