1
|
Tram NDT, Xu J, Chan KH, Rajamani L, Ee PLR. Bacterial clustering biomaterials as anti-infective therapies. Biomaterials 2025; 316:123017. [PMID: 39708775 DOI: 10.1016/j.biomaterials.2024.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
In Nature, bacterial clustering by host-released peptides or nucleic acids is an evolutionarily conserved immune defense strategy employed to prevent adhesion of pathogenic microbes, which is prerequisite for most infections. Synthetic anti-adhesion strategies present as non-lethal means of targeting bacteria and may potentially be used to avoid resistance against antimicrobial therapies. From bacteria-agglutinating biomolecules discovered in nature to synthetic designs involving peptides, cationic polymers and nanoparticles, the modes of actions appear broad and unconsolidated. Herein, we present a critical review and update of the state-of-the-art in synthetic bacteria-clustering designs with proposition of a more streamlined nomenclature and classification. Overall, this review aims to consolidate the conceptual framework in the field of bacterial clustering and highlight its potentials as an avenue for discovering novel antibacterial biomaterials.
Collapse
Affiliation(s)
- Nhan Dai Thien Tram
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Jian Xu
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore; NUS College, National University of Singapore, 18 College Avenue East, Singapore, 138593, Singapore
| | - Lakshminarayanan Rajamani
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore; Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, 169856, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore.
| |
Collapse
|
2
|
Iaboni M, Crivellin F, Arena F, La Cava F, Cordaro A, Stummo F, Faletto D, Huet S, Candela L, Pedrault J, Zanella ER, Bertotti A, Blasi F, Maiocchi A, Poggi L, Reitano E. Complete preclinical evaluation of the novel antibody mimetic Nanofitin-IRDye800CW for diverse non-invasive diagnostic applications in the management of HER-2 positive tumors. Sci Rep 2025; 15:9832. [PMID: 40118987 PMCID: PMC11928573 DOI: 10.1038/s41598-025-93696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 03/10/2025] [Indexed: 03/24/2025] Open
Abstract
There are well-known limitations associated to the use of antibodies in the non-invasive detection of HER-2 expression. In fact, current procedures recommended for diagnostic purposes of HER-2 status are still invasive techniques. Here, a novel, smaller diagnostic probe, the anti-HER-2 Nanofitin conjugated to the fluorophore IRDye800CW (NF-800), underwent an in vitro/in vivo proof of concept study by Optical Imaging. NF-800 showed high affinity and specificity for the cellular target, and the ability to internalize into HER-2 positive cells. By ex vivo analysis, NF-800 showed a selective tumor accumulation in xenograft tumor models, and also a good tumor targeting efficacy in translational preclinical setups, such as orthotopic and patient-derived xenograft (PDX) models. In the latter, NF-800 was compared to the anti-HER-2 antibody Trastuzumab, displaying a large diagnostic advantage. Interestingly, NF-800 did not seem to share the same binding site with Trastuzumab and Pertuzumab, opening specific theragnostic opportunities for NF-800 in combination with standard-of-care antibodies.
Collapse
Affiliation(s)
- Margherita Iaboni
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy.
| | - Federico Crivellin
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Francesca Arena
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Francesca La Cava
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Alessia Cordaro
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Francesco Stummo
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Daniele Faletto
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Simon Huet
- Affilogic SAS, 24 Rue de La Rainière, 44300, Nantes, France
| | - Leo Candela
- Affilogic SAS, 24 Rue de La Rainière, 44300, Nantes, France
| | - Jessy Pedrault
- Affilogic SAS, 24 Rue de La Rainière, 44300, Nantes, France
| | - Eugenia R Zanella
- Candiolo Cancer Institute - FPO IRCCS, Strada Provinciale 142, 10060, Candiolo, Turin, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute - FPO IRCCS, Strada Provinciale 142, 10060, Candiolo, Turin, Italy
- Department of Oncology, University of Turin, Candiolo, Turin, Italy
| | - Francesco Blasi
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Alessandro Maiocchi
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Luisa Poggi
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Erika Reitano
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| |
Collapse
|
3
|
Deepak D, Wu J, Corvaglia V, Allmendinger L, Scheckenbach M, Tinnefeld P, Huc I. DNA Mimic Foldamer Recognition of a Chromosomal Protein. Angew Chem Int Ed Engl 2025; 64:e202422958. [PMID: 39714421 DOI: 10.1002/anie.202422958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
Helical aromatic oligoamide foldamers bearing anionic side chains that mimic the overall shape and charge surface distribution of DNA were synthesized. Their interactions with chromosomal protein Sac7d, a non-sequence-selective DNA-binder that kinks DNA, were investigated by Surface Plasmon Resonance (SPR), Isothermal Titration Calorimetry (ITC), Circular Dichroism spectroscopy (CD), melting curve analysis, Atomic Force Microscopy (AFM), and Nuclear Magnetic Resonance (NMR), as well as by single crystal X-ray crystallography. The foldamers were shown to bind to Sac7d better than a DNA duplex of comparable length. The interaction is diastereoselective and takes place at the DNA binding site. Crystallography revealed that the DNA mimic foldamers have a binding mode of their own and that they can bind to Sac7d without being kinked.
Collapse
Affiliation(s)
- Deepak Deepak
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Jiaojiao Wu
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Valentina Corvaglia
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
- Current address: Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (Italy) & Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Michael Scheckenbach
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Philip Tinnefeld
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
4
|
Pappalardo M, Sipala FM, Nicolosi MC, Guccione S, Ronsisvalle S. Recent Applications of In Silico Approaches for Studying Receptor Mutations Associated with Human Pathologies. Molecules 2024; 29:5349. [PMID: 39598735 PMCID: PMC11596970 DOI: 10.3390/molecules29225349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
In recent years, the advent of computational techniques to predict the potential activity of a drug interacting with a receptor or to predict the structure of unidentified proteins with aberrant characteristics has significantly impacted the field of drug design. We provide a comprehensive review of the current state of in silico approaches and software for investigating the effects of receptor mutations associated with human diseases, focusing on both frequent and rare mutations. The reported techniques include virtual screening, homology modeling, threading, docking, and molecular dynamics. This review clearly shows that it is common for successful studies to integrate different techniques in drug design, with docking and molecular dynamics being the most frequently used techniques. This trend reflects the current emphasis on developing novel therapies for diseases resulting from receptor mutations with the recently discovered AlphaFold algorithm as the driving force.
Collapse
Affiliation(s)
- Matteo Pappalardo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
| | - Federica Maria Sipala
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Milena Cristina Nicolosi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Salvatore Guccione
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
| | - Simone Ronsisvalle
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
| |
Collapse
|
5
|
Huet S, Zeisser Labouebe M, Castro R, Jacquot P, Pedrault J, Viollet S, Van Simaeys G, Doumont G, Larbanoix L, Zindy E, Cunha AE, Scapozza L, Cinier M. Targeted Nanofitin-drug Conjugates Achieve Efficient Tumor Delivery and Therapeutic Effect in an EGFRpos Mouse Xenograft Model. Mol Cancer Ther 2023; 22:1343-1351. [PMID: 37578807 PMCID: PMC10618730 DOI: 10.1158/1535-7163.mct-22-0805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/13/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Adjusting the molecular size, the valency and the pharmacokinetics of drug conjugates are as many leverages to improve their therapeutic window, notably by affecting tumor penetration, renal clearance, and short systemic exposure. In that regard, small tumor-targeting ligands are gaining attention. In this study, we demonstrate the benefits of the small Nanofitin alternative scaffolds (7 kDa) as selective tumor-targeting modules for the generation of drug conjugates, focusing on Nanofitins B10 and D8 directed against the EGFR. Owing to their small size and monovalent format, the two Nanofitins displayed a fast and deep tumor penetration in EGFR-positive A431 xenografts in BALB/c nude mice after intravenous administration, yielding to a targeting of respectively 67.9% ± 14.1 and 98.9% ± 0.7 of the tumor cells as demonstrated by IHC. Conjugation with the monomethyl auristatin E toxin provided homogeneous Nanofitin-drug conjugates, with an overall yield of ≥97%, for in vivo assessment in a curative xenograft model using bioluminescent, EGFR-positive, A431 cells in BALB/c nude mice. Internalization was found critical for efficient release of the toxin. Hence, the intravenous administration of the D8-based construct showed significant antitumor effect in vivo as determined by monitoring tumor volumes and bioluminescence levels over 2 months.
