1
|
Opazo-Díaz E, Corral-Pérez J, Pérez-Bey A, Marín-Galindo A, Montes-de-Oca-García A, Rebollo-Ramos M, Velázquez-Díaz D, Casals C, Ponce-González JG. Is lean mass quantity or quality the determinant of maximal fat oxidation capacity? The potential mediating role of cardiorespiratory fitness. J Int Soc Sports Nutr 2025; 22:2455011. [PMID: 39881476 PMCID: PMC11784066 DOI: 10.1080/15502783.2025.2455011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Impaired fat oxidation is linked to cardiometabolic risk. Maximal fat oxidation rate (MFO) reflects metabolic flexibility and is influenced by lean mass, muscle strength, muscle quality - defined as the ratio of strength to mass - and cardiorespiratory fitness. The relationship between these factors and fat oxidation is not fully understood. The aim is to analyze the associations of lean-mass, muscle strength and quality with fat oxidation parameters in young adults, considering the mediating role of VO2max. METHODS A cross-sectional observational study. Eighty-one adults (50 males, 31 females; age 22.8 ± 4.4, BMI 25.70 ± 5.75, lean-mass 54.19 ± 8.78, fat-mass 18.66 ± 11.32) Body composition assessment by bioimpedance determine fat and lean-mass. Indirect calorimetry at rest and exercise was used for the calculation of fat oxidation. An incremental exercise protocol in a cycle ergometer with two consecutive phases was performed. The first to determine MFO consisted of 3 min steps of 15W increments with a cadence of 60rpm. The test was stopped when RQ ≥ 1. After 5 min rest, a phase to detect VO2max began with steps of 15W/min until exhaustion. Muscular strength was assessed by handgrip dynamometry and the standing longitudinal jump test. A strength cluster was calculated with handgrip and long jump adjusted by sex and age. Data were analyzed using multiple linear regression and mediation analyses. RESULTS Total lean-mass and leg lean-mass were not associated with MFO. Long jump, relativized by lean-mass and by leg lean-mass have a standardized indirect effect on MFO of 0.50, CI: 0.32-0.70, on MFO/lean-mass 0.43, CI:0.27-0.60 and MFO/leg lean-mass 0.44, CI: 0.30-0.06, which VO2max mediated, VO2max/lean-mass and VO2max/leg lean-mass, respectively (all p < 0.01). The handgrip/arm lean-mass had an indirect effect of 0.25 (CI: 0.12-0.38) on MFO/leg lean-mass, with VO2max/leg lean-mass as the mediator (p < 0.01). The Cluster/lean-mass and Cluster/Extremities lean-mass have a standardized indirect effect on MFO/lean-mass (0.34, CI: 0.20-0.48) and MFO/leg lean-mass (0.44, CI: 0.28-0.60), mediated by VO2max/lean-mass and VO2max/leg lean-mass (p < 0.01). CONCLUSIONS Muscular strength and quality have an indirect effect on MFO mediated by VO2max. These findings suggest the importance of muscle quality on MFO.
Collapse
Affiliation(s)
- Edgardo Opazo-Díaz
- University of Cadiz, ExPhy Research Group, Department of Physical Education, Puerto Real, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cadiz, Spain
- University of Chile, Exercise Physiology Lab, Physical Therapy Department, Santiago, Chile
| | - Juan Corral-Pérez
- University of Cadiz, ExPhy Research Group, Department of Physical Education, Puerto Real, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cadiz, Spain
| | - Alejandro Pérez-Bey
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cadiz, Spain
- University of Cadiz, GALENO Research Group, Department of Physical Education, Faculty of Education Sciences, Cadiz, Spain
| | - Alberto Marín-Galindo
- University of Cadiz, ExPhy Research Group, Department of Physical Education, Puerto Real, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cadiz, Spain
| | - Adrián Montes-de-Oca-García
- University of Cadiz, ExPhy Research Group, Department of Physical Education, Puerto Real, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cadiz, Spain
| | - María Rebollo-Ramos
- University of Cadiz, ExPhy Research Group, Department of Physical Education, Puerto Real, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cadiz, Spain
| | - Daniel Velázquez-Díaz
- University of Cadiz, ExPhy Research Group, Department of Physical Education, Puerto Real, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cadiz, Spain
- Neuroscience Institute, Advent Health Research Institute, Orlando, FL, USA
| | - Cristina Casals
- University of Cadiz, ExPhy Research Group, Department of Physical Education, Puerto Real, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cadiz, Spain
| | - Jesús-Gustavo Ponce-González
- University of Cadiz, ExPhy Research Group, Department of Physical Education, Puerto Real, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cadiz, Spain
| |
Collapse
|
2
|
Chavez-Guevara IA, Ferri-Marini C, Peric R, Egan B, Rubio-Valles M, Duron-Borjas MC, Ramos A. Association of blood lactate accumulation with fat metabolism during exercise: method matters. Int J Sports Med 2025. [PMID: 40112868 DOI: 10.1055/a-2563-9203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
This study examined if analytical procedures influence the relationship between lactate metabolism and fat oxidation during exercise in 54 young men (age: 27±7 y; body fat: 23±10%; VO2max: 46.9±10.2 mL·kg-1·min-1). The first lactate threshold was assessed using the log-log transformation of blood lactate and running speed (LT1log-log), an increase of 1 mM above the baseline (LT1Bsln1.0), and a fixed blood lactate concentration of 2 mM (LT1OBLA2). The second lactate threshold was determined using the maximal distance approach (LT2Dmax) and a fixed lactate concentration of 4 mM (LT2OBLA4). The highest (FATmax) and lowest (FATmin) fat oxidation rates were determined using a third-degree polynomial regression (P3), visual inspection, and mathematical modeling (SIN). FATmax and FATmin showed the strongest correlation with LT1log-log (r: 0.65, p<0.01) and LT2OBLA4 (r: 0.81, p<0.01), regardless of fitness. FATmaxP3 and LTOBLA2 showed the best agreement in untrained individuals. Conversely, FATmaxP3 and LT1log-log showed the best agreement in obese men and trained subjects. LT2OBLA4 showed the best agreement with FATmin. When investigating the association between fat oxidation and lactate metabolism during exercise, LT1log-log and LT2OBLA4 should be computed, while mathematical modeling or visual analysis should be applied for FATmax, depending on the fitness level.
Collapse
Affiliation(s)
| | - Carlo Ferri-Marini
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ratko Peric
- Department for Exercise Physiology, Orthopedic Clinic Orthosport, Banja Luka, Bosnia and Herzegovina
| | - Brendan Egan
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Mariazel Rubio-Valles
- Facultad de Ciencias de la Cultura Fisica, Universidad Autonoma de Chihuahua, Chihuahua, Mexico
| | | | - Arnulfo Ramos
- Departamento de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Mexico
| |
Collapse
|
3
|
Chávez-Guevara IA, Peric R, Amaro-Gahete FJ, Ramos-Jiménez A. Reliability of the Metabolic Response During Steady-State Exercise at FATmax in Young Men with Obesity. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:766-774. [PMID: 38324773 DOI: 10.1080/02701367.2024.2311641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Purpose: In this study we evaluated the reliability of blood lactate levels (BLa), energy expenditure and substrate utilization during prolonged exercise at the intensity that elicits maximal fat oxidation (FATmax). Furthermore, we investigated the accuracy of a single graded exercise test (GXT) for predicting energy metabolism at FATmax. Methods: Seventeen young men with obesity (26 ± 6 years; 36.4 ± 7.2 %body fat) performed a GXT on a treadmill in a fasted state (10-12 h) for the assessment of FATmax and cardiorespiratory fitness. Afterward, each subject performed two additional prolonged FATmax trials (102 ± 11 beats·min-1; 60-min) separated by 7 days. Indirect calorimetry was used for the assessment of energy expenditure and substrate utilization kinetics whereas capillary blood samples were taken for the measurement of BLa. Results: The BLa (limits of agreement (LoA): -1.2 to 0.8 mmol∙L-1; p = 1.0), fat utilization (LoA: -8.0 to 13.4 g∙h-1; p = 0.06), and carbohydrate utilization (LoA: -27.6 to 22.4 g∙h-1; p = 0.41) showed a good agreement whereas a modest systematic bias was found for energy expenditure (LoA: -16811 to 33355 kJ∙h-1; p < 0.05). All the aforementioned parameters showed a moderate to good reliability (Intraclass correlation coefficient: 0.67-0.92). The GXT overestimated fat (~46%) and carbohydrate (~26%) utilization as well as energy expenditure (36%) during steady-state exercise at FATmax. Conversely the GXT underestimated BLa (~28%). Conclusion: a single GXT cannot be used for an accurate prediction of energy metabolism during prolonged exercise in men with obesity. Thus, an additional steady-state FATmax trial (40-60 min) should be performed for a tailored and precise exercise prescription.
