1
|
Arranz SG, Casanovas-Vilar I, Žliobaitė I, Abella J, Angelone C, Azanza B, Bernor R, Cirilli O, DeMiguel D, Furió M, Pandolfi L, Robles JM, Sánchez IM, van den Hoek Ostende LW, Alba DM. Paleoenvironmental inferences on the Late Miocene hominoid-bearing site of Can Llobateres (NE Iberian Peninsula): An ecometric approach based on functional dental traits. J Hum Evol 2023; 185:103441. [PMID: 37857126 DOI: 10.1016/j.jhevol.2023.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Hispanopithecus laietanus from the Late Miocene (9.8 Ma) of Can Llobateres 1 (CLL1; Vallès-Penedès Basin, NE Iberian Peninsula) represents one of the latest occurrences of fossil apes in Western mainland Europe, where they are last recorded at ∼9.5 Ma. The paleoenvironment of CLL1 is thus relevant for understanding the extinction of European hominoids. To refine paleoenvironmental inferences for CLL1, we apply ecometric models based on functional crown type (FCT) variables-a scoring scheme devised to capture macroscopic functional traits of occlusal shape and wear surfaces of herbivorous large mammal molars. Paleotemperature and paleoprecipitation estimates for CLL1 are provided based on published regional regression models linking average FCT of large herbivorous mammal communities to climatic conditions. A mapping to Whittaker's present-day biome classification is also attempted based on these estimates, as well as a case-based reasoning via canonical variate analysis of FCT variables from five relevant biomes. Estimates of mean annual temperature (25 °C) and mean annual precipitation (881 mm) classify CLL1 as a tropical seasonal forest/savanna, only in partial agreement with the canonical variate analysis results, which classify CLL1 as a tropical rainforest with a higher probability. The former biome agrees better with previous inferences derived from fossil plants and mammals, as well as preliminary isotopic data. The misclassification of CLL1 as a tropical forest is attributed to the mixture of forest-adapted taxa with others adapted to more open environments, given that faunal and plant composition indicates the presence of a dense wetland/riparian forest with more open woodlands nearby. The tested FCT ecometric approaches do not provide unambiguous biome classification for CLL1. Nevertheless, our results are consistent with those from other approaches, thus suggesting that FCT variables are potentially useful to investigate paleoenvironmental changes through time and space-including those that led to the extinction of European Miocene apes.
Collapse
Affiliation(s)
- Sara G Arranz
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Isaac Casanovas-Vilar
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Indrė Žliobaitė
- Department of Computer Science, University of Helsinki, P.O. Box 68, 00014 Helsinky, Finland; Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, 00014 Helsinky, Finland
| | - Juan Abella
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain; Grup d'Investigació en Paleontologia de Vertebrats del Cenozoic (PVC-GIUV), Departament de Botànica i Geologia, Universitat de València, 46100 Burjassot, València, Spain; Instituto Nacional de Biodiversidad (INABIO), Pje. Rumipamba N. 341 y Av. de los Shyris (Parque La Carolina), Quito, Ecuador
| | - Chiara Angelone
- Dipartimento di Scienze, Università degli Studi Roma Tre, 00146 Roma, Italy; Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044 Beijing, China
| | - Beatriz Azanza
- Departamento de Ciencias de la Tierra, and Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Raymond Bernor
- College of Medicine, Department of Anatomy, Laboratory of Evolutionary Biology, Howard University, 520 W St. N.W., 20059, Washington D.C., USA; Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, 20013, Washington D.C., USA
| | - Omar Cirilli
- College of Medicine, Department of Anatomy, Laboratory of Evolutionary Biology, Howard University, 520 W St. N.W., 20059, Washington D.C., USA; Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC 121, 20013, Washington, D.C., USA
| | - Daniel DeMiguel
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain; Departamento de Ciencias de la Tierra, and Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, 50009, Zaragoza, Spain; ARAID Foundation, 50018, Zaragoza, Spain
| | - Marc Furió
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain; Serra Húnter Fellow, Departament de Geologia, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Luca Pandolfi