Collapse
Affiliation(s)
| | - Magali Zeisser Labouebe
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Rute Castro
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | | | | | | | - Gaetan Van Simaeys
- CMMI, Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Charleroi (Gosselies), Belgium
| | - Gilles Doumont
- CMMI, Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Charleroi (Gosselies), Belgium
| | - Lionel Larbanoix
- CMMI, Center for Microscopy and Molecular Imaging, Université de Mons, Charleroi (Gosselies), Belgium
| | - Egor Zindy
- CMMI, Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Charleroi (Gosselies), Belgium
| | - António E. Cunha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
6
|
Ávila-Moreno F. Nanofitins and their applications in human health and lung diseases. Mol Ther 2023; 31:2813-2814. [PMID: 37729903 PMCID: PMC10556214 DOI: 10.1016/j.ymthe.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Affiliation(s)
- Federico Ávila-Moreno
- Lung Diseases and Functional Epigenomics Laboratory (LUDIFE), Biomedicine Research Unit (UBIMED). Facultad de Estudios Superiores-Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM). México State, Cp. 54090. México; Research Unit, Subdirección de Investigación Básica. Instituto Nacional de Cancerología (INCAN). México City, Cp. 14080. México; Research Unit. Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas. México City, Cp. 14080. México.
| |
Collapse
|
7
|
Viollet S, Enouf E, Picot J, Noël L, Huet S, Le Pennec D, Sécher T, Heuzé-Vourc'h N, Kitten O, Cinier M. Inhalable Nanofitin demonstrates high neutralization of SARS-CoV-2 virus via direct application in respiratory tract. Mol Ther 2023; 31:2861-2871. [PMID: 37652011 PMCID: PMC10556219 DOI: 10.1016/j.ymthe.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Nanofitins are small and hyperthermostable alternative protein scaffolds that display physicochemical properties making them suitable for the development of topical therapeutics, notably for the treatment of pulmonary infectious diseases. Local administration of biologics to the lungs involves a particularly stressful step of nebulization that is poorly tolerated by most antibodies, which limits their application by this delivery route. During the COVID-19 pandemic, we generated anti-SARS-CoV-2 monomeric Nanofitins of high specificity for the spike protein. Hit Nanofitin candidates were identified based on their binding properties with punctual spike mutants and assembled into a linear multimeric construction constituting of four different Nanofitins, allowing the generation of a highly potent anti-SARS-CoV-2 molecule. The therapeutic efficacy of the multimeric assembly was demonstrated both in in vitro and in vivo models. Interestingly, the neutralization mechanism of the multimeric construction seems to involve a particular conformation switch of the spike trimer. In addition, we reported the stability and the conserved activity of the tetrameric construction after nebulization. This advantageous developability feature for pulmonary administration associated with the ease of assembly, as well as the fast generation process position the Nanofitin technology as a potential therapeutic solution for emerging infectious diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Déborah Le Pennec
- INSERM, Research Center for Respiratory Diseases, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Thomas Sécher
- INSERM, Research Center for Respiratory Diseases, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Research Center for Respiratory Diseases, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | | | | |
Collapse
|
8
|
Chew KS, Wells RC, Moshkforoush A, Chan D, Lechtenberg KJ, Tran HL, Chow J, Kim DJ, Robles-Colmenares Y, Srivastava DB, Tong RK, Tong M, Xa K, Yang A, Zhou Y, Akkapeddi P, Annamalai L, Bajc K, Blanchette M, Cherf GM, Earr TK, Gill A, Huynh D, Joy D, Knight KN, Lac D, Leung AWS, Lexa KW, Liau NPD, Becerra I, Malfavon M, McInnes J, Nguyen HN, Lozano EI, Pizzo ME, Roche E, Sacayon P, Calvert MEK, Daneman R, Dennis MS, Duque J, Gadkar K, Lewcock JW, Mahon CS, Meisner R, Solanoy H, Thorne RG, Watts RJ, Zuchero YJY, Kariolis MS. CD98hc is a target for brain delivery of biotherapeutics. Nat Commun 2023; 14:5053. [PMID: 37598178 PMCID: PMC10439950 DOI: 10.1038/s41467-023-40681-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023] Open
Abstract
Brain exposure of systemically administered biotherapeutics is highly restricted by the blood-brain barrier (BBB). Here, we report the engineering and characterization of a BBB transport vehicle targeting the CD98 heavy chain (CD98hc or SLC3A2) of heterodimeric amino acid transporters (TVCD98hc). The pharmacokinetic and biodistribution properties of a CD98hc antibody transport vehicle (ATVCD98hc) are assessed in humanized CD98hc knock-in mice and cynomolgus monkeys. Compared to most existing BBB platforms targeting the transferrin receptor, peripherally administered ATVCD98hc demonstrates differentiated brain delivery with markedly slower and more prolonged kinetic properties. Specific biodistribution profiles within the brain parenchyma can be modulated by introducing Fc mutations on ATVCD98hc that impact FcγR engagement, changing the valency of CD98hc binding, and by altering the extent of target engagement with Fabs. Our study establishes TVCD98hc as a modular brain delivery platform with favorable kinetic, biodistribution, and safety properties distinct from previously reported BBB platforms.
Collapse
Affiliation(s)
- Kylie S Chew
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Robert C Wells
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Arash Moshkforoush
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Darren Chan
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kendra J Lechtenberg
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Hai L Tran
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Johann Chow
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Do Jin Kim
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | | | - Devendra B Srivastava
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Raymond K Tong
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Mabel Tong
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kaitlin Xa
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Alexander Yang
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Yinhan Zhou
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Padma Akkapeddi
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Lakshman Annamalai
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kaja Bajc
- Department of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
| | - Marie Blanchette
- Department of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
| | - Gerald Maxwell Cherf
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Timothy K Earr
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Audrey Gill
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - David Huynh
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - David Joy
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kristen N Knight
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Diana Lac
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Amy Wing-Sze Leung
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Katrina W Lexa
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Nicholas P D Liau
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Isabel Becerra
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Mario Malfavon
- Department of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
| | - Joseph McInnes
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Hoang N Nguyen
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Edwin I Lozano
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Michelle E Pizzo
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Elysia Roche
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Patricia Sacayon
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Meredith E K Calvert
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Richard Daneman
- Department of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
| | - Mark S Dennis
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Joseph Duque
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kapil Gadkar
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Joseph W Lewcock
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Cathal S Mahon
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - René Meisner
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Hilda Solanoy
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Robert G Thorne
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Ryan J Watts
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Y Joy Yu Zuchero
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| | - Mihalis S Kariolis
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| |
Collapse
|
9
|
Pignataro MF, Herrera MG, Fernández NB, Aran M, Gentili HG, Battaglini F, Santos J. Selection of synthetic proteins to modulate the human frataxin function. Biotechnol Bioeng 2023; 120:409-425. [PMID: 36225115 DOI: 10.1002/bit.28263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/13/2022] [Accepted: 10/09/2022] [Indexed: 01/13/2023]
Abstract
Frataxin is a kinetic activator of the mitochondrial supercomplex for iron-sulfur cluster assembly. Low frataxin expression or a decrease in its functionality results in Friedreich's Ataxia (FRDA). With the aim of creating new molecular tools to study this metabolic pathway, and ultimately, to explore new therapeutic strategies, we have investigated the possibility of obtaining small proteins exhibiting a high affinity for frataxin. In this study, we applied the ribosome display approach, using human frataxin as the target. We focused on Affi_224, one of the proteins that we were able to select after five rounds of selection. We have studied the interaction between both proteins and discussed some applications of this specific molecular tutor, concerning the modulation of the supercomplex activity. Affi_224 and frataxin showed a KD value in the nanomolar range, as judged by surface plasmon resonance analysis. Most likely, it binds to the frataxin acidic ridge, as suggested by the analysis of chemical shift perturbations (nuclear magnetic resonance) and computational simulations. Affi_224 was able to increase Cys NFS1 desulfurase activation exerted by the FRDA frataxin variant G130V. Importantly, Affi_224 interacts with frataxin in a human cellular model. Our results suggest quaternary addition may be a new tool to modulate frataxin function in vivo. Nevertheless, more functional experiments under physiological conditions should be carried out to evaluate Affi_224 effectiveness in FRDA cell models.