Collapse
Affiliation(s)
| | - Ratko Peric
- Orthopedic Clinic Orthosport
- University of Split
| | | | | |
Collapse
|
4
|
Astorino TA, Jordan Z, Gonzales C, Schuerger C, Atakan MM. Progressive Arm Cycling Ergometry With 3- And 5-Minute Stage Durations Yields Similar Estimates of Substrate Oxidation in Healthy Adults. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2024; 17:468-479. [PMID: 38665329 PMCID: PMC11042850 DOI: 10.70252/eudz2239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Arm cycling ergometry (ACE) leads to a lower maximal oxygen uptake (VO2max) than cycling which is related to a smaller active muscle mass. This study compared estimates of fat and carbohydrate oxidation (FOx and CHOOx) between progressive exercise protocols varying in stage duration in an attempt to create a standard exercise protocol for determining substrate metabolism using ACE. Four men and seven women (age = 24 ± 9 yr) unfamiliar with ACE completed incremental exercise to determine peak power output and VO2peak. During two subsequent sessions completed after an overnight fast, they completed progressive ACE using 3- or 5-min stages during which FOx, CHOOx, and blood lactate concentration (BLa) were measured. Results showed no difference (p > 0.05) in FOx, CHOOx, or BLa across stage duration, and there was no difference in maximal fat oxidation (0.16 ± 0.08 vs. 0.13 ± 0.07 g/min, p = 0.07). However, respiratory exchange ratio in response to the 3 min stage duration was significantly lower than the 5 min duration (0.83 ± 0.05 vs. 0.86 ± 0.03, p = 0.04, Cohen's d = 0.76). Results suggest that a 3 min stage duration is preferred to assess substrate metabolism during upper-body exercise in healthy adults.
Collapse
Affiliation(s)
- Todd A Astorino
- Department of Kinesiology, California State University-San Marcos, San Marcos, CA, USA
| | - Zachary Jordan
- Department of Kinesiology, California State University-San Marcos, San Marcos, CA, USA
| | - Cristian Gonzales
- Department of Kinesiology, California State University-San Marcos, San Marcos, CA, USA
| | - Carly Schuerger
- Department of Kinesiology, California State University-San Marcos, San Marcos, CA, USA
| | - Muhammed M Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, TURKEY
| |
Collapse
|
5
|
Chávez-Guevara IA, Amaro-Gahete FJ, Ramos-Jiménez A, Brun JF. Toward Exercise Guidelines for Optimizing Fat Oxidation During Exercise in Obesity: A Systematic Review and Meta-Regression. Sports Med 2023; 53:2399-2416. [PMID: 37584843 DOI: 10.1007/s40279-023-01897-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Exercise training performed at maximal fat oxidation (FATmax) is an efficient non-pharmacological approach for the management of obesity and its related cardio-metabolic disorders. OBJECTIVES Therefore, this work aimed to provide exercise intensity guidelines and training volume recommendations for maximizing fat oxidation in patients with obesity. METHODS A systematic review of original articles published in English, Spanish or French languages was carried out in EBSCOhost, PubMed and Scopus by strictly following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement. Those studies that analyzed maximal fat oxidation (MFO) and FATmax in patients with obesity (body fat > 25% for men; > 35% for women) by calculating substrate oxidation rates through indirect calorimetry during a graded exercise test with short-duration stages (< 10 min) were selected for quantitative analysis. The accuracy of relative oxygen uptake (% peak oxygen uptake [%[Formula: see text]O2peak]) and relative heart rate (% peak heart rate [%HRpeak]) for establishing FATmax reference values was investigated by analyzing their intra-individual and inter-study variation. Moreover, cluster analysis and meta-regression were used for determining the influence of biological factors and methodological procedures on MFO and FATmax. RESULTS Sixty-four manuscripts were selected from 146 records; 23 studies only recruited men (n = 465), 14 studies only evaluated women (n = 575), and 27 studies included individuals from both sexes (n = 6434). The majority of the evaluated subjects were middle-aged adults (aged 40-60 y; 84%) with a poor cardiorespiratory fitness (≤ 43 mL·kg-1·min-1; 81%), and the reported MFO ranged from 0.27 to 0.33 g·min-1. The relative heart rate at FATmax (coefficient of variation [CV]: 8.8%) showed a lower intra-individual variation compared with relative oxygen uptake (CV: 17.2%). Furthermore, blood lactate levels at FATmax ranged from 1.3 to 2.7 mmol·L-1 while the speed and power output at FATmax fluctuated from 4 to 5.1 km·h-1 and 42.8-60.2 watts, respectively. Age, body mass index, cardiorespiratory fitness, FATmax, the type of ergometer and the stoichiometric equation used to calculate the MFO independently explained MFO values (R2 = 0.85; p < 0.01). The MFO in adolescents was superior in comparison with MFO observed in young and middle-aged adults. On the other hand, the MFO was higher during treadmill walking in comparison with stationary cycling. Body fat and MFO alone determined 29% of the variation in FATmax (p < 0.01), noting that individuals with body fat > 35% showed a heart rate of 61-66% HRpeak while individuals with < 35% body fat showed a heart rate between 57 and 64% HRpeak. Neither biological sex nor the analytical procedure for computing the fat oxidation kinetics were associated with MFO and FATmax. CONCLUSION Relative heart rate rather than relative oxygen uptake should be used for establishing FATmax reference values in patients with obesity. A heart rate of 61-66% HRpeak should be recommended to patients with > 35% body fat while a heart rate of 57-64% HRpeak should be recommended to patients with body fat < 35%. Moreover, training volume must be higher in adults to achieve a similar fat oxidation compared with adolescents whereas exercising on a treadmill requires a lower training volume to achieve significant fat oxidation in comparison with stationary cycling.
Collapse
Affiliation(s)
- Isaac A Chávez-Guevara
- Department of Chemical Sciences, Biomedical Sciences Institute, Autonomous University of Ciudad Juarez, 32310, Chihuahua, Mexico.
- Department of Health Sciences, Biomedical Sciences Institute, Autonomous University of Ciudad Juarez, 32310, Chihuahua, Mexico.
| | - Francisco J Amaro-Gahete
- Department of Physiology, Faculty of Medicine, EFFECTS-262 Research Group, University of Granada, 18016, Granada, Spain
- PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, 18011, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Arnulfo Ramos-Jiménez
- Department of Chemical Sciences, Biomedical Sciences Institute, Autonomous University of Ciudad Juarez, 32310, Chihuahua, Mexico
- Department of Health Sciences, Biomedical Sciences Institute, Autonomous University of Ciudad Juarez, 32310, Chihuahua, Mexico
| | - Jean Frederic Brun
- Department of Endocrinology and Diabetes, Hôpital Lapeyronie CHRU Montpellier, PHYMEDEXP, Université de Montpellier, Montpellier, France.
| |
Collapse
|
6
|
Waldman HS, Bryant AR, Knight SN, Killen LG, Davis BA, Robinson MA, O'Neal EK. Assessment of Metabolic Flexibility by Substrate Oxidation Responses and Blood Lactate in Women Expressing Varying Levels of Aerobic Fitness and Body Fat. J Strength Cond Res 2023; 37:581-588. [PMID: 35836305 DOI: 10.1519/jsc.0000000000004316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Waldman, HS, Bryant, AR, Knight, SN, Killen, LG, Davis, BA, Robinson, MA, and O'Neal, EK. Assessment of metabolic flexibility by substrate oxidation responses and blood lactate in women expressing varying levels of aerobic fitness and body fat. J Strength Cond Res 37(3): 581-588, 2023-Collection of substrate oxidation responses during exercise is proposed as a noninvasive means for assessing metabolic flexibility in male subjects. However, because of hormonal and metabolic differences between sexes, this method may not be applicable to female subjects. This study assessed metabolic flexibility through indirect calorimetry across female subjects with different maximal oxidative capacities. Thirty-eight (18-45 years) eumenorrheic female subjects were stratified ( p < 0.05) based on V̇ o2 peak (mL·kg -1 ·min -1 ) into (1) endurance-trained (ET, n = 12, 42.6 ± 5.3), (2) recreationally active (RA, n = 13, 32.3 ± 1.6), or (3) overweight female subjects (OW, n = 13, 21.0 ± 4.0). Subjects completed the same 5-stage graded exercise test with intensities of 30, 45, 60, 75, and 90 W. Lactate [La - ], carbohydrate (CHOox), and fat (FATox) oxidation rates were assessed during the last min of each 5-minute stage. Subjects then cycled to exhaustion to determine V̇ o2 peak. Endurance-trained and RA female subjects expressed significantly ( p ≤ 0.05) higher absolute rates and rates scaled to fat-free mass of CHOox and FATox compared with OW female subjects during multiple stages. [La - ] failed to consistently differentiate the 3 groups with higher [La - ] for OW only found during stage 4; however, RER differed by 0.09 units or more at each stage for OW vs. ET. It seems that RER was more sensitive to cohort characteristics than [La - ] contrasting recent findings in male cohorts. In conclusion, indirect calorimetry is a practical and noninvasive method for assessing metabolic flexibility in eumenorrheic female subjects of varying aerobic fitness levels.