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Josep M Robles
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Israel M Sánchez
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
2
|
Urciuoli A, Alba DM. Systematics of Miocene apes: State of the art of a neverending controversy. J Hum Evol 2023; 175:103309. [PMID: 36716680 DOI: 10.1016/j.jhevol.2022.103309] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/29/2023]
Abstract
Hominoids diverged from cercopithecoids during the Oligocene in Afro-Arabia, initially radiating in that continent and subsequently dispersing into Eurasia. From the Late Miocene onward, the geographic range of hominoids progressively shrank, except for hominins, which dispersed out of Africa during the Pleistocene. Although the overall picture of hominoid evolution is clear based on available fossil evidence, many uncertainties persist regarding the phylogeny and paleobiogeography of Miocene apes (nonhominin hominoids), owing to their sparse record, pervasive homoplasy, and the decimated current diversity of this group. We review Miocene ape systematics and evolution by focusing on the most parsimonious cladograms published during the last decade. First, we provide a historical account of the progress made in Miocene ape phylogeny and paleobiogeography, report an updated classification of Miocene apes, and provide a list of Miocene ape species-locality occurrences together with an analysis of their paleobiodiversity dynamics. Second, we discuss various critical issues of Miocene ape phylogeny and paleobiogeography (hylobatid and crown hominid origins, plus the relationships of Oreopithecus) in the light of the highly divergent results obtained from cladistic analyses of craniodental and postcranial characters separately. We conclude that cladistic efforts to disentangle Miocene ape phylogeny are potentially biased by a long-branch attraction problem caused by the numerous postcranial similarities shared between hylobatids and hominids-despite the increasingly held view that they are likely homoplastic to a large extent, as illustrated by Sivapithecus and Pierolapithecus-and further aggravated by abundant missing data owing to incomplete preservation. Finally, we argue that-besides the recovery of additional fossils, the retrieval of paleoproteomic data, and a better integration between cladistics and geometric morphometrics-Miocene ape phylogenetics should take advantage of total-evidence (tip-dating) Bayesian methods of phylogenetic inference combining morphologic, molecular, and chronostratigraphic data. This would hopefully help ascertain whether hylobatid divergence was more basal than currently supported.
Collapse
Affiliation(s)
- Alessandro Urciuoli
- Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
3
|
Thiery G, Gibert C, Guy F, Lazzari V, Geraads D, Spassov N, Merceron G. From leaves to seeds? The dietary shift in late Miocene colobine monkeys of southeastern Europe. Evolution 2021; 75:1983-1997. [PMID: 34131927 DOI: 10.1111/evo.14283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/01/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023]
Abstract
Extant colobine monkeys are specialized leaf eaters. But during the late Miocene, western Eurasia was home to colobines that were less efficient at chewing leaves than they were at breaking seed shells. To understand the link between folivory and granivory in this lineage, the dietary niche of Mesopithecus delsoni and Mesopithecus pentelicus was investigated in southeastern Europe, where a major environmental change occurred during the late Miocene. We combined dental topographic estimates of chewing efficiency with dental microwear texture analysis of enamel wear facets. Mesopithecus delsoni was more efficient at chewing leaves than M. pentelicus, the dental topography of which matches an opportunistic seed eater. Concurrently, microwear complexity increases in M. pentelicus, especially in the northernmost localities corresponding to present-day Bulgaria. This is interpreted as a dietary shift toward hard foods such as seeds or tubers, which is consistent with the savanna and open mixed forest biomes that covered Bulgaria during the Tortonian. The fact that M. delsoni was better adapted to folivory and consumed a lower amount of hard foods than M. pentelicus suggests that colobines either adapted to folivory before their dispersal to Europe or evolved adaptations to leaf consumption in multiple occurrences.