Collapse
Affiliation(s)
- María Florencia Pignataro
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Georgina Herrera
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia Brenda Fernández
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Martín Aran
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina.,Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Hernán Gustavo Gentili
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Battaglini
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET), Buenos Aires, Argentina
| | - Javier Santos
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
10
|
Design of an artificial phage-display library based on a new scaffold improved for average stability of the randomized proteins. Sci Rep 2023; 13:1339. [PMID: 36693880 PMCID: PMC9873692 DOI: 10.1038/s41598-023-27710-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Scaffold-based protein libraries are designed to be both diverse and rich in functional/folded proteins. However, introducing an extended diversity while preserving stability of the initial scaffold remains a challenge. Here we developed an original approach to select the ensemble of folded proteins from an initial library. The thermostable CheY protein from Thermotoga maritima was chosen as scaffold. Four loops of CheY were diversified to create a new binding surface. The subset of the library giving rise to folded proteins was first selected using a natural protein partner of the template scaffold. Then, a gene shuffling approach based on a single restriction enzyme was used to recombine DNA sequences encoding these filtrated variants. Taken together, the filtration strategy and the shuffling of the filtrated sequences were shown to enrich the library in folded and stable sequences while maintaining a large diversity in the final library (Lib-Cheytins 2.1). Binders of the Oplophorus luciferase Kaz domain were then selected by phage display from the final library, showing affinities in the μM range. One of the best variants induced a loss of 92% of luminescent activity, suggesting that this Cheytin preferentially binds to the Kaz active site.
Collapse
|
11
|
Ranaudo A, Cosentino U, Greco C, Moro G, Bonardi A, Maiocchi A, Moroni E. Evaluation of docking procedures reliability in affitins-partners interactions. Front Chem 2022; 10:1074249. [DOI: 10.3389/fchem.2022.1074249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Affitins constitute a class of small proteins belonging to Sul7d family, which, in microorganisms such as Sulfolobus acidocaldarius, bind DNA preventing its denaturation. Thanks to their stability and small size (60–66 residues in length) they have been considered as ideal candidates for engineering and have been used for more than 10 years now, for different applications. The individuation of a mutant able to recognize a specific target does not imply the knowledge of the binding geometry between the two proteins. However, its identification is of undoubted importance but not always experimentally accessible. For this reason, computational approaches such as protein-protein docking can be helpful for an initial structural characterization of the complex. This method, which produces tens of putative binding geometries ordered according to a binding score, needs to be followed by a further reranking procedure for finding the most plausible one. In the present paper, we use the server ClusPro for generating docking models of affitins with different protein partners whose experimental structures are available in the Protein Data Bank. Then, we apply two protocols for reranking the docking models. The first one investigates their stability by means of Molecular Dynamics simulations; the second one, instead, compares the docking models with the interacting residues predicted by the Matrix of Local Coupling Energies method. Results show that the more efficient way to deal with the reranking problem is to consider the information given by the two protocols together, i.e. employing a consensus approach.
Collapse
|
12
|
Crook ZR, Girard EJ, Sevilla GP, Brusniak MY, Rupert PB, Friend DJ, Gewe MM, Clarke M, Lin I, Ruff R, Pakiam F, Phi TD, Bandaranayake A, Correnti CE, Mhyre AJ, Nairn NW, Strong RK, Olson JM. Ex silico engineering of cystine-dense peptides yielding a potent bispecific T cell engager. Sci Transl Med 2022; 14:eabn0402. [PMID: 35584229 PMCID: PMC10118748 DOI: 10.1126/scitranslmed.abn0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cystine-dense peptides (CDPs) are a miniprotein class that can drug difficult targets with high affinity and low immunogenicity. Tools for their design, however, are not as developed as those for small-molecule and antibody drugs. CDPs have diverse taxonomic origins, but structural characterization is lacking. Here, we adapted Iterative Threading ASSEmbly Refinement (I-TASSER) and Rosetta protein modeling software for structural prediction of 4298 CDP scaffolds and performed in silico prescreening for CDP binders to targets of interest. Mammalian display screening of a library of docking-enriched, methionine and tyrosine scanned (DEMYS) CDPs against PD-L1 yielded binders from four distinct CDP scaffolds. One was affinity-matured, and cocrystallography yielded a high-affinity (KD = 202 pM) PD-L1-binding CDP that competes with PD-1 for PD-L1 binding. Its subsequent incorporation into a CD3-binding bispecific T cell engager produced a molecule with pM-range in vitro T cell killing potency and which substantially extends survival in two different xenograft tumor-bearing mouse models. Both in vitro and in vivo, the CDP-incorporating bispecific molecule outperformed a comparator antibody-based molecule. This CDP modeling and DEMYS technique can accelerate CDP therapeutic development.
Collapse
Affiliation(s)
- Zachary R Crook
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Blaze Bioscience Inc., Seattle, WA 98109, USA
| | - Emily J Girard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gregory P Sevilla
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Blaze Bioscience Inc., Seattle, WA 98109, USA
| | - Mi-Youn Brusniak
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter B Rupert
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Della J Friend
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mesfin M Gewe
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Midori Clarke
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ida Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raymond Ruff
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Fiona Pakiam
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Ashok Bandaranayake
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Andrew J Mhyre
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Roland K Strong
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
13
|
Luo R, Liu H, Cheng Z. Protein scaffolds: Antibody alternative for cancer diagnosis and therapy. RSC Chem Biol 2022; 3:830-847. [PMID: 35866165 PMCID: PMC9257619 DOI: 10.1039/d2cb00094f] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Although antibodies are well developed and widely used in cancer therapy and diagnostic fields, some defects remain, such as poor tissue penetration, long in vivo metabolic retention, potential cytotoxicity, patent limitation, and high production cost. These issues have led scientists to explore and develop novel antibody alternatives. Protein scaffolds are small monomeric proteins with stable tertiary structures and mutable residues, which emerged in the 1990s. By combining robust gene engineering and phage display techniques, libraries with sufficient diversity could be established for target binding scaffold selection. Given the properties of small size, high affinity, and excellent specificity and stability, protein scaffolds have been applied in basic research, and preclinical and clinical fields over the past two decades. To date, more than 20 types of protein scaffolds have been developed, with the most frequently used being affibody, adnectin, ANTICALIN®, DARPins, and knottin. In this review, we focus on the protein scaffold applications in cancer therapy and diagnosis in the last 5 years, and discuss the pros and cons, and strategies of optimization and design. Although antibodies are well developed and widely used in cancer therapy and diagnostic fields, some defects remain, such as poor tissue penetration, long in vivo metabolic retention, potential cytotoxicity, patent limitation, and high production cost.![]()
Collapse
Affiliation(s)
- Renli Luo
- Department of Molecular Medicine, College of Life and Health Sciences, Northeastern University Shenyang China
| | - Hongguang Liu
- Department of Molecular Medicine, College of Life and Health Sciences, Northeastern University Shenyang China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery Yantai Shandong 264117 China
| |
Collapse
|
14
|
Szczubiał M, Kankofer M, Wawrzykowski J, Dąbrowski R, Bochniarz M, Brodzki P. Activity of the glycosidases β-galactosidase, α-l-fucosidase, β-N-acetyl-hexosaminidase, and sialidase in uterine tissues from female dogs in diestrus with and without pyometra. Theriogenology 2022; 177:133-139. [PMID: 34700070 DOI: 10.1016/j.theriogenology.2021.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023]
Abstract
This study aimed to compare the activity of selected glycosidases (β-galactosidase, α-l-fucosidase, β-N-acetyl-hexosaminidase, and sialidase) in homogenates of uterine tissues obtained from female dogs with and without pyometra. In addition, it examined the availability of substrates for these glycosidases in the homogenates. The study was carried out on female dogs undergoing ovariohysterectomy for pyometra (n = 10) and clinically healthy dogs (n = 10) undergoing elective spaying. The activity of β-galactosidase, α-l-fucosidase, and β-N-acetyl-hexosaminidase was analyzed using a spectrofluorometer and that of sialidase using a colorimetric method. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis with Alcian Blue (AB) and Periodic Acid-Schiff (PAS) staining was performed to determine the presence of substrates for these glycosidases in the homogenates of uterine tissues. The results revealed that the activity of all the examined glycosidases was significantly higher (P < 0.05) in the uterine tissues isolated from dogs with pyometra in comparison to healthy dogs. The electrophoretic patterns of the selected samples showed several proteins, which contained different sugar moieties stained by AB and PAS and the profiles differed significantly between the pyometra group and the healthy group. Densitometric analysis of AB staining showed patterns between 233 and 148, 86 and 55, and 43 and 20 kDa, which differed markedly in sugar content between the examined groups of animals. Similarly, PAS staining analysis revealed patterns of different molecular weights, between 233 and 117 and between 55 and 32 kDa, which also differed in sugar content. These findings suggest that canine pyometra is accompanied by the increase in the activity of selected glycosidases in the uterus. This could potentially modify the glycan structures of uterine glycoproteins and in result their biological functions. Further studies are needed to elucidate the potential role of the increased activity of glycosidases in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Marek Szczubiał
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Głeboka 30, 20-612, Lublin, Poland.