Collapse
Affiliation(s)
- Hunter S Waldman
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, Alabama; and
| | - Andrea R Bryant
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, Alabama; and
| | - Savanna N Knight
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, Alabama; and
| | - Lauren G Killen
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, Alabama; and
| | - Brett A Davis
- Department of Kinesiology, Auburn University at Montgomery, Montgomery, Alabama
| | - Marcus A Robinson
- Department of Kinesiology, Auburn University at Montgomery, Montgomery, Alabama
| | - Eric K O'Neal
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, Alabama; and
| |
Collapse
|
7
|
Ferri Marini C, Tadger P, Chávez-Guevara IA, Tipton E, Meucci M, Nikolovski Z, Amaro-Gahete FJ, Peric R. Factors Determining the Agreement between Aerobic Threshold and Point of Maximal Fat Oxidation: Follow-Up on a Systematic Review and Meta-Analysis on Association. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:453. [PMID: 36612784 PMCID: PMC9819531 DOI: 10.3390/ijerph20010453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Regular exercise at the intensity matching maximal fat oxidation (FATmax) has been proposed as a key element in both athletes and clinical populations when aiming to enhance the body's ability to oxidize fat. In order to allow a more standardized and tailored training approach, the connection between FATmax and the individual aerobic thresholds (AerT) has been examined. Although recent findings strongly suggest that a relationship exists between these two intensities, correlation alone is not sufficient to confirm that the intensities necessarily coincide and that the error between the two measures is small. Thus, this systematic review and meta-analysis aim to examine the agreement levels between the exercise intensities matching FATmax and AerT by pooling limits of agreement in a function of three parameters: (i) the average difference, (ii) the average within-study variation, and (iii) the variation in bias across studies, and to examine the influence of clinical and methodological inter- and intra-study differences on agreement levels. This study was registered with PROSPERO (CRD42021239351) and ClinicalTrials (NCT03789045). PubMed and Google Scholar were searched for studies examining FATmax and AerT connection. Overall, 12 studies with forty-five effect sizes and a total of 774 subjects fulfilled the inclusion criteria. The ROBIS tool for risk of bias assessment was used to determine the quality of included studies. In conclusion, the overall 95% limits of agreement of the differences between FATmax and AerT exercise intensities were larger than the a priori determined acceptable agreement due to the large variance caused by clinical and methodological differences among the studies. Therefore, we recommend that future studies follow a strict standardization of data collection and analysis of FATmax- and AerT-related outcomes.
Collapse
Affiliation(s)
- Carlo Ferri Marini
- Department of Biomolecular Sciences, Division of Exercise and Health Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | | | - Isaac Armando Chávez-Guevara
- Department of Chemical Sciences, Biomedical Sciences Institute, Ciudad Juarez Autonomous University, Chihuahua 32310, Mexico
| | - Elizabeth Tipton
- Department of Statistics and Data Science, Northwestern University, Evanston, IL 60208, USA
| | - Marco Meucci
- Department of Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA
| | - Zoran Nikolovski
- Faculty of Kinesiology, University of Split, 21000 Split, Croatia
| | - Francisco Jose Amaro-Gahete
- Department of Physiology, Faculty of Medicine, University of Granada, 18001 Granada, Spain
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Department of Physical and Sports Education, School of Sports Science, University of Granada, 18011 Granada, Spain
- EFFECTS-262 Research Group, Department of Physiology, School of Medicine, University of Granada, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Biosanitaria de Granada, 18014 Granada, Spain
| | - Ratko Peric
- Department for Exercise Physiology, Orthopedic Clinic Orthosport, 78000 Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
8
|
Witt CR, Grozier CD, Killen LG, Renfroe LG, O'Neal EK, Waldman HS. A Self-Selected 16:8 Time-Restricted Eating Protocol Improves Fat Oxidation Rates, Markers of Cardiometabolic Health, and 10-km Cycling Performance in Middle-Age Male Cyclists. J Strength Cond Res 2022; 37:1117-1123. [PMID: 36730045 DOI: 10.1519/jsc.0000000000004353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Witt, CR, Grozier, CD, Killen, LG, Renfroe, LG, O'Neal, EK, and Waldman, HS. A self-selected 16:8 time-restricted eating protocol improves fat oxidation rates, markers of cardiometabolic health, and 10-km cycling performance in middle-age male cyclists. J Strength Cond Res XX(X): 000-000, 2022-The purpose of this study was to assess the impact of 4 weeks, 16:8 time restricted eating (TRE) on markers of metabolic health and 10-km time trial (TT) performance in middle-age male cyclists. Subjects (n = 12; age, 40-60 years; V̇o2peak, 41.8 ± 5.6 ml·kg-1·min-1) consisting of individuals following a habitual Western diet completed a familiarization and 2 experimental trials [PRE] and [POST]. Following habitual Western diet without TRE, anthropometric measures were assessed, followed by completion of a graded exercise test and 10-km TT. Subjects then adhered to a 4-week TRE protocol where all calories had to be consumed within a self-selected 8-hour window and then returned for repeat testing. Although self-reported caloric intake did not statistically change PRE to POST, body mass (PRE, 83.2 ± 13.4 vs. POST, 80.7 ± 12.6 kg), fat mass (∼2.5 kg), and blood pressure (systolic, 8 mm Hg; diastolic, 4 mm Hg) were all significantly lower POST (all p < 0.05), with no changes in fat-free mass. Furthermore, fat oxidation significantly increased (PRE, 0.36 ± 0.03 vs. POST, 0.42 ± 0.03 g·min-1; p = 0.04) following the TRE intervention and 10-km TT performance improved by ∼2 minutes POST (PRE, 29.7 ± 7.3 vs. POST, 27.4 ± 5.5 minutes; p = 0.02). Overall, our data demonstrated that middle-age male cyclists adhering to a 4-week TRE protocol can improve their body composition profile and 10-km TT performance without detriments to fat-free mass.
Collapse
Affiliation(s)
- Craig R Witt
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, Alabama
| | | | | | | | | | | |
Collapse
|
9
|
Price M, Bottoms L, Hill M, Eston R. Maximal Fat Oxidation during Incremental Upper and Lower Body Exercise in Healthy Young Males. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15311. [PMID: 36430032 PMCID: PMC9691189 DOI: 10.3390/ijerph192215311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study is to determine the magnitude of maximal fat oxidation (MFO) during incremental upper and lower body exercise. Thirteen non-specifically trained male participants (19.3 ± 0.5 y, 78.1 ± 9.1 kg body mass) volunteered for this repeated-measures study, which had received university ethics committee approval. Participants undertook two incremental arm crank (ACE) and cycle ergometry (CE) exercise tests to volitional exhaustion. The first test for each mode served as habituation. The second test was an individualised protocol, beginning at 40% of the peak power output (POpeak) achieved in the first test, with increases of 10% POpeak until volitional exhaustion. Expired gases were recorded at the end of each incremental stage, from which fat and carbohydrate oxidation rates were calculated. MFO was taken as the greatest fat oxidation value during incremental exercise and expressed relative to peak oxygen uptake (%V˙O2peak). MFO was lower during ACE (0.44 ± 0.24 g·min-1) than CE (0.77 ± 0.31 g·min-1; respectively, p < 0.01) and occurred at a lower exercise intensity (53 ± 21 vs. 67 ± 18%V˙O2peak; respectively, p < 0.01). Inter-participant variability for MFO was greatest during ACE. These results suggest that weight loss programs involving the upper body should occur at lower exercise intensities than for the lower body.
Collapse
Affiliation(s)
- Mike Price
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Lindsay Bottoms
- Department of Psychology, Sport and Geography, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Matthew Hill
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Roger Eston
- Alliance for Research in Exercise, Nutrition and Activity, Campus Central—City East, University of South Australia, GPO Box 2471, Adelaide 5001, Australia
| |
Collapse
|
10
|
González-Acedo A, Plaza-Florido A, Amaro-Gahete FJ, Sacha J, Alcantara JMA. Associations between heart rate variability and maximal fat oxidation in two different cohorts of healthy sedentary adults. Nutr Metab Cardiovasc Dis 2022; 32:2338-2347. [PMID: 35977864 DOI: 10.1016/j.numecd.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/12/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND AND AIMS Resting heart rate variability (HRV) and maximal fat oxidation (MFO) during exercise are both considered as a noninvasive biomarkers for early detection of cardiovascular risk factors. Thus, this study aimed to analyze the relationship between resting HRV parameters and MFO during exercise, and the intensity of exercise that elicit MFO (Fatmax) in healthy sedentary adults. METHODS AND RESULTS A total of 103 healthy young adults (22.2 ± 2.3 years old, 67% female; from the ACTIBATE cohort) and 67 healthy middle-aged adults (53.1 ± 5.0 years old, 52% female; from the FIT-AGEING cohort) were included in this cross-sectional study. HRV was assessed using a Polar RS800CX heart rate monitor, while MFO and Fatmax were determined during a graded exercise treadmill test using indirect calorimetry. No significant associations were observed for healthy young adults (standardized β coefficients ranged from -0.063 to 0.094, and all P ≥ 0.347) and for middle-aged adults (standardized β coefficients ranged from -0.234 to 0.090, and all P ≥ 0.056). Nevertheless, only a weak association was observed between one HRV parameter in time-domain (the percentage of R-R intervals that shows a difference higher than 50 ms [pNN50]) and MFO in the cohort of middle-aged adults (β coefficient = -0.279, and P = 0.033). CONCLUSION The results of this study suggest that resting HRV parameters are not associated with MFO and Fatmax during exercise in two independent cohorts of healthy sedentary young and middle-aged adults, respectively.