Collapse
Affiliation(s)
- Ghislain Thiery
- Palevoprim UMR 7262 CNRS, Université de Poitiers UFR Sciences Fondamentales et Appliquées, Poitiers, 86022, France
| | - Corentin Gibert
- Palevoprim UMR 7262 CNRS, Université de Poitiers UFR Sciences Fondamentales et Appliquées, Poitiers, 86022, France
| | - Franck Guy
- Palevoprim UMR 7262 CNRS, Université de Poitiers UFR Sciences Fondamentales et Appliquées, Poitiers, 86022, France
| | - Vincent Lazzari
- Palevoprim UMR 7262 CNRS, Université de Poitiers UFR Sciences Fondamentales et Appliquées, Poitiers, 86022, France
| | - Denis Geraads
- UMR 7207 CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, 75005, France
| | - Nikolai Spassov
- National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, 1000, Bulgaria
| | - Gildas Merceron
- Palevoprim UMR 7262 CNRS, Université de Poitiers UFR Sciences Fondamentales et Appliquées, Poitiers, 86022, France
| |
Collapse
|
4
|
Locarnini SA, Littlejohn M, Yuen LKW. Origins and Evolution of the Primate Hepatitis B Virus. Front Microbiol 2021; 12:653684. [PMID: 34108947 PMCID: PMC8180572 DOI: 10.3389/fmicb.2021.653684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Recent interest in the origins and subsequent evolution of the hepatitis B virus (HBV) has strengthened with the discovery of ancient HBV sequences in fossilized remains of humans dating back to the Neolithic period around 7,000 years ago. Metagenomic analysis identified a number of African non-human primate HBV sequences in the oldest samples collected, indicating that human HBV may have at some stage, evolved in Africa following zoonotic transmissions from higher primates. Ancestral genotype A and D isolates were also discovered from the Bronze Age, not in Africa but rather Eurasia, implying a more complex evolutionary and migratory history for HBV than previously recognized. Most full-length ancient HBV sequences exhibited features of inter genotypic recombination, confirming the importance of recombination and the mutation rate of the error-prone viral replicase as drivers for successful HBV evolution. A model for the origin and evolution of HBV is proposed, which includes multiple cross-species transmissions and favors subsequent recombination events that result in a pathogen and can successfully transmit and cause persistent infection in the primate host.
Collapse
Affiliation(s)
- Stephen A Locarnini
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lilly K W Yuen
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
5
|
DeMiguel D, Domingo L, Sánchez IM, Casanovas-Vilar I, Robles JM, Alba DM. Palaeoecological differences underlie rare co-occurrence of Miocene European primates. BMC Biol 2021; 19:6. [PMID: 33461551 PMCID: PMC7814646 DOI: 10.1186/s12915-020-00939-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/10/2020] [Indexed: 11/25/2022] Open
Abstract
Background The two main primate groups recorded throughout the European Miocene, hominoids and pliopithecoids, seldom co-occur. Due to both their rarity and insufficiently understood palaeoecology, it is currently unclear whether the infrequent co-occurrence of these groups is due to sampling bias or reflects different ecological preferences. Here we rely on the densely sampled primate-bearing sequence of Abocador de Can Mata (ACM) in Spain to test whether turnovers in primate assemblages are correlated with palaeoenvironmental changes. We reconstruct dietary evolution through time (ca. 12.6–11.4 Ma), and hence climate and habitat, using tooth-wear patterns and carbon and oxygen isotope compositions of enamel of the ubiquitous musk-deer Micromeryx. Results Our results reveal that primate species composition is strongly correlated with distinct environmental phases. Large-bodied hominoids (dryopithecines) are recorded in humid, densely-forested environments on the lowermost portion of the ACM sequence. In contrast, pliopithecoids inhabited less humid, patchy ecosystems, being replaced by dryopithecines and the small-bodied Pliobates toward the top of the series in gallery forests embedded in mosaic environments. Conclusions These results support the view that pliopithecoid primates preferred less humid habitats than hominoids, and reveal that differences in behavioural ecology were the main factor underpinning their rare co-occurrence during the European Miocene. Our findings further support that ACM hominoids, like Miocene apes as a whole, inhabited more seasonal environments than extant apes. Finally, this study highlights the importance of high-resolution, local investigations to complement larger-scale analyses and illustrates that continuous and densely sampled fossiliferous sequences are essential for deciphering the complex interplay between biotic and abiotic factors that shaped past diversity.