| | - Marta Kankofer
- Department of Animal Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| | - Jacek Wawrzykowski
- Department of Animal Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| | - Roman Dąbrowski
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Głeboka 30, 20-612, Lublin, Poland
| | - Mariola Bochniarz
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Głeboka 30, 20-612, Lublin, Poland
| | - Piotr Brodzki
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Głeboka 30, 20-612, Lublin, Poland
| |
Collapse
|
15
|
Mouratou B, Pecorari F. Application of Affitins for Affinity Purification of Proteins. Methods Mol Biol 2022; 2466:37-48. [PMID: 35585309 DOI: 10.1007/978-1-0716-2176-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Affinity chromatography is a powerful purification technique, as it allows proteins of interest to be obtained at a high degree of purity in a single step. This technique can be applied on a research laboratory scale as well as on an industrial scale. The interaction involved in affinity separation most often involves a natural ligand or an antibody specific for the protein of interest, or the recognition of a peptide tag artificially added to the recombinant protein. Unfortunately, natural ligands are not always available and it may be undesirable or impossible to add a purification tag, especially for the production of therapeutic proteins. We have developed Affitins as a new class of artificial affinity proteins that can be generated against virtually any protein of interest. Due to their very high selectivity, their remarkable robustness against extreme acid or alkaline conditions and their low production cost, Affitins are particularly suited to this technique. We describe here the production of Affitins and their immobilization on resin beads to prepare affinity chromatography columns. The protocol also describes the use of these columns.
Collapse
Affiliation(s)
- Barbara Mouratou
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France
| | - Frédéric Pecorari
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France.
| |
Collapse
|
16
|
Ahmadi MKB, Mohammadi SA, Makvandi M, Mamouei M, Rahmati M, Dehghani H, Wood DW. Recent Advances in the Scaffold Engineering of Protein Binders. Curr Pharm Biotechnol 2021; 22:878-891. [PMID: 32838715 DOI: 10.2174/1389201021999200824101035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
In recent years, extensive attention has been given to the generation of new classes of ligand- specific binding proteins to supplement monoclonal antibodies. A combination of protein engineering and display technologies has been used to manipulate non-human antibodies for humanization and stabilization purposes or even the generation of new binding proteins. Engineered protein scaffolds can now be directed against therapeutic targets to treat cancer and immunological disorders. Although very few of these scaffolds have successfully passed clinical trials, their remarkable properties such as robust folding, high solubility, and small size motivate their employment as a tool for biology and applied science studies. Here, we have focused on the generation of new non-Ig binding proteins and single domain antibody manipulation, with a glimpse of their applications.
Collapse
Affiliation(s)
- Mohammad K B Ahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed A Mohammadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manoochehr Makvandi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Morteza Mamouei
- Department of Animal Science, Ramin Agricultural and Natural Resources University, Ahvaz, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hesam Dehghani
- Stem Cells Regenerative Research Group, Ressearch Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - David W Wood
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, OH 43210, United States
| |
Collapse
|
17
|
New thermostable endoglucanase from Spirochaeta thermophila and its mutants with altered substrate preferences. Appl Microbiol Biotechnol 2021; 105:1133-1145. [PMID: 33427929 DOI: 10.1007/s00253-020-11077-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/30/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Endoglucanases are key elements in several industrial applications, such as cellulosic biomass hydrolysis, cellulose fiber modification for the production paper and composite materials, and in nanocellulose production. In all of these applications, the desired function of the endoglucanase is to create nicks in the amorphous regions of the cellulose. However, endoglucanase can be diverted from its activity on the fibers by other substrates-soluble oligosaccharides. This issue was addressed in the current study using enzyme engineering and an enzyme evolution approach. To this end, a hypothetical endoglucanase from a thermostable bacterium Spirochaeta thermophila was for the first time cloned and characterized. The wild-type enzyme was used as a starting point for mutagenesis and molecular evolution toward a preference for the higher molecular weight substrates. The best of the evolved enzymes was more active than the wild-type enzyme toward high molecular weight substrate at temperatures below 45 °C (3-fold more active at 30 °C) and showed little or no activity with low molecular weight substrates. These findings can be instrumental in bioeconomy sectors, such as second-generation biofuels and biomaterials from lignocellulosic biomass. KEY POINTS: • A new thermostable endoglucanase was characterized. • The substrate specificity of this endoglucanase was changed by means of genetic engineering. • A mutant with a preference for long molecular weight substrate was obtained and proposed to be beneficial for cellulose fiber modification.
Collapse
|
18
|
Characterization of Affitin proteolytic digestion in biorelevant media and improvement of their stabilities via protein engineering. Sci Rep 2020; 10:19703. [PMID: 33184451 PMCID: PMC7661517 DOI: 10.1038/s41598-020-76855-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Affitins are a novel class of small 7 kDa artificial proteins which can be used as antibody substitutes in therapeutic, diagnostic and biotechnological applications. One challenge for this type of protein agent is their behaviour in the context of oral administration. The digestive system is central, and biorelevant media have fast emerged as relevant and reliable tools for evaluating the bioavailability of drugs. This study describes, for the first time, the stability of Affitins under simulated gastric and intestinal digestion conditions. Affitins appear to be degraded into stable fragments in in vitro gastric medium. We identified cleavage sites generated by pepsin that were silenced by site-directed mutagenesis. This protein engineering allowed us to enhance Affitin properties. We showed that a mutant M1 containing a double mutation of amino acid residues 6 and 7 in H4 and C3 Affitins acquired a resistance against proteolytic digestion. In addition, these mutations were beneficial for target affinity, as well as for production yield. Finally, we found that the mutated residues kept or increased the important pH and temperature stabilities of Affitins. These improvements are particularly sought after in the development of engineered binding proteins for research tools, preclinical studies and clinical applications.
Collapse
|
19
|
Abstract
Engineered protein scaffolds have made a tremendous contribution to the panel of affinity tools owing to their favorable biophysical properties that make them useful for many applications. In 2007, our group paved the way for using archaeal Sul7d proteins for the design of artificial affinity ligands, so-called Affitins. For many years, Sac7d and Sso7d have been used as molecular basis to obtain binders for various targets. Recently, we characterized their old gifted protein family and identified Aho7c, originating from Acidianus hospitalis, as the shortest member (60 amino-acids) with impressive stability (96.5 °C, pH 0-12). Here, we describe the construction of Aho7c combinatorial libraries and their use for selection of binders by ribosome display.