Collapse
Affiliation(s)
- Anabel González-Acedo
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada (Spain), Avda. Ilustración, 60, 18016, Spain.
| | - Abel Plaza-Florido
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Spain.
| | - Francisco José Amaro-Gahete
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Spain; EFFECTS-262 Research Group, Department of Physiology, School of Medicine, University of Granada, Spain.
| | - Jerzy Sacha
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Opole, Poland; Department of Cardiology, University Hospital in Opole, University of Opole, Opole, Poland.
| | - Juan M A Alcantara
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Spain.
| |
Collapse
|
11
|
Atakan MM, Koşar ŞN, Turnagöl HH. Six sessions of low-volume high-intensity interval exercise improves resting fat oxidation. Int J Sports Med 2022; 43:1206-1213. [PMID: 35858638 DOI: 10.1055/a-1905-7985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
It remains unclear whether a practical model of low-volume high-intensity interval exercise improves resting fat oxidation (FatOx) which is associated with metabolic health. We aimed to determine the effects of a short-term practical model of high-intensity interval training (HIIT) on resting FatOx in young, healthy males. Thirty healthy males were randomly assigned to either single (HIITsingle; n=13) or double HIIT (HIITdouble; n=17) group. The HIITsingle group trained once a day, 3 days/week for 2 weeks, whilst the HIITdouble group performed 6 sessions of high-intensity exercise over 5 days by exercising twice a day every second day. Both groups completed 6 high-intensity exercise sessions consisting of 10×60 s of cycling at peak power output, interspersed by 75 s cycling at 60 W. With 1% false discovery rate (FDR) significance threshold, resting respiratory exchange ratio similarly decreased in HIITsingle (pre=0.83±0.03 vs post=0.80±0.03) and HIITdouble group (pre=0.82±0.04 vs post=0.80±0.02) [(p=0.001; partial eta squared () =0.310, FDR-adjusted p value=0.005)]. Resting FatOx increased similarly in HIITsingle (pre=1.07±0.39 mg·kg-1 fat free mass (FFM)·min-1 vs post=1.44±0.36 mg·kg-1 FFM·min-1) and HIITdouble group (pre=1.35±0.45 mg·kg-1 FFM·min-1 vs post=1.52±0.29 mg·kg-1 FFM·min-1) [(p<0.001; =0.411, FDR-adjusted p value=0.005)]. Our results demonstrate that only six sessions of a practical model of low-volume high-intensity exercise improves resting FatOx in young, healthy males.
Collapse
Affiliation(s)
- Muhammed Mustafa Atakan
- Faculty of Sport Sciences, Division of Nutrition and Metabolism in Exercise, Hacettepe Universitesi, Ankara, Turkey
| | - Şükran Nazan Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe Universitesi, Ankara, Turkey
| | - Hüseyin Hüsrev Turnagöl
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe Universitesi, Ankara, Turkey
| |
Collapse
|
12
|
Beyond the Calorie Paradigm: Taking into Account in Practice the Balance of Fat and Carbohydrate Oxidation during Exercise? Nutrients 2022; 14:nu14081605. [PMID: 35458167 PMCID: PMC9027421 DOI: 10.3390/nu14081605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Recent literature shows that exercise is not simply a way to generate a calorie deficit as an add-on to restrictive diets but exerts powerful additional biological effects via its impact on mitochondrial function, the release of chemical messengers induced by muscular activity, and its ability to reverse epigenetic alterations. This review aims to summarize the current literature dealing with the hypothesis that some of these effects of exercise unexplained by an energy deficit are related to the balance of substrates used as fuel by the exercising muscle. This balance of substrates can be measured with reliable techniques, which provide information about metabolic disturbances associated with sedentarity and obesity, as well as adaptations of fuel metabolism in trained individuals. The exercise intensity that elicits maximal oxidation of lipids, termed LIPOXmax, FATOXmax, or FATmax, provides a marker of the mitochondrial ability to oxidize fatty acids and predicts how much fat will be oxidized over 45–60 min of low- to moderate-intensity training performed at the corresponding intensity. LIPOXmax is a reproducible parameter that can be modified by many physiological and lifestyle influences (exercise, diet, gender, age, hormones such as catecholamines, and the growth hormone-Insulin-like growth factor I axis). Individuals told to select an exercise intensity to maintain for 45 min or more spontaneously select a level close to this intensity. There is increasing evidence that training targeted at this level is efficient for reducing fat mass, sparing muscle mass, increasing the ability to oxidize lipids during exercise, lowering blood pressure and low-grade inflammation, improving insulin secretion and insulin sensitivity, reducing blood glucose and HbA1c in type 2 diabetes, and decreasing the circulating cholesterol level. Training protocols based on this concept are easy to implement and accept in very sedentary patients and have shown an unexpected efficacy over the long term. They also represent a useful add-on to bariatric surgery in order to maintain and improve its weight-lowering effect. Additional studies are required to confirm and more precisely analyze the determinants of LIPOXmax and the long-term effects of training at this level on body composition, metabolism, and health.
Collapse
|
13
|
Robles-González L, Gutiérrez-Hellín J, Aguilar-Navarro M, Ruiz-Moreno C, Muñoz A, Del-Coso J, R. Ruiz J, Amaro-Gahete FJ. Inter-Day Reliability of Resting Metabolic Rate and Maximal Fat Oxidation during Exercise in Healthy Men Using the Ergostik Gas Analyzer. Nutrients 2021; 13:nu13124308. [PMID: 34959860 PMCID: PMC8708346 DOI: 10.3390/nu13124308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/23/2022] Open
Abstract
The attainment of high inter-day reliability is crucial to determine changes in resting metabolic rate (RMR), respiratory exchange ratio (RER), maximal fat oxidation during exercise (MFO) and the intensity that elicits MFO (Fatmax) after an intervention. This study aimed to analyze the inter-day reliability of RMR, RER, MFO and Fatmax in healthy adults using the Ergostik gas analyzer. Fourteen healthy men (age: 24.4 ± 5.0 years, maximum oxygen uptake (VO2max): 47.5 ± 11.9 mL/kg/min) participated in a repeated-measures study. The study consisted of two identical experimental trials (Day 1 and Day 2) in which the participants underwent an indirect calorimetry assessment at resting and during an incremental exercise test. Stoichiometric equations were used to calculate energy expenditure and substrate oxidation rates. There were no significant differences when comparing RMR (1999.3 ± 273.9 vs. 1955.7 ± 362.6 kcal/day, p = 0.389), RER (0.87 ± 0.05 vs. 0.89 ± 0.05, p = 0.143), MFO (0.32 ± 0.20 vs. 0.31 ± 0.20 g/min, p = 0.776) and Fatmax (45.0 ± 8.6 vs. 46.4 ± 8.4% VO2max, p = 0.435) values in Day 1 vs. Day 2. The inter-day coefficient of variation for RMR, RER, MFO and Fatmax were 4.85 ± 5.48%, 3.22 ± 3.14%, 7.78 ± 5.51%, and 6.51 ± 8.04%, respectively. In summary, the current results show a good inter-day reliability when RMR, RER, MFO and Fatmax are determined in healthy men using the Ergostik gas analyzer.
Collapse
Affiliation(s)
- Lidia Robles-González
- EFFECTS-262 Research Group, Department of Medical Physiology, Faculty of Medicine, University of Granada, 18011 Granada, Spain;
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Department of Physical and Sports Education, School of Sports Science, University of Granada, 18011 Granada, Spain;
| | - Jorge Gutiérrez-Hellín
- Exercise and Sport Science, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain; (J.G.-H.); (M.A.-N.); (A.M.)
| | - Millán Aguilar-Navarro
- Exercise and Sport Science, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain; (J.G.-H.); (M.A.-N.); (A.M.)
| | - Carlos Ruiz-Moreno
- Exercise Physiology Laboratory, Camilo José Cela University, 28692 Villanueva de la Cañada, Spain;
| | - Alejandro Muñoz
- Exercise and Sport Science, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain; (J.G.-H.); (M.A.-N.); (A.M.)
| | - Juan Del-Coso
- Centre for Sport Studies, Rey Juan Carlos University, 28943 Fuenlabrada, Spain;
| | - Jonatan R. Ruiz
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Department of Physical and Sports Education, School of Sports Science, University of Granada, 18011 Granada, Spain;
| | - Francisco J. Amaro-Gahete
- EFFECTS-262 Research Group, Department of Medical Physiology, Faculty of Medicine, University of Granada, 18011 Granada, Spain;
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Department of Physical and Sports Education, School of Sports Science, University of Granada, 18011 Granada, Spain;
- Correspondence:
| |
Collapse
|
14
|
Liu SZ, Valencia AP, VanDoren MP, Shankland EG, Roshanravan B, Conley KE, Marcinek DJ. Astaxanthin supplementation enhances metabolic adaptation with aerobic training in the elderly. Physiol Rep 2021; 9:e14887. [PMID: 34110707 PMCID: PMC8191397 DOI: 10.14814/phy2.14887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 01/16/2023] Open
Abstract
Endurance training (ET) is recommended for the elderly to improve metabolic health and aerobic capacity. However, ET-induced adaptations may be suboptimal due to oxidative stress and exaggerated inflammatory response to ET. The natural antioxidant and anti-inflammatory dietary supplement astaxanthin (AX) has been found to increase endurance performance among young athletes, but limited investigations have focused on the elderly. We tested a formulation of AX in combination with ET in healthy older adults (65-82 years) to determine if AX improves metabolic adaptations with ET, and if AX effects are sex-dependent. Forty-two subjects were randomized to either placebo (PL) or AX during 3 months of ET. Specific muscle endurance was measured in ankle dorsiflexors. Whole body exercise endurance and fat oxidation (FATox) was assessed with a graded exercise test (GXT) in conjunction with indirect calorimetry. Results: ET led to improved specific muscle endurance only in the AX group (Pre 353 ± 26 vs. Post 472 ± 41 contractions), and submaximal GXT duration improved in both groups (PL 40.8 ± 9.1% and AX 41.1 ± 6.3%). The increase in FATox at lower intensity after ET was greater in AX (PL 0.23 ± 0.15 g vs. AX 0.76 ± 0.18 g) and was associated with reduced carbohydrate oxidation and increased exercise efficiency in males but not in females.