Collapse
Affiliation(s)
- Daniel DeMiguel
- ARAID foundation / Universidad de Zaragoza, Departamento de Ciencias de la Tierra, and Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Pedro Cerbuna 12, 50009, Zaragoza, Spain. .,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, C/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Laura Domingo
- Departamento de Geodinámica, Estratigrafía y Paleontología Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, José Antonio Novais 12, 28040, Madrid, Spain.,Earth and Planetary Sciences Department, University of California Santa Cruz, 1156 Hight Street, Santa Cruz, CA, 95064, USA
| | - Israel M Sánchez
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, C/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Isaac Casanovas-Vilar
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, C/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Josep M Robles
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, C/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, C/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
6
|
Fuss J, Uhlig G, Böhme M. Earliest evidence of caries lesion in hominids reveal sugar-rich diet for a Middle Miocene dryopithecine from Europe. PLoS One 2018; 13:e0203307. [PMID: 30161214 PMCID: PMC6117023 DOI: 10.1371/journal.pone.0203307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
The formation of dental caries is mainly caused by dietary habits and therefore, may contain information for dietary reconstructions of fossil hominids. This study investigates the caries lesion in the 12.5 Ma old type specimen of Dryopithecus carinthiacus Mottl 1957 (Primates, Hominidae) from St. Stefan (Austria). Potential food sources are identified on associated palynological data, which allow conclusions about food quality, sugar availability and the hominid metabolism during the Middle Miocene. Using micro computed tomography (μCT) and scanning electron microscopy (SEM) we provide a detailed analysis and characterization of the individuals' caries type. Its lesion is compared with a dataset of 311 wild chimpanzees, indicating morphological and etiological differences in caries formation between both species. The affected molar of D. carinthiacus reveals features known from severe dental caries in humans: (1) Cavitation with steep walls and smooth surface; (2) Reparative dentine at the roof of the pulp chamber; (3) Sclerotic dentine below the cavitation; (4) Association with dental calculus and (5) Unilateral usage of the healthy right tooth row. Its advanced primary caries, initiating on the intact enamel surface, indicates a frequent intake of highly cariogenic sugar-rich fruits, which likely exceeds the frugivory of extant chimpanzees. This finding corresponds with the associated palynological record, which infers a habitat with nearly year-round supply (9-10 months/year) of high quality foods (>carbohydrates; < fibers). Our conclusions challenge the model of a step-wise increase in dietary quality during hominid evolution and support the uricase hypothesis, which discusses the hominid autapomorphy of a fructose-based fat accumulation for periods of starvation. This model receives further validation by the identification of soft-tissue preservation, interpreted as fossilized white adipose cells, in the articulated hominid skeleton of Oreopithecus bamboli from Italy.
Collapse
Affiliation(s)
- Jochen Fuss
- Department of Geoscience, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP), Tübingen, Germany
| | - Gregor Uhlig
- Department of Chemistry and Food Chemistry, Technical University Dresden, Dresden, Germany
| | - Madelaine Böhme
- Department of Geoscience, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP), Tübingen, Germany
| |
Collapse
|
7
|
Strani F, Profico A, Manzi G, Pushkina D, Raia P, Sardella R, DeMiguel D. MicroWeaR: A new R package for dental microwear analysis. Ecol Evol 2018; 8:7022-7030. [PMID: 30073064 PMCID: PMC6065344 DOI: 10.1002/ece3.4222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 11/24/2022] Open
Abstract
Mastication of dietary items with different mechanical properties leaves distinctive microscopic marks on the surface of tooth enamel. The inspection of such marks (dental microwear analysis) is informative about the dietary habitus in fossil as well as in modern species. Dental microwear analysis relies on the morphology, abundance, direction, and distribution of these microscopic marks. We present a new freely available software implementation, MicroWeaR, that, compared to traditional dental microwear tools, allows more rapid, observer error free, and inexpensive quantification and classification of all the microscopic marks (also including for the first time different subtypes of scars). Classification parameters and graphical rendering of the output are fully settable by the user. MicroWeaR includes functions to (a) sample the marks, (b) classify features into categories as pits or scratches and then into their respective subcategories (large pits, coarse scratches, etc.), (c) generate an output table with summary information, and (d) obtain a visual surface-map where marks are highlighted. We provide a tutorial to reproduce the steps required to perform microwear analysis and to test tool functionalities. Then, we present two case studies to illustrate how MicroWeaR works. The first regards a Miocene great ape obtained from through environmental scanning electron microscope, and other a Pleistocene cervid acquired by a stereomicroscope.