Collapse
|
20
|
Vukojicic P, Béhar G, Tawara MH, Fernandez-Villamarin M, Pecorari F, Fernandez-Megia E, Mouratou B. Multivalent Affidendrons with High Affinity and Specificity toward Staphylococcus aureus as Versatile Tools for Modulating Multicellular Behaviors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21391-21398. [PMID: 31120726 DOI: 10.1021/acsami.9b05702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multivalency is a widely occurring natural phenomenon often exploited in nanotechnology to enhance biorecognition. We report the preparation and characterization of versatile, multivalent Affitin-dendrimer conjugates (Affidendrons) showcased by a set targeting Staphylococcus aureus ( S. aureus), an opportunistic pathogen causing numerous hospital- and community-acquired infections. Affitins are small affinity proteins characterized by higher stability and lower cost-effective production than antibodies. The strategy presented provides a platform for the rational design of multivalent nanodevices that, retaining the ability of Affitins to recognize their target with high specificity, achieve a largely enhanced affinity. Affidendrons with precisely designed size and valency have been exploited to modulate complex multicellular behaviors of S. aureus, such as agglutination and biofilm formation. Agglutination assays showed that Affidendrons rapidly cross-link S. aureus strains with high bacterial cell selectivity. Moreover, remarkably low concentrations of Affidendrons were able to effectively prevent biofilm formation. Overall, Affidendrons represent a promising platform for the rapid and selective pathogen identification, infection imaging, and theranostic applications.
Collapse
Affiliation(s)
- Petar Vukojicic
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes , Nantes , France
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , Jenaro de la Fuente s/n , 15782 Santiago de Compostela , Spain
| | - Ghislaine Béhar
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes , Nantes , France
| | - Maun H Tawara
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , Jenaro de la Fuente s/n , 15782 Santiago de Compostela , Spain
| | - Marcos Fernandez-Villamarin
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , Jenaro de la Fuente s/n , 15782 Santiago de Compostela , Spain
| | - Frédéric Pecorari
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes , Nantes , France
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , Jenaro de la Fuente s/n , 15782 Santiago de Compostela , Spain
| | - Barbara Mouratou
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes , Nantes , France
| |
Collapse
|
21
|
Béhar G, Renodon‐Cornière A, Kambarev S, Vukojicic P, Caroff N, Corvec S, Mouratou B, Pecorari F. Whole‐bacterium ribosome display selection for isolation of highly specific anti‐
Staphyloccocus aureus
Affitins for detection‐ and capture‐based biomedical applications. Biotechnol Bioeng 2019; 116:1844-1855. [DOI: 10.1002/bit.26989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Ghislaine Béhar
- CRCINA, INSERM, CNRSUniversité d'Angers, Université de NantesNantes France
| | | | - Stanimir Kambarev
- CRCINA, INSERM, CNRSUniversité d'Angers, Université de NantesNantes France
| | - Petar Vukojicic
- CRCINA, INSERM, CNRSUniversité d'Angers, Université de NantesNantes France
| | - Nathalie Caroff
- EA3826 Thérapeutiques cliniques et expérimentales des infections, UFR de MédecineUniversité de NantesNantes France
| | - Stéphane Corvec
- CRCINA, INSERMUniversité d'Angers, Université de NantesNantes France
- Service de Bactériologie – Hygiène hospitalièreCHU de NantesNantes France
| | - Barbara Mouratou
- CRCINA, INSERM, CNRSUniversité d'Angers, Université de NantesNantes France
| | - Frédéric Pecorari
- CRCINA, INSERM, CNRSUniversité d'Angers, Université de NantesNantes France
| |
Collapse
|
22
|
Golinski AW, Holec PV, Mischler KM, Hackel BJ. Biophysical Characterization Platform Informs Protein Scaffold Evolvability. ACS COMBINATORIAL SCIENCE 2019; 21:323-335. [PMID: 30681831 PMCID: PMC6458986 DOI: 10.1021/acscombsci.8b00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Evolving specific molecular recognition function of proteins requires strategic navigation of a complex mutational landscape. Protein scaffolds aid evolution via a conserved platform on which a modular paratope can be evolved to alter binding specificity. Although numerous protein scaffolds have been discovered, the underlying properties that permit binding evolution remain unknown. We present an algorithm to predict a protein scaffold's ability to evolve novel binding function based upon computationally calculated biophysical parameters. The ability of 17 small proteins to evolve binding functionality across seven discovery campaigns was determined via magnetic activated cell sorting of 1010 yeast-displayed protein variants. Twenty topological and biophysical properties were calculated for 787 small protein scaffolds and reduced into independent components. Regularization deduced which extracted features best predicted binding functionality, providing a 4/6 true positive rate, a 9/11 negative predictive value, and a 4/6 positive predictive value. Model analysis suggests a large, disconnected paratope will permit evolved binding function. Previous protein engineering endeavors have suggested that starting with a highly developable (high producibility, stability, solubility) protein will offer greater mutational tolerance. Our results support this connection between developability and evolvability by demonstrating a relationship between protein production in the soluble fraction of Escherichia coli and the ability to evolve binding function upon mutation. We further explain the necessity for initial developability by observing a decrease in proteolytic stability of protein mutants that possess binding functionality over nonfunctional mutants. Future iterations of protein scaffold discovery and evolution will benefit from a combination of computational prediction and knowledge of initial developability properties.
Collapse
Affiliation(s)
- Alexander W. Golinski
- Department of Chemical Engineering and Materials Science, University of Minnesota−Twin Cities, 421 Washington Avenue Southeast, 356 Amundson Hall, Minneapolis, Minnesota 55455, United States
| | - Patrick V. Holec
- Department of Chemical Engineering and Materials Science, University of Minnesota−Twin Cities, 421 Washington Avenue Southeast, 356 Amundson Hall, Minneapolis, Minnesota 55455, United States
| | - Katelynn M. Mischler
- Department of Chemical Engineering and Materials Science, University of Minnesota−Twin Cities, 421 Washington Avenue Southeast, 356 Amundson Hall, Minneapolis, Minnesota 55455, United States
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota−Twin Cities, 421 Washington Avenue Southeast, 356 Amundson Hall, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Foley MH, Déjean G, Hemsworth GR, Davies GJ, Brumer H, Koropatkin NM. A Cell-Surface GH9 Endo-Glucanase Coordinates with Surface Glycan-Binding Proteins to Mediate Xyloglucan Uptake in the Gut Symbiont Bacteroides ovatus. J Mol Biol 2019; 431:981-995. [PMID: 30668971 PMCID: PMC6478033 DOI: 10.1016/j.jmb.2019.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/14/2018] [Accepted: 01/04/2019] [Indexed: 01/07/2023]
Abstract
Dietary fiber is an important food source for members of the human gut microbiome. Members of the dominant Bacteroidetes phylum capture diverse polysaccharides via the action of multiple cell surface proteins encoded within polysaccharide utilization loci (PUL). The independent activities of PUL-encoded glycoside hydrolases (GHs) and surface glycan-binding proteins (SGBPs) for the harvest of various glycans have been studied in detail, but how these proteins work together to coordinate uptake is poorly understood. Here, we combine genetic and biochemical approaches to discern the interplay between the BoGH9 endoglucanase and the xyloglucan-binding proteins SGBP-A and SGBP-B from the Bacteroides ovatus xyloglucan utilization locus (XyGUL). The expression of BoGH9, a weakly active xyloglucanase in isolation, is required in a strain that expresses a non-binding version of SGBP-A (SGBP-A*). The crystal structure of the BoGH9 enzyme suggests the molecular basis for its robust activity on mixed-linkage β-glucan compared to xyloglucan. However, catalytically inactive site-directed mutants of BoGH9 fail to complement the deletion of the active BoGH9 in a SGBP-A* strain. We also find that SGBP-B is needed in an SGBP-A* background to support growth on xyloglucan, but that the non-binding SGBP-B* protein acts in a dominant negative manner to inhibit growth on xyloglucan. We postulate a model whereby the SGBP-A, SGBP-B, and BoGH9 work together at the cell surface, likely within a discrete complex, and that xyloglucan binding by SGBP-B and BoGH9 may facilitate the orientation of the xyloglucan for transfer across the outer membrane.