Collapse
Affiliation(s)
- Sophia Z. Liu
- Department of RadiologyUniversity of WashingtonSeattleWAUSA
| | | | - Matt P. VanDoren
- Exercise Research CenterFred Hutchinson Cancer Research CenterSeattleWAUSA
| | | | - Baback Roshanravan
- Department of Internal Medicine, Division of NephrologyUniversity of California DavisSacramentoCAUSA
| | - Kevin E. Conley
- Department of RadiologyUniversity of WashingtonSeattleWAUSA
- Department of Physiology & BiophysicsUniversity of WashingtonSeattleWAUSA
- Department of BioengineeringUniversity of WashingtonSeattleWAUSA
| | - David J. Marcinek
- Department of RadiologyUniversity of WashingtonSeattleWAUSA
- Department of BioengineeringUniversity of WashingtonSeattleWAUSA
- Department of MedicineUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
15
|
Astorino TA, De Revere JL. Effect of Ethnicity on Changes in Fat and Carbohydrate Oxidation in Response to Short-Term High Intensity Interval Training (HIIT): A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084314. [PMID: 33921694 PMCID: PMC8072605 DOI: 10.3390/ijerph18084314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022]
Abstract
This study compared changes in substrate metabolism with high intensity interval training (HIIT) in women of different ethnicities. Twelve Caucasian (C) and ten Hispanic women (H) (age = 24 ± 5 yr) who were inactive completed nine sessions of HIIT at 85 percent peak power output (%PPO). Pre-training, changes in fat oxidation (FOx) and carbohydrate oxidation (CHOOx) during progressive cycling were measured on two days to compute the minimum difference (MD). This test was repeated after the last training session. Between baseline tests, estimates of FOx and CHOOx were not different (p > 0.05) and were highly related (intraclass correlation coefficient equal to 0.72 to 0.88), although the coefficient of variation of maximal fat oxidation (MFO) was equal to 30%. Training significantly increased MFO (p = 0.03) in C (0.19 ± 0.06 g/min to 0.21 ± 0.06 g/min, d = 0.66) and H (0.16 ± 0.03 g/min to 0.19 ± 0.03 g/min, d = 1.3) that was similar (p = 0.92) between groups. There was a significant interaction for FOx (p = 0.003) as it was only increased in H versus C, although both groups exhibited reduced CHO oxidation (p = 0.002) with training. Use of MD revealed that only 3 of 22 women show meaningful increases in MFO (>0.08 g/min). The preliminary data reveals that a small dose of low-volume HIIT does not alter fat and CHO oxidation and there is little effect of ethnicity on the response to training.
Collapse
|
16
|
Amaro-Gahete FJ, Sanchez-Delgado G, Jurado-Fasoli L, Ruiz JR. Uncertain association between maximal fat oxidation during exercise and cardiometabolic risk factors in healthy sedentary adults. Eur J Sport Sci 2021; 22:926-936. [PMID: 33655814 DOI: 10.1080/17461391.2021.1895894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present work examines the relationships between maximal fat oxidation during a graded exercise test (MFO), the intensity of exercise that elicits MFO (Fatmax), and traditional cardiometabolic risk factors in healthy, sedentary adults. A total of 119 (81 women) young, sedentary adults (22.1 ± 2.2 years old), and 71 (37 women) middle-aged, sedentary adults (53.4 ± 4.9 years old) participated in the current study. Systolic and diastolic blood pressures were determined following standard procedures. Plasma glucose, insulin, total cholesterol, high-density lipoprotein cholesterol and triglycerides were determined in a fasted state and the homeostatic model assessment of insulin resistance index and low-density lipoprotein cholesterol levels subsequently calculated. A sex and age group-specific cardiometabolic risk Z-score was also calculated for each subject based on waist circumference, systolic and diastolic blood pressure, plasma glucose, high-density lipoprotein cholesterol and triglycerides. MFO and Fatmax were determined using a walking graded exercise test using indirect calorimetry. No clear association was seen of MFO and Fatmax with any cardiometabolic risk factor (all P≥0.05), except for a weak, inverse association between Fatmax and the fatty liver index (P=0.027). Similarly, neither MFO nor Fatmax was apparently associated with the cardiometabolic risk Z-score (all P≥0.05). The current findings suggest an uncertain association of MFO and Fatmax during a graded exercise test with the cardiometabolic profile of healthy, sedentary adults.HighlightsThe study of the physiological mechanisms that trigger the onset of metabolic disorders has received considerable attention in recent years, with changes in MFO and Fatmax being highlighted as a potential key factor.This work shows that MFO and Fatmax during a graded exercise test are not associated with the cardiometabolic profile in sedentary, healthy adults.Further studies are needed to elucidate which other physiological disorders are related to cardiometabolic risk.
Collapse
Affiliation(s)
- Francisco J Amaro-Gahete
- EFFECTS-262 Research group, Department of Medical Physiology, Faculty of Medicine, University of Granada, Granada, Spain.,PROmoting FITness and Health through physical activity research group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Guillermo Sanchez-Delgado
- PROmoting FITness and Health through physical activity research group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Lucas Jurado-Fasoli
- EFFECTS-262 Research group, Department of Medical Physiology, Faculty of Medicine, University of Granada, Granada, Spain.,PROmoting FITness and Health through physical activity research group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Jonatan R Ruiz
- PROmoting FITness and Health through physical activity research group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
17
|
McCue A, Munten S, Herzig KH, Gagnon DD. Metabolic flexibility is unimpaired during exercise in the cold following acute glucose ingestion in young healthy adults. J Therm Biol 2021; 98:102912. [PMID: 34016339 DOI: 10.1016/j.jtherbio.2021.102912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/05/2021] [Accepted: 03/11/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Metabolic flexibility is compromised in individuals suffering from metabolic diseases, lipo- and glucotoxicity, and mitochondrial dysfunctions. Exercise studies performed in cold environments have demonstrated an increase in lipid utilization, which could lead to a compromised substrate competition, glycotoxic-lipotoxic state, or metabolic inflexibility. Whether metabolic flexibility is altered during incremental maximal exercise to volitional fatigue in a cold environment remains unclear. METHODS Ten young healthy participants performed four maximal incremental treadmill tests to volitional fatigue, in a fasted state, in a cold (0 °C) or a thermoneutral (22.0 °C) environment, with and without a pre-exercise ingestion of a 75-g glucose solution. Metabolic flexibility was assessed via indirect calorimetry using the change in respiratory exchange ratio (ΔRER), maximal fat oxidation (ΔMFO), and where MFO occurred along the exercise intensity spectrum (ΔFatmax), while circulating lactate and glucose levels were measured pre and post exercise. RESULTS Multiple linear mixed-effects regressions revealed an increase in glucose oxidation from glucose ingestion and an increase in lipid oxidation from the cold during exercise (p < 0.001). No differences were observed in metabolic flexibility as assessed via ΔRER (0.05 ± 0.03 vs. 0.05 ± 0.03; p = 0.734), ΔMFO (0.21 ± 0.18 vs. 0.16 ± 0.13 g min-1; p = 0.133) and ΔFatmax (13.3 ± 19.0 vs. 0.6 ± 21.3 %V̇O2peak; p = 0.266) in cold and thermoneutral, respectively. CONCLUSIONS Following glucose loading, metabolic flexibility was unaffected during exercise to volitional fatigue in a cold environment, inducing an increase in lipid oxidation. These results suggest that competing pathways responsible for the regulation of fuel selection during exercise and cold exposure may potentially be mechanistically independent. Whether long-term metabolic influences of high-fat diets and acute lipid overload in cold and warm environments would impact metabolic flexibility remain unclear.