Collapse
Affiliation(s)
- Flavia Strani
- Dipartimento di Scienze della TerraSapienza Università di RomaRomeItaly
- Istituto Italiano di Paleontologia UmanaRomeItaly
- Departamento de Ciencias de la TierraUniversidad de ZaragozaZaragozaSpain
| | - Antonio Profico
- Dipartimento di Biologia AmbientaleSapienza Università di RomaRomeItaly
| | - Giorgio Manzi
- Dipartimento di Biologia AmbientaleSapienza Università di RomaRomeItaly
| | - Diana Pushkina
- Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
| | - Pasquale Raia
- Dipartimento di Scienze della TerraUniversità di Napoli, Federico IINapoliItaly
| | - Raffaele Sardella
- Dipartimento di Scienze della TerraSapienza Università di RomaRomeItaly
- Istituto Italiano di Paleontologia UmanaRomeItaly
| | - Daniel DeMiguel
- Fundación ARAID/Universidad de ZaragozaZaragozaSpain
- Departamento de Ciencias de la TierraUniversidad de ZaragozaZaragozaSpain
- Institut Català de Paleontologia Miquel Crusafont (ICP)BarcelonaSpain
| |
Collapse
|
8
|
Can Pallars i Llobateres: A new hominoid-bearing locality from the late Miocene of the Vallès-Penedès Basin (NE Iberian Peninsula). J Hum Evol 2018; 121:193-203. [PMID: 29786505 DOI: 10.1016/j.jhevol.2018.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 11/20/2022]
Abstract
In the Iberian Peninsula, Miocene apes (Hominoidea) are generally rare and mostly restricted to the Vallès-Penedès Basin. Here we report a new hominoid maxillary fragment with M2 from this basin. It was surface-collected in March 2017 from the site of Can Pallars i Llobateres (CPL, Sant Quirze del Vallès), where fossil apes had not been previously recorded. The locality of provenance (CPL-M), which has delivered no further fossil remains, is located very close (ca. 50 m) to previously known CPL outcrops, and not very far (ca. 500 m in NW direction) from the classical hominoid-bearing locality of Can Poncic 1. Here we describe the new fossil and, based on the size and proportions of the M2, justify its taxonomic attribution to Hispanopithecus cf. laietanus, a species previously recorded from several Vallesian sites of the Vallès-Penedès Basin. Based on the associated mammalian fauna from CPL, we also provide a biochronological dating and a paleoenvironmental reconstruction for the site. The associated fauna enables an unambiguous correlation to the Cricetulodon hartenbergeri - Progonomys hispanicus interval local subzone, with an estimated age of 9.98-9.73 Ma (late Vallesian, MN10). Therefore, CPL-M is roughly coeval with the Hispanopithecus laietanus-bearing localities of Can Llobateres 1 and Can Feu 1, and minimally older than those of La Tarumba 1 and Can Llobateres 2. In contrast, CPL-M is younger than the early Vallesian (MN9) localities of Can Poncic 1 (the type locality of Hispanopithecus crusafonti) as well as Polinyà 2 (Gabarró) and Estació Depuradora d'Aigües Residuals-Riu Ripoll 13, where Hispanopithecus sp. is recorded. The associated fauna from CPL indicates a densely forested and humid paleoenvironment with nearby freshwater. This supports the view that Hispanopithecus might have been restricted to dense wetland forests soon before its extinction during the late Vallesian, due to progressive climatic deterioration. Coupled with the existence of other fossiliferous outcrops in the area, this find is most promising for the prospect of discovering additional fossil hominoid remains in the future.