Collapse
Affiliation(s)
- Matthew H Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Guillaume Déjean
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Glyn R Hemsworth
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Toxin Neutralization Using Alternative Binding Proteins. Toxins (Basel) 2019; 11:toxins11010053. [PMID: 30658491 PMCID: PMC6356946 DOI: 10.3390/toxins11010053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/07/2019] [Accepted: 01/12/2019] [Indexed: 12/20/2022] Open
Abstract
Animal toxins present a major threat to human health worldwide, predominantly through snakebite envenomings, which are responsible for over 100,000 deaths each year. To date, the only available treatment against snakebite envenoming is plasma-derived antivenom. However, despite being key to limiting morbidity and mortality among snakebite victims, current antivenoms suffer from several drawbacks, such as immunogenicity and high cost of production. Consequently, avenues for improving envenoming therapy, such as the discovery of toxin-sequestering monoclonal antibodies against medically important target toxins through phage display selection, are being explored. However, alternative binding protein scaffolds that exhibit certain advantages compared to the well-known immunoglobulin G scaffold, including high stability under harsh conditions and low cost of production, may pose as possible low-cost alternatives to antibody-based therapeutics. There is now a plethora of alternative binding protein scaffolds, ranging from antibody derivatives (e.g., nanobodies), through rationally designed derivatives of other human proteins (e.g., DARPins), to derivatives of non-human proteins (e.g., affibodies), all exhibiting different biochemical and pharmacokinetic profiles. Undeniably, the high level of engineerability and potentially low cost of production, associated with many alternative protein scaffolds, present an exciting possibility for the future of snakebite therapeutics and merit thorough investigation. In this review, a comprehensive overview of the different types of binding protein scaffolds is provided together with a discussion on their relevance as potential modalities for use as next-generation antivenoms.
Collapse
|
25
|
Biodiversity of Endophytic Fungi from Diverse Niches and Their Biotechnological Applications. ADVANCES IN ENDOPHYTIC FUNGAL RESEARCH 2019. [DOI: 10.1007/978-3-030-03589-1_6] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Endophytic Fungi: Biodiversity, Ecological Significance, and Potential Industrial Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-10480-1_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Resnier P, Lepeltier E, Emina AL, Galopin N, Bejaud J, David S, Ballet C, Benvegnu T, Pecorari F, Chourpa I, Benoit JP, Passirani C. Model Affitin and PEG modifications onto siRNA lipid nanocapsules: cell uptake and in vivo biodistribution improvements. RSC Adv 2019; 9:27264-27278. [PMID: 35529231 PMCID: PMC9070605 DOI: 10.1039/c9ra03668g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/06/2019] [Indexed: 01/16/2023] Open
Abstract
Malignant melanoma is an aggressive tumor, associated with the presence of local and/or distant metastases. The development of gene therapy by the use of small interfering RNA (siRNA) represents a promising new treatment. However, the protection of this biomolecule is necessary in order for it to be intravenously administrated, for example via its incorporation into nanomedicines. In parallel to the passive targeting usually obtained by pegylation, various studies have aimed at developing “smart” nanomedicines to efficiently deliver the drug to tumor sites. In this work, siRNA loaded lipid nanocapsules (LNCs) were modified with DSPE-polyethylene glycol (DSPE-PEG), tetraether-PEG (TE-PEG) and/or with an Affitin model, to assay multiple targeting strategies. The uptake of fluorescently labelled LNCs, nanocarrier integrity and siRNA release into human SK-Mel28 melanoma cells were studied by flow cytometry, conventional confocal microscopy and by confocal spectral imaging in a Förster Resonance Energy Transfer (FRET) mode. Surface modified siRNA LNCs were followed after human plasma incubation and after intravenous injection, in order to compare the stealth properties. Finally, the biodistribution of the different siRNA LNCs in healthy and melanoma tumor bearing mice models was assessed by in vivo biofluorescence imaging (BFI), to evaluate the potential tumor targeting ability. The post-insertion of DSPE-PEG induced a strong decrease of the internalization into melanoma cells compared to TE-PEG modification. Both PEG polymer decorations induced a great plasma protection of siRNA but only DSPE-PEG led to stealth properties, even at low concentration (5 mM). The Affitin grafting by thiolation of DSPE-PEG was validated on siRNA LNCs. DSPE-PEG-Affitin LNCs were not detected in this melanoma tumor model but did not show unspecific accumulation in organs. DSPE-PEG and TE-PEG LNCs induced a significant intratumoral accumulation of modified LNCs. Surface modifications of siRNA LNCs were assessed with innovative TE-PEG polymers and an Affitin model, in comparison to classic DSPE-PEG LNCs, in order to evaluate the potential tumor targeting of siRNA after intravenous administration.![]()
Collapse
Affiliation(s)
- Pauline Resnier
- MINT
- UNIV Angers
- INSERM 1066
- CNRS 6021
- Université Bretagne Loire
| | - Elise Lepeltier
- MINT
- UNIV Angers
- INSERM 1066
- CNRS 6021
- Université Bretagne Loire
| | | | | | - Jérôme Bejaud
- MINT
- UNIV Angers
- INSERM 1066
- CNRS 6021
- Université Bretagne Loire
| | - Stephanie David
- EA6295 – Nanomédicaments et Nanosondes
- Université François-Rabelais de Tours
- UFR de Pharmacie
- F-37200 Tours
- France
| | - Caroline Ballet
- Univ Rennes
- Ecole Nationale Supérieure de Chimie de Rennes
- CNRS
- ISCR-UMR 6226
- F-35000 Rennes
| | - Thierry Benvegnu
- Univ Rennes
- Ecole Nationale Supérieure de Chimie de Rennes
- CNRS
- ISCR-UMR 6226
- F-35000 Rennes
| | | | - Igor Chourpa
- EA6295 – Nanomédicaments et Nanosondes
- Université François-Rabelais de Tours
- UFR de Pharmacie
- F-37200 Tours
- France
| | | | | |
Collapse
|
28
|
|
29
|
Goux M, Becker G, Gorré H, Dammicco S, Desselle A, Egrise D, Leroi N, Lallemand F, Bahri MA, Doumont G, Plenevaux A, Cinier M, Luxen A. Nanofitin as a New Molecular-Imaging Agent for the Diagnosis of Epidermal Growth Factor Receptor Over-Expressing Tumors. Bioconjug Chem 2017; 28:2361-2371. [PMID: 28825794 DOI: 10.1021/acs.bioconjchem.7b00374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidermal growth-factor receptor (EGFR) is involved in cell growth and proliferation and is over-expressed in malignant tissues. Although anti-EGFR-based immunotherapy became a standard of care for patients with EGFR-positive tumors, this strategy of addressing cancer tumors by targeting EGFR with monoclonal antibodies is less-developed for patient diagnostic and monitoring. Indeed, antibodies exhibit a slow blood clearance, which is detrimental for positron emission tomography (PET) imaging. New molecular probes are proposed to overcome such limitations for patient monitoring, making use of low-molecular-weight protein scaffolds as alternatives to antibodies, such as Nanofitins with better pharmacokinetic profiles. Anti-EGFR Nanofitin B10 was reformatted by genetic engineering to exhibit a unique cysteine moiety at its C-terminus, which allows the development of a fast and site-specific radiolabeling procedure with 18F-4-fluorobenzamido-N-ethylamino-maleimide (18F-FBEM). The in vivo tumor targeting and imaging profile of the anti-EGFR Cys-B10 Nanofitin was investigated in a double-tumor xenograft model by static small-animal PET at 2 h after tail-vein injection of the radiolabeled Nanofitin 18F-FBEM-Cys-B10. The image showed that the EGFR-positive tumor (A431) is clearly delineated in comparison to the EGFR-negative tumor (H520) with a significant tumor-to-background contrast. 18F-FBEM-Cys-B10 demonstrated a significantly higher retention in A431 tumors than in H520 tumors at 2.5 h post-injection with a A431-to-H520 uptake ratio of 2.53 ± 0.18 and a tumor-to-blood ratio of 4.55 ± 0.63. This study provides the first report of Nanofitin scaffold used as a targeted PET radiotracer for in vivo imaging of EGFR-positive tumor, with the anti-EGFR B10 Nanofitin used as proof-of-concept. The fast generation of specific Nanofitins via a fully in vitro selection process, together with the excellent imaging features of the Nanofitin scaffold, could facilitate the development of valuable PET-based companion diagnostics.