Collapse
Affiliation(s)
- Alexus McCue
- Laboratory of Environmental Exercise Physiology, School of Kinesiology and Health Sciences, Laurentian University, Sudbury, Ontario, Canada; Center of Research in Occupational Health and Safety, Laurentian University, Sudbury, Ontario, Canada
| | - Stephanie Munten
- Laboratory of Environmental Exercise Physiology, School of Kinesiology and Health Sciences, Laurentian University, Sudbury, Ontario, Canada; Center of Research in Occupational Health and Safety, Laurentian University, Sudbury, Ontario, Canada
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, Oulu, Finland; Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominique D Gagnon
- Laboratory of Environmental Exercise Physiology, School of Kinesiology and Health Sciences, Laurentian University, Sudbury, Ontario, Canada; Center of Research in Occupational Health and Safety, Laurentian University, Sudbury, Ontario, Canada.
| |
Collapse
|
18
|
Determinants of Peak Fat Oxidation Rates During Cycling in Healthy Men and Women. Int J Sport Nutr Exerc Metab 2021; 31:227-235. [PMID: 33588373 DOI: 10.1123/ijsnem.2020-0262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/23/2020] [Accepted: 11/19/2020] [Indexed: 11/18/2022]
Abstract
This study explored lifestyle and biological determinants of peak fat oxidation (PFO) during cycle ergometry, using duplicate measures to account for day-to-day variation. Seventy-three healthy adults (age range: 19-63 years; peak oxygen consumption [V˙O2peak]: 42.4 [10.1] ml·kg BM-1·min-1; n = 32 women]) completed trials 7-28 days apart that assessed resting metabolic rate, a resting venous blood sample, and PFO by indirect calorimetry during an incremental cycling test. Habitual physical activity (combined heart rate accelerometer) and dietary intake (weighed record) were assessed before the first trial. Body composition was assessed 2-7 days after the second identical trial by dual-energy X-ray absorptiometry scan. Multiple linear regressions were performed to identify determinants of PFO (mean of two cycle tests). A total variance of 79% in absolute PFO (g·min-1) was explained with positive coefficients for V˙O2peak (strongest predictor), FATmax (i.e the % of V˙O2peak that PFO occurred at), and resting fat oxidation rate (g·min-1), and negative coefficients for body fat mass (kg) and habitual physical activity level. When expressed relative to fat-free mass, 64% of variance in PFO was explained: positive coefficients for FATmax (strongest predictor), V˙O2peak, and resting fat oxidation rate, and negative coefficients for male sex and fat mass. This duplicate design revealed that biological and lifestyle factors explain a large proportion of variance in PFO during incremental cycling. After accounting for day-to-day variation in PFO, V˙O2peak and FATmax were strong and consistent predictors of PFO.
Collapse
|
19
|
Astorino TA, Oriente C, Peterson J, Alberto G, Castillo EE, Vasquez-Soto U, Ibarra E, Guise V, Castaneda I, Marroquin JR, Dargis R, Thum JS. Higher Peak Fat Oxidation During Rowing vs. Cycling in Active Men and Women. J Strength Cond Res 2021; 35:9-15. [PMID: 33136770 DOI: 10.1519/jsc.0000000000003888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Astorino, TA, Oriente, C, Peterson, J, Alberto, G, Castillo, EE, Vasquez-Soto, U, Ibarra, E, Guise, V, Castaneda, I, Marroquin, JR, Dargis, R, and Thum, JS. Higher peak fat oxidation during rowing vs. cycling in active men and women. J Strength Cond Res 35(1): 9-15, 2021-This study compared fat and carbohydrate oxidation (CHOOx) between progressive rowing and cycling. Initially, 22 active healthy adults (age = 27 ± 8 years) performed incremental cycling and rowing to volitional fatigue to assess maximal oxygen uptake (V̇o2max) and maximal heart rate (HRmax). The order of 2 subsequent sessions was randomized, performed 2 hours postmeal, and included a warm-up followed by three 8-minute stages of rowing or cycling at 60-65, 70-75, and 80-85 %HRmax. During exercise, power output was modified to maintain work rate in the desired range. Gas exchange data and blood samples were obtained to measure fat and CHOOx and blood lactate concentration. Fat oxidation (FOx) increased during exercise (p < 0.001) and there was a main effect of mode (p = 0.03) but no modeXintensity interaction (p = 0.33). Peak FOx was higher in response to rowing vs. cycling (0.23 ± 0.09 g·min-1 vs. 0.18 ± 0.07 g·min-1, p = 0.01). Carbohydrate oxidation increased during exercise (p < 0.001) but there was no effect of mode (p = 0.25) or modeXintensity interaction (p = 0.08). Blood lactate concentration was lower (p = 0.007) at the end of rowing vs. cycling (3.1 ± 1.0 mM vs. 3.9 ± 1.6 mM, d = 1.1). Prolonged rowing having equivalent calorie expenditure and intensity vs. cycling elicits higher peak FOx, which is likely attributed to greater muscle mass used during rowing.
Collapse
Affiliation(s)
- Todd A Astorino
- Department of Kinesiology, California State University, San Marcos, California
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Peric R, DI Pietro A, Myers J, Nikolovski Z. A systematic comparison of commonly used stoichiometric equations to estimate fat oxidation during exercise in athletes. J Sports Med Phys Fitness 2020; 61:1354-1361. [PMID: 33314884 DOI: 10.23736/s0022-4707.20.11747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Over the last half-century, different stoichiometric equations for calculating the energy cost of exercise based upon the combustion of mixtures of carbohydrates, fats, and proteins have been proposed and modified. With the means of indirect calorimetry, while measuring oxygen uptake, carbon dioxide production, and urinary urea nitrogen excretion, the contribution of specific substrates to overall energy production can be estimated. However, even with their long history of application, no previous studies have evaluated whether the use of different stoichiometric equations provides similar or distinct maximal fat oxidation rate (MFO) responses and information regarding MFO location (FAT<inf>max</inf>) in male athletes. METHODS Twenty healthy male athletes performed graded exercise testing (GXT) cycle ergometry using breath by breath gas analysis to assess fat oxidation and maximal oxygen uptake. Analysis of variance followed by within-equation effects, within-equation factors, and post hoc pairwise comparisons were used to examine within-equation differences. RESULTS Compared stoichiometric equations demonstrated significant differences in the mean and maximal fat oxidation rates, varying up to nearly 7%. FAT<inf>max</inf> differences, however, were not noticed. CONCLUSIONS Our findings suggest that for within-study designs, the equation used appears to be less important, but when inter-study comparisons are planned, caution is in order due to the presence of inter-equation differences.
Collapse
Affiliation(s)
- Ratko Peric
- Sport Studio BL Association for Contemporary Education in Sports, Banja Luka, Bosnia and Herzegovina -
| | | | - Jonathan Myers
- VA Palo Alto Health Care System, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
21
|
Chrzanowski-Smith OJ, Edinburgh RM, Thomas MP, Haralabidis N, Williams S, Betts JA, Gonzalez JT. The day-to-day reliability of peak fat oxidation and FAT MAX. Eur J Appl Physiol 2020; 120:1745-1759. [PMID: 32488584 PMCID: PMC7340634 DOI: 10.1007/s00421-020-04397-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 05/16/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE Prior studies exploring the reliability of peak fat oxidation (PFO) and the intensity that elicits PFO (FATMAX) are often limited by small samples. This study characterised the reliability of PFO and FATMAX in a large cohort of healthy men and women. METHODS Ninety-nine adults [49 women; age: 35 (11) years; [Formula: see text]O2peak: 42.2 (10.3) mL·kg BM-1·min-1; mean (SD)] completed two identical exercise tests (7-28 days apart) to determine PFO (g·min-1) and FATMAX (%[Formula: see text]O2peak) by indirect calorimetry. Systematic bias and the absolute and relative reliability of PFO and FATMAX were explored in the whole sample and sub-categories of: cardiorespiratory fitness, biological sex, objectively measured physical activity levels, fat mass index (derived by dual-energy X-ray absorptiometry) and menstrual cycle status. RESULTS No systematic bias in PFO or FATMAX was found between exercise tests in the entire sample (- 0.01 g·min-1 and 0%[Formula: see text]O2peak, respectively; p > 0.05). Absolute reliability was poor [within-subject coefficient of variation: 21% and 26%; typical errors: ± 0.06 g·min-1 and × / ÷ 1.26%[Formula: see text]O2peak; 95% limits of agreement: ± 0.17 g·min-1 and × / ÷ 1.90%[Formula: see text]O2peak, respectively), despite high (r = 0.75) and moderate (r = 0.45) relative reliability for PFO and FATMAX, respectively. These findings were consistent across all sub-groups. CONCLUSION Repeated assessments are required to more accurately determine PFO and FATMAX.