Collapse
|
9
|
DeMiguel D, Rook L. Understanding climate's influence on the extinction of Oreopithecus (late Miocene, Tusco-Sardinian paleobioprovince, Italy). J Hum Evol 2018; 116:14-26. [PMID: 29477179 DOI: 10.1016/j.jhevol.2017.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 10/18/2022]
Abstract
Despite its long history of scientific study, the causes underlying the extinction of the insular hominoid Oreopithecus bambolii are still a matter of ongoing debate. While some authors consider intense tectonism and invading species the cause of its extinction ca. 6.7 Ma, others propose climatic change as the main contributing factor. We rely on long-term patterns of tooth wear and hypsodonty of the Baccinello and Fiume Santo herbivore-faunas to reconstruct changes in habitat prior to, during and after the extinction. While a mosaic of habitats was represented in Baccinello V1 (as shown by a record of browsers, mixed feeders and species engaged in grazing), more closed forests (higher proportion of browsers, shortage of mixed feeders and lack of grazers) characterised Baccinello V2. Finally, there was a partial loss of canopy cover and development of open-patches and low-abrasive grasses in Baccinello V3 (as denoted by new records of taxa involved in grazing)-although still dominated by a forested habitat (since browse was a component in all diets). Our results provide evidence for two perceptible shifts in climate, one between 8.1 and 7.1 Ma and other ca. 6.7 Ma, though this latter was not drastic enough to lead to intensive forest loss, substantially alter the local vegetation or affect Oreopithecus lifestyle-especially if considering the growing evidence of its versatile diet. Although the disappearance of Oreopithecus is complex, our data reject the hypothesis of environmental change as the main factor in the extinction of Oreopithecus and Maremma fauna. When our results are analysed together with other evidence, faunal interaction and predation by invading species from mainland Europe seems to be the most parsimonious explanation for this extinction event. This contrasts with European hominoid extinctions that were associated with major climatic shifts that led to environmental uniformity and restriction of the preferred habitats of Miocene apes.
Collapse
Affiliation(s)
- Daniel DeMiguel
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Carrer de Les Columnes S/n, 08193, Cerdanyola Del Vallès, Barcelona, Spain; Departamento de Ciencias de La Tierra, Área de Paleontología, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain; Fundación ARAID, Zaragoza, Spain.
| | - Lorenzo Rook
- Dipartimento di Scienze Della Terra, Università Degli Studi di Firenze, Via La Pira 4, 50121 Firenze, Italy
| |
Collapse
|
10
|
Alba DM, Casanovas-Vilar I, Garcés M, Robles JM. Ten years in the dump: An updated review of the Miocene primate-bearing localities from Abocador de Can Mata (NE Iberian Peninsula). J Hum Evol 2017; 102:12-20. [DOI: 10.1016/j.jhevol.2016.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 10/20/2022]
|
11
|
Burgman JHE, Leichliter J, Avenant NL, Ungar PS. Dental microwear of sympatric rodent species sampled across habitats in southern Africa: Implications for environmental influence. Integr Zool 2016; 11:111-27. [PMID: 26748948 DOI: 10.1111/1749-4877.12188] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dental microwear textures have proven to be a valuable tool for reconstructing the diets of a wide assortment of fossil vertebrates. Nevertheless, some studies have recently questioned the efficacy of this approach, suggesting that aspects of habitat unrelated to food preference, especially environmental grit load, might have a confounding effect on microwear patterning that obscures the diet signal. Here we evaluate this hypothesis by examining microwear textures of 3 extant sympatric rodent species that vary in diet breadth and are found in a variety of habitat types: Mastomys coucha, Micaelamys namaquensis and Rhabdomys pumilio. We sample each of these species from 3 distinct environmental settings in southern Africa that differ in rainfall and vegetative cover: Nama-Karoo shrublands (semi-desert) and Dry Highveld grasslands in the Free State Province of South Africa, and Afromontane (wet) grasslands in the highlands of Lesotho. While differences between habitat types are evident for some of the species, inconsistency in the pattern suggests that the microwear signal is driven by variation in foods eaten rather than grit-level per se. It is clear that, at least for species and habitats sampled in the current study, environmental grit load does not swamp diet-related microwear signatures.
Collapse
Affiliation(s)
- Jenny H E Burgman
- Environmental Dynamics Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jennifer Leichliter
- Department of Anthropology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Nico L Avenant
- National Museum and University of the Free State, Bloemfontein, South Africa
| | - Peter S Ungar
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
12
|
Alba DM, Almecija S, DeMiguel D, Fortuny J, de los Rios MP, Pina M, Robles JM, Moya-Sola S. Miocene small-bodied ape from Eurasia sheds light on hominoid evolution. Science 2015; 350:aab2625. [DOI: 10.1126/science.aab2625] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/21/2015] [Indexed: 11/02/2022]
|