Collapse
Affiliation(s)
| | | | - Harmony Gorré
- Affilogic SAS , 21 rue La Noue Bras de Fer, 44200 Nantes, France
| | | | - Ariane Desselle
- Affilogic SAS , 21 rue La Noue Bras de Fer, 44200 Nantes, France
| | - Dominique Egrise
- Centre for Microscopy and Molecular Imaging, Université Libre de Bruxelles , 8 Rue Adrienne Bolland, 6041 Gosselies, Belgium.,Service de Médecine Nucléaire, Hôpital Erasme, Université Libre de Bruxelles , Brussels, Belgium
| | - Natacha Leroi
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège , Avenue de l'Hopital, 4000 Liège, Belgium
| | | | | | - Gilles Doumont
- Centre for Microscopy and Molecular Imaging, Université Libre de Bruxelles , 8 Rue Adrienne Bolland, 6041 Gosselies, Belgium
| | | | - Mathieu Cinier
- Affilogic SAS , 21 rue La Noue Bras de Fer, 44200 Nantes, France
| | | |
Collapse
|
30
|
Lomonosova AV, Ulitin AB, Kazakov AS, Mirzabekov TA, Permyakov EA, Permyakov SE. Derivative of Extremophilic 50S Ribosomal Protein L35Ae as an Alternative Protein Scaffold. PLoS One 2017; 12:e0170349. [PMID: 28103321 PMCID: PMC5245882 DOI: 10.1371/journal.pone.0170349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/03/2017] [Indexed: 12/01/2022] Open
Abstract
Small antibody mimetics, or alternative binding proteins (ABPs), extend and complement antibody functionality with numerous applications in research, diagnostics and therapeutics. Given the superiority of ABPs, the last two decades have witnessed development of dozens of alternative protein scaffolds (APSs) for the design of ABPs. Proteins from extremophiles with their high structural stability are especially favorable for APS design. Here, a 10X mutant of the 50S ribosomal protein L35Ae from hyperthermophilic archaea Pyrococcus horikoshii has been probed as an APS. A phage display library of L35Ae 10X was generated by randomization of its three CDR-like loop regions (repertoire size of 2×108). Two L35Ae 10X variants specific to a model target, the hen egg-white lysozyme (HEL), were isolated from the resulting library using phage display. The affinity of these variants (L4 and L7) to HEL ranges from 0.10 μM to 1.6 μM, according to surface plasmon resonance data. While L4 has 1-2 orders of magnitude lower affinity to HEL homologue, bovine α-lactalbumin (BLA), L7 is equally specific to HEL and BLA. The reference L35Ae 10X is non-specific to both HEL and BLA. L4 and L7 are more resistant to denaturation by guanidine hydrochloride compared to the reference L35Ae 10X (mid-transition concentration is higher by 0.1-0.5 M). Chemical crosslinking experiments reveal an increased propensity of L4 and L7 to multimerization. Overall, the CDR-like loop regions of L35Ae 10X represent a proper interface for generation of functional ABPs. Hence, L35Ae is shown to extend the growing family of protein scaffolds dedicated to the design of novel binding proteins.
Collapse
Affiliation(s)
- Anna V. Lomonosova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | | | - Alexei S. Kazakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - Tajib A. Mirzabekov
- Antherix, Pushchino, Moscow region, Russia
- Biomirex Inc., Watertown, Massachusetts, United States of America
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, Russia
| |
Collapse
|
31
|
Kalichuk V, Béhar G, Renodon-Cornière A, Danovski G, Obal G, Barbet J, Mouratou B, Pecorari F. The archaeal "7 kDa DNA-binding" proteins: extended characterization of an old gifted family. Sci Rep 2016; 6:37274. [PMID: 27853299 PMCID: PMC5112516 DOI: 10.1038/srep37274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023] Open
Abstract
The “7 kDa DNA-binding” family, also known as the Sul7d family, is composed of chromatin proteins from the Sulfolobales archaeal order. Among them, Sac7d and Sso7d have been the focus of several studies with some characterization of their properties. Here, we studied eleven other proteins alongside Sac7d and Sso7d under the same conditions. The dissociation constants of the purified proteins for binding to double-stranded DNA (dsDNA) were determined in phosphate-buffered saline at 25 °C and were in the range from 11 μM to 22 μM with a preference for G/C rich sequences. In accordance with the extremophilic origin of their hosts, the proteins were found highly stable from pH 0 to pH 12 and at temperatures from 85.5 °C to 100 °C. Thus, these results validate eight putative “7 kDa DNA-binding” family proteins and show that they behave similarly regarding both their function and their stability among various genera and species. As Sac7d and Sso7d have found numerous uses as molecular biology reagents and artificial affinity proteins, this study also sheds light on even more attractive proteins that will facilitate engineering of novel highly robust reagents.
Collapse
Affiliation(s)
- Valentina Kalichuk
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Ghislaine Béhar
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Georgi Danovski
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Gonzalo Obal
- Institut Pasteur de Montevideo, Protein Biophysics Unit, Montevideo, Uruguay
| | - Jacques Barbet
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Barbara Mouratou
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Frédéric Pecorari
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| |
Collapse
|
32
|
Dias AM, Roque AC. The future of protein scaffolds as affinity reagents for purification. Biotechnol Bioeng 2016; 114:481-491. [DOI: 10.1002/bit.26090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Ana M.G.C. Dias
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus Caparica Caparica 2829-516 Portugal
| | - Ana C.A. Roque
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus Caparica Caparica 2829-516 Portugal
| |
Collapse
|
33
|
Affitins for protein purification by affinity magnetic fishing. J Chromatogr A 2016; 1457:50-8. [DOI: 10.1016/j.chroma.2016.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/25/2016] [Accepted: 06/06/2016] [Indexed: 12/21/2022]
|
34
|
Kirubakaran P, Pfeiferová L, Boušová K, Bednarova L, Obšilová V, Vondrášek J. Artificial proteins as allosteric modulators of PDZ3 and SH3 in two-domain constructs: A computational characterization of novel chimeric proteins. Proteins 2016; 84:1358-74. [DOI: 10.1002/prot.25082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Palani Kirubakaran
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Lucie Pfeiferová
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Kristýna Boušová
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
- Institute of Physiology ASCR; v.v.i, Videnska 1083, 14220 Prague 4 Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Veronika Obšilová
- Institute of Physiology ASCR; v.v.i, Videnska 1083, 14220 Prague 4 Czech Republic
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| |
Collapse
|
35
|
Affitins as robust tailored reagents for affinity chromatography purification of antibodies and non-immunoglobulin proteins. J Chromatogr A 2016; 1441:44-51. [DOI: 10.1016/j.chroma.2016.02.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/10/2016] [Accepted: 02/23/2016] [Indexed: 01/16/2023]
|
36
|
Pacheco S, Cantón E, Zuñiga-Navarrete F, Pecorari F, Bravo A, Soberón M. Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes. AMB Express 2015; 5:73. [PMID: 26606918 PMCID: PMC4659786 DOI: 10.1186/s13568-015-0160-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 11/10/2022] Open
Abstract
Bacillus thuringiensis (Bt) produces insecticidal proteins that have been used worldwide in the control of insect-pests in crops and vectors of human diseases. However, different insect species are poorly controlled by the available Bt toxins or have evolved resistance to these toxins. Evolution of Bt toxicity could provide novel toxins to control insect pests. To this aim, efficient display systems to select toxins with increased binding to insect membranes or midgut proteins involved in toxicity are likely to be helpful. Here we describe two display systems, phage display and ribosome display, that allow the efficient display of two non-structurally related Bt toxins, Cry1Ac and Cyt1Aa. Improved display of Cry1Ac and Cyt1Aa on M13 phages was achieved by changing the commonly used peptide leader sequence of the coat pIII-fusion protein, that relies on the Sec translocation pathway, for a peptide leader sequence that relies on the signal recognition particle pathway (SRP) and by using a modified M13 helper phage (Phaberge) that has an amber mutation in its pIII genomic sequence and preferentially assembles using the pIII-fusion protein. Also, both Cry1Ac and Cyt1Aa were efficiently displayed on ribosomes, which could allow the construction of large libraries of variants. Furthermore, Cry1Ac or Cyt1Aa displayed on M13 phages or ribosomes were specifically selected from a mixture of both toxins depending on which antigen was immobilized for binding selection. These improved systems may allow the selection of Cry toxin variants with improved insecticidal activities that could counter insect resistances.