Collapse
Affiliation(s)
| | | | - Mark P. Thomas
- Department for Health, University of Bath, Bath, BA2 7AY UK
| | | | - Sean Williams
- Department for Health, University of Bath, Bath, BA2 7AY UK
| | - James A. Betts
- Department for Health, University of Bath, Bath, BA2 7AY UK
| | | |
Collapse
|
22
|
Zurbuchen A, Lanzi S, Voirol L, Trindade CB, Gojanovic B, Kayser B, Bourdillon N, Chenevière X, Malatesta D. Fat Oxidation Kinetics Is Related to Muscle Deoxygenation Kinetics During Exercise. Front Physiol 2020; 11:571. [PMID: 32581846 PMCID: PMC7289152 DOI: 10.3389/fphys.2020.00571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose The present study aimed to determine whether whole-body fat oxidation and muscle deoxygenation kinetics parameters during exercise were related in individuals with different aerobic fitness levels. Methods Eleven cyclists [peak oxygen uptake (V.O2peak): 64.9 ± 3.9 mL⋅kg–1⋅min–1] and 11 active individuals (V.O2peak: 49.1 ± 7.4 mL⋅kg–1⋅min–1) performed a maximal incremental cycling test to determine V.O2peak and a submaximal incremental cycling test to assess whole-body fat oxidation using indirect calorimetry and muscle deoxygenation kinetics of the vastus lateralis (VL) using near-infrared spectroscopy (NIRS). A sinusoidal (SIN) model was used to characterize fat oxidation kinetics and to determine the intensity (Fatmax) eliciting maximal fat oxidation (MFO). The muscle deoxygenation response was fitted with a double linear model. The slope of the first parts of the kinetics (a1) and the breakpoint ([HHb]BP) were determined. Results MFO (p = 0.01) and absolute fat oxidation rates between 20 and 65% V.O2peak were higher in cyclists than in active participants (p < 0.05), while Fatmax occurred at a higher absolute exercise intensity (p = 0.01). a1 was lower in cyclists (p = 0.02) and [HHb]BP occurred at a higher absolute intensity (p < 0.001) than in active individuals. V.O2peak was strongly correlated with MFO, Fatmax, and [HHb]BP (r = 0.65–0.88, p ≤ 0.001). MFO and Fatmax were both correlated with [HHb]BP (r = 0.66, p = 0.01 and r = 0.68, p < 0.001, respectively) and tended to be negatively correlated with a1 (r = -0.41, p = 0.06 for both). Conclusion This study showed that whole-body fat oxidation and muscle deoxygenation kinetics were both related to aerobic fitness and that a relationship between the two kinetics exists. Individuals with greater aerobic fitness may have a delayed reliance on glycolytic metabolism at higher exercise intensities because of a longer maintained balance between O2 delivery and consumption supporting higher fat oxidation rates.
Collapse
Affiliation(s)
- Anouck Zurbuchen
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Stefano Lanzi
- Institute of Sport Sciences of the University of Lausanne, Doctrine Selon Convention SSP-FBM, University of Lausanne, Lausanne, Switzerland.,Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Ludovic Voirol
- Institute of Sport Sciences of the University of Lausanne, Doctrine Selon Convention SSP-FBM, University of Lausanne, Lausanne, Switzerland
| | - Cybele Barboza Trindade
- Institute of Sport Sciences of the University of Lausanne, Doctrine Selon Convention SSP-FBM, University of Lausanne, Lausanne, Switzerland
| | - Boris Gojanovic
- Sports Medicine Unit, Swiss Olympic Medical Center, Department for Locomotion, Lausanne University Hospital, Lausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences of the University of Lausanne, Doctrine Selon Convention SSP-FBM, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences of the University of Lausanne, Doctrine Selon Convention SSP-FBM, University of Lausanne, Lausanne, Switzerland
| | - Xavier Chenevière
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Davide Malatesta
- Institute of Sport Sciences of the University of Lausanne, Doctrine Selon Convention SSP-FBM, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Günaştı Ö, Özdemir Ç, Özgünen KT, Kılcı A, Korkmaz Eryılmaz S, Kurdak SS. Sedanter bireyler ve sporcularda substrat kesişim noktasındaki yağ oksidasyon hızlarının karşılaştırılması. CUKUROVA MEDICAL JOURNAL 2019. [DOI: 10.17826/cumj.571942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
24
|
Riis S, Møller AB, Dollerup O, Høffner L, Jessen N, Madsen K. Acute and sustained effects of a periodized carbohydrate intake using the sleep-low model in endurance-trained males. Scand J Med Sci Sports 2019; 29:1866-1880. [PMID: 31430404 DOI: 10.1111/sms.13541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022]
Abstract
Repeated periodization of carbohydrate (CHO) intake using a diet-exercise strategy called the sleep-low model can potentially induce mitochondrial biogenesis and improve endurance performance in endurance-trained individuals. However, more studies are needed to confirm the performance-related effects and to investigate the sustained effects on maximal fat oxidation (MFO) rate and proteins involved in intramuscular lipid metabolism. Thirteen endurance-trained males (age 23-44 years; V ˙ O2 -max, 63.9 ± 4.6 mL·kg-1 ·min-1 ) were randomized into two groups: sleep-low (LOW-CHO) or high CHO availability (HIGH-CHO) in three weekly training blocks over 4 weeks. The acute metabolic response was investigated during 60 minutes of exercise within the last 3 weeks of the intervention. Pre- and post-intervention, 30-minute time-trial performance was investigated after a 90-minute pre-load, which as a novel approach included nine intense intervals (and estimation of MFO). Additionally, muscle biopsies (v. lateralis) were obtained to investigate expression of proteins involved in intramuscular lipid metabolism using Western blotting. During acute exercise, average fat oxidation rate was ~36% higher in LOW-CHO compared to HIGH-CHO (P = .03). This did not translate into sustained effects on MFO. Time-trial performance increased equally in both groups (overall time effect: P = .005). We observed no effect on intramuscular proteins involved in lipolysis (ATGL, G0S2, CGI-58, HSL) or fatty acid transport and β-oxidation (CD-36 and HAD, respectively). In conclusion, the sleep-low model did not induce sustained effects on MFO, endurance performance, or proteins involved in intramuscular lipid metabolism when compared to HIGH-CHO. Our study therefore questions the transferability of acute effects of the sleep-low model to superior sustained adaptations.
Collapse
Affiliation(s)
- Simon Riis
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark.,Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andreas Buch Møller
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Dollerup
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Line Høffner
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark.,Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Jessen
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Klavs Madsen
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark.,Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
25
|
Diurnal Variation of Maximal Fat-Oxidation Rate in Trained Male Athletes. Int J Sports Physiol Perform 2019; 14:1140-1146. [DOI: 10.1123/ijspp.2018-0854] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 11/18/2022]
Abstract
Purpose: To analyze the diurnal variation of maximal fat oxidation (MFO) and the intensity that elicits MFO (Fatmax) in trained male athletes. Methods: A total of 12 endurance-trained male athletes age 24.7 (4.1) y participated in the study. The authors measured MFO, Fatmax, maximum oxygen uptake (VO2max), and VO2 percentage at ventilatory threshold 2 with a graded exercise protocol performed on 2 days separated by 1 wk. One test was performed in the morning and the other in the afternoon. The authors assessed the participants’ chronotype using the HÖME questionnaire. Results: MFO and Fatmax were greater in the afternoon than in the morning (Δ = 13%, P < .001 and Δ = 6%, P = .001, respectively), whereas there were similar VO2max and ventilatory threshold 2 in the morning, than in the afternoon test (Δ = 0.2%, P = .158 and Δ = 7%, P = .650, respectively). There was a strong positive association between VO2max and MFO in both morning and afternoon assessments (R2 = .783, P = .001 and R2 = .663, P < .001, respectively). Similarly, there was a positive association between VO2max and Fatmax in both morning and afternoon assessments (R2 = .406, P = .024 and R2 = .414, P = .026, respectively). Conclusion: MFO and Fatmax may partially explain some of the observed diurnal variation in the performance of endurance sports.
Collapse
|
26
|
Hansen MT, Rømer T, Frandsen J, Larsen S, Dela F, Helge JW. Determination and validation of peak fat oxidation in endurance-trained men using an upper body graded exercise test. Scand J Med Sci Sports 2019; 29:1677-1690. [PMID: 31309617 DOI: 10.1111/sms.13519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022]
Abstract
Peak fat oxidation rate (PFO) and the intensity that elicits PFO (Fatmax ) are commonly determined by a validated graded exercise test (GE) on a cycling ergometer with indirect calorimetry. However, for upper body exercise fat oxidation rates are not well elucidated and no protocol has been validated. Thus, our aim was to test validity and inter-method reliability for determination of PFO and Fatmax in trained men using a GE protocol applying double poling on a ski-ergometer. PFO and Fatmax were assessed during two identical GE tests (GE1 and GE2) and validated against separated short continuous exercise bouts (SCE) at 35%, 50%, and 65% of V̇O2peak on the ski-ergometer in 10 endurance-trained men (V̇O2peak : 65.1 ± 1.0 mL·min-1 ·kg-1 , mean ± SEM). Between GE tests no differences were found in PFO (GE1: 0.42 ± 0.03; GE2: 0.45 ± 0.03 g·min-1 , P = .256) or Fatmax (GE1: 41 ± 2%; GE2: 43 ± 3% of V̇O2peak , P = .457) and the intra-individual coefficient of variation (CV) was 8 ± 2% and 11 ± 2% for PFO and Fatmax , respectively. Between GE and SCE tests, PFO (GEavg : 0.44 ± 0.03; SCE; 0.47 ± 0.06 g·min-1 , P = .510) was not different, whereas a difference in Fatmax (GEavg : 42 ± 2%; SCE: 52 ± 4% of V̇O2peak , P = .030) was observed with a CV of 17 ± 4% and 15 ± 4% for PFO and Fatmax , respectively. In conclusion, GE has a high day-to-day reliability in determination of PFO and Fatmax in trained men, whereas it is unclear if PFO and Fatmax determined by GE reflect continuous exercise in general.