Collapse
|
37
|
Huet S, Gorre H, Perrocheau A, Picot J, Cinier M. Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag. PLoS One 2015; 10:e0142304. [PMID: 26539718 PMCID: PMC4634965 DOI: 10.1371/journal.pone.0142304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/19/2015] [Indexed: 11/26/2022] Open
Abstract
With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as illustrated with previously described state-of-the-art anti-GFP binders applied to living cells and in vitro applications). Through a single fusion domain, the GFP-ready tagged proteins benefit from subsequent customization within a wide range of fluorescence spectra upon indirect binding of a chosen GFP variant.
Collapse
|
38
|
Béhar G, Pacheco S, Maillasson M, Mouratou B, Pecorari F. Switching an anti-IgG binding site between archaeal extremophilic proteins results in Affitins with enhanced pH stability. J Biotechnol 2015; 192 Pt A:123-9. [PMID: 25450641 DOI: 10.1016/j.jbiotec.2014.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/28/2014] [Accepted: 10/07/2014] [Indexed: 12/23/2022]
Abstract
As a useful reagent for biotechnological applications, a scaffold protein needs to be as stable as possible to ensure longer lifetimes. We have developed archaeal extremophilic proteins from the “7 kDa DNA-binding” family as scaffolds to derive affinity proteins (Affitins). In this study, we evaluated a rational structure/sequence-guided approach to stabilize an Affitin derived from Sac7d by transferring its human IgG binding site onto the framework of the more thermally stable Sso7d homolog. The chimera obtained was functional, well expressed in Escherichia coli, but less thermally stable than the original Affitin (T(m) = 74.2 °C vs. T(m) = 80.4 °C). Two single mutations described as thermally stabilizing wild type Sso7d were introduced into chimeras. Only the double mutation nearly restored thermal stability (T(m) = 76.9 °C). Interestingly, the chimera and its double mutant were stable from pH 0 up to at least pH 13. Our results show that it is possible to increase further the stability of Affitins toward alkaline conditions (+2 pH units) while conserving their advantageous properties. As Affitins are based on a growing family of homologs from archaeal extremophiles, we conclude that this approach offers new potential for their improvement, which will be useful in demanding biotechnological applications.
Collapse
|
39
|
Woldring DR, Holec PV, Zhou H, Hackel BJ. High-Throughput Ligand Discovery Reveals a Sitewise Gradient of Diversity in Broadly Evolved Hydrophilic Fibronectin Domains. PLoS One 2015; 10:e0138956. [PMID: 26383268 PMCID: PMC4575168 DOI: 10.1371/journal.pone.0138956] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/04/2015] [Indexed: 12/25/2022] Open
Abstract
Discovering new binding function via a combinatorial library in small protein scaffolds requires balance between appropriate mutations to introduce favorable intermolecular interactions while maintaining intramolecular integrity. Sitewise constraints exist in a non-spatial gradient from diverse to conserved in evolved antibody repertoires; yet non-antibody scaffolds generally do not implement this strategy in combinatorial libraries. Despite the fact that biased amino acid distributions, typically elevated in tyrosine, serine, and glycine, have gained wider use in synthetic scaffolds, these distributions are still predominantly applied uniformly to diversified sites. While select sites in fibronectin domains and DARPins have shown benefit from sitewise designs, they have not been deeply evaluated. Inspired by this disparity between diversity distributions in natural libraries and synthetic scaffold libraries, we hypothesized that binders resulting from discovery and evolution would exhibit a non-spatial, sitewise gradient of amino acid diversity. To identify sitewise diversities consistent with efficient evolution in the context of a hydrophilic fibronectin domain, >105 binders to six targets were evolved and sequenced. Evolutionarily favorable amino acid distributions at 25 sites reveal Shannon entropies (range: 0.3-3.9; median: 2.1; standard deviation: 1.1) supporting the diversity gradient hypothesis. Sitewise constraints in evolved sequences are consistent with complementarity, stability, and consensus biases. Implementation of sitewise constrained diversity enables direct selection of nanomolar affinity binders validating an efficient strategy to balance inter- and intra-molecular interaction demands at each site.
Collapse
Affiliation(s)
- Daniel R. Woldring
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| | - Patrick V. Holec
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| | - Hong Zhou
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
40
|
Pacheco S, Béhar G, Maillasson M, Mouratou B, Pecorari F. Affinity transfer to the archaeal extremophilic Sac7d protein by insertion of a CDR. Protein Eng Des Sel 2015; 27:431-8. [PMID: 25301962 DOI: 10.1093/protein/gzu042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Artificially transforming a scaffold protein into binders often consists of introducing diversity into its natural binding region by directed mutagenesis. We have previously developed the archaeal extremophilic Sac7d protein as a scaffold to derive affinity reagents (Affitins) by randomization of only a flat surface, or a flat surface and two short loops with natural lengths. Short loops are believed to contribute to stability of extremophilic proteins, and loop extension has been reported detrimental for the thermal and chemical stabilities of mesophilic proteins. In this work, we wanted to evaluate the possibility of designing target-binding proteins based on Sac7d by using a complementary determining region (CDR). To this aim, we inserted into three different loops a 10 residues CDR from the cAb-Lys3 anti-lysozyme camel antibody. The chimeras obtained were as stable as wild-type (WT) Sac7d at extreme pH and their structural integrity was supported. Chimeras were thermally stable, but with T(m)s from 60.9 to 66.3°C (cf. 91°C for Sac7d) which shows that loop extension is detrimental for thermal stability of Sac7d. The loop 3 enabled anti-lysozyme activity. These results pave the way for the use of CDR(s) from antibodies and/or extended randomized loop(s) to increase the potential of binding of Affitins.
Collapse
Affiliation(s)
- Sabino Pacheco
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France Institut Pasteur, CNRS UMR 3528, Unité de Microbiologie Structurale, 25 rue du Dr. Roux, 72724 Paris Cedex 15, France
| | - Ghislaine Béhar
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France
| | - Mike Maillasson
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France Plate-forme IMPACT Biogenouest, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France
| | - Barbara Mouratou
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France
| | - Frédéric Pecorari
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France
| |
Collapse
|
41
|
Artificial affinity proteins as ligands of immunoglobulins. Biomolecules 2015; 5:60-75. [PMID: 25647098 PMCID: PMC4384111 DOI: 10.3390/biom5010060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/17/2014] [Accepted: 01/23/2015] [Indexed: 12/17/2022] Open
Abstract
A number of natural proteins are known to have affinity and specificity for immunoglobulins. Some of them are widely used as reagents for detection or capture applications, such as Protein G and Protein A. However, these natural proteins have a defined spectrum of recognition that may not fit specific needs. With the development of combinatorial protein engineering and selection techniques, it has become possible to design artificial affinity proteins with the desired properties. These proteins, termed alternative scaffold proteins, are most often chosen for their stability, ease of engineering and cost-efficient recombinant production in bacteria. In this review, we focus on alternative scaffold proteins for which immunoglobulin binders have been identified and characterized.
Collapse
|