Collapse
Affiliation(s)
- Mikkel Thunestvedt Hansen
- Xlab, Department of Biomedical Sciences, Center for Healthy Aging, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Tue Rømer
- Xlab, Department of Biomedical Sciences, Center for Healthy Aging, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Frandsen
- Xlab, Department of Biomedical Sciences, Center for Healthy Aging, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Department of Biomedical Sciences, Center for Healthy Aging, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Flemming Dela
- Xlab, Department of Biomedical Sciences, Center for Healthy Aging, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark.,Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Jørn Wulff Helge
- Xlab, Department of Biomedical Sciences, Center for Healthy Aging, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Amaro-Gahete FJ, Sanchez-Delgado G, Helge JW, Ruiz JR. Optimizing Maximal Fat Oxidation Assessment by a Treadmill-Based Graded Exercise Protocol: When Should the Test End? Front Physiol 2019; 10:909. [PMID: 31396095 PMCID: PMC6664289 DOI: 10.3389/fphys.2019.00909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/02/2019] [Indexed: 01/06/2023] Open
Abstract
Maximal fat oxidation during exercise (MFO) and the exercise intensity eliciting MFO (Fatmax) are considered important factors related to metabolic health and performance. Numerous MFO and Fatmax data collection and analysis approaches have been applied, which may have influenced their estimation during an incremental graded exercise protocol. Despite the heterogeneity of protocols used, all studies consistently stopped the MFO and Fatmax test when the respiratory exchange ratio (RER) was 1.0. It remains unknown however whether reaching a RER of 1.0 is required to have an accurate, reliable, and valid measure of MFO and Fatmax. We aimed to investigate the RER at which MFO and Fatmax occurred in sedentary and trained healthy adults. A total of 166 sedentary adults aged between 18 and 65 years participated in the study. MFO and Fatmax were calculated by an incremental graded exercise protocol before and after two exercise-based interventions. Our findings suggest that a graded exercise protocol aiming to determine MFO and Fatmax could end when a RER = 0.93 is reached in sedentary healthy adults, and when a RER = 0.90 is reached in trained adults independently of sex, age, body weight status, or the Fatmax data analysis approach. In conclusion, we suggest reducing the RER from 1.0 to 0.95 to be sure that MFO is reached in outliers. This methodological consideration has important clinical implications, since it would allow to apply smaller workload increments and/or to extend the stage duration to attain the steady state, without increasing the test duration.
Collapse
Affiliation(s)
- Francisco J Amaro-Gahete
- EFFECTS-262 Research Group, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain.,PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Guillermo Sanchez-Delgado
- PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Jørn W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonatan R Ruiz
- PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
28
|
Gutiérrez-Hellín J, Del Coso J. Effects of p-Synephrine and Caffeine Ingestion on Substrate Oxidation during Exercise. Med Sci Sports Exerc 2019; 50:1899-1906. [PMID: 29727404 DOI: 10.1249/mss.0000000000001653] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Caffeine and p-synephrine are substances usually included in commercially available products for weight loss because of their purported thermogenic effects. However, scientific information is lacking about the effects of combining these substances on substrate oxidation during exercise. The purpose of this investigation was to determine the isolated and combined effects of p-synephrine and caffeine on fat oxidation rate during exercise. METHODS In a double-blind randomized experiment, 13 healthy subjects participated in four experimental trials after the ingestion of a capsule containing a placebo, 3 mg·kg of caffeine, 3 mg·kg of p-synephrine, or the combination of these doses of caffeine and p-synephrine. Energy expenditure and substrate oxidation rates were measured by indirect calorimetry during a cycle ergometer ramp test from 30% to 90% of V˙O2max. RESULTS In comparison with the placebo, the ingestion of caffeine, p-synephrine, or p-synephrine + caffeine did not alter total energy expenditure or heart rate during the whole exercise test. However, the ingestion of caffeine (0.44 ± 0.15 g·min, P = 0.03), p-synephrine (0.43 ± 0.19 g·min, P < 0.01), and p-synephrine + caffeine (0.45 ± 0.15 g·min, P = 0.02) increased the maximal rate of fat oxidation during exercise when compared with the placebo (0.30 ± 0.12 g·min). The exercise intensity that elicited maximal fat oxidation was similar in all trials (~46.2% ± 10.2% of V˙O2max). CONCLUSION Caffeine, p-synephrine, and p-synephrine + caffeine increased the maximal rate of fat oxidation during exercise compared with a placebo, without modifying energy expenditure or heart rate. However, the coingestion of p-synephrine and caffeine did not present an additive effect to further increase fat oxidation during exercise.
Collapse
|
29
|
Amaro-Gahete FJ, Sanchez-Delgado G, Jurado-Fasoli L, De-la-O A, Castillo MJ, Helge JW, Ruiz JR. Assessment of maximal fat oxidation during exercise: A systematic review. Scand J Med Sci Sports 2019; 29:910-921. [PMID: 30929281 DOI: 10.1111/sms.13424] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 11/27/2022]
Abstract
Maximal fat oxidation during exercise (MFO) and the exercise intensity eliciting MFO (Fatmax ) are considered biological markers of metabolic health and performance. A wide range of studies have been performed to increase our knowledge about their regulation by exercise and/or nutritional intervention. However, numerous data collection and analysis approaches have been applied, which may have affected the MFO and Fatmax estimation. We aimed to systematically review the available studies describing and/or comparing different data collection and analysis approach factors that could affect MFO and Fatmax estimation in healthy individuals and patients. Two independent researchers performed the search. We included all original studies in which MFO and/or Fatmax were estimated by indirect calorimetry through an incremental graded exercise protocol published from 2002 to 2019. This systematic review provides key information about the factors that could affect MFO and Fatmax estimation: ergometer type, metabolic cart used, warm-up duration and intensity, stage duration and intensities imposed in the graded exercise protocol, time interval selected for data analysis, stoichiometric equation selected to estimate fat oxidation, data analysis approach, time of the day when the test was performed, fasting time/previous meal before the test, and testing days for MFO/Fatmax and maximal oxygen uptake assessment. We suggest that researchers measuring MFO and Fatmax should take into account these key methodological issues that can considerably affect the accuracy, validity, and reliability of the measurement. Likewise, when comparing different studies, it is important to check whether the above-mentioned key methodological issues are similar in such studies to avoid ambiguous and unacceptable comparisons.
Collapse
Affiliation(s)
- Francisco J Amaro-Gahete
- EFFECTS-262, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain.,PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Guillermo Sanchez-Delgado
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Lucas Jurado-Fasoli
- EFFECTS-262, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Alejandro De-la-O
- EFFECTS-262, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Manuel J Castillo
- EFFECTS-262, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Jørn W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonatan R Ruiz
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
30
|
Amaro-Gahete FJ, Sanchez-Delgado G, Alcantara JM, Martinez-Tellez B, Acosta FM, Helge JW, Ruiz JR. Impact of data analysis methods for maximal fat oxidation estimation during exercise in sedentary adults. Eur J Sport Sci 2019; 19:1230-1239. [DOI: 10.1080/17461391.2019.1595160] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Francisco J. Amaro-Gahete
- EFFECTS-262 Research group, Departament of Physiology, Faculty of Medicine, University of Granada, Granada Spain
- PROmoting FITness and Health through physical activity research group (PROFITH), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada
| | - Guillermo Sanchez-Delgado
- PROmoting FITness and Health through physical activity research group (PROFITH), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada
| | - Juan M.A. Alcantara
- PROmoting FITness and Health through physical activity research group (PROFITH), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada
| | - Borja Martinez-Tellez
- PROmoting FITness and Health through physical activity research group (PROFITH), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada
- Department of Medicine, division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Francisco M. Acosta
- PROmoting FITness and Health through physical activity research group (PROFITH), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada
| | - Jørn W. Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonatan R. Ruiz
- PROmoting FITness and Health through physical activity research group (PROFITH), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada
| |
Collapse
|
31
|
Chrzanowski-Smith OJ, Edinburgh RM, Betts JA, Stokes KA, Gonzalez JT. Evaluation of a graded exercise test to determine peak fat oxidation in individuals with low cardiorespiratory fitness. Appl Physiol Nutr Metab 2018; 43:1288-1297. [DOI: 10.1139/apnm-2018-0098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The maximal capacity to utilise fat (peak fat oxidation, PFO) may have implications for health and ultra-endurance performance and is commonly determined by incremental exercise tests employing 3-min stages. However, 3-min stages may be insufficient to attain steady-state gas kinetics, compromising test validity. We assessed whether 4-min stages produce steady-state gas exchange and reliable PFO estimates in adults with peak oxygen consumption < 40 mL·kg−1·min−1. Fifteen participants (9 females) completed a graded test to determine PFO and the intensity at which this occurred (FATMAX). Three short continuous exercise sessions (SCE) were then completed in a randomised order, involving completion of the graded test to the stage (i) preceding, (ii) equal to (SCEequal), or (iii) after the stage at which PFO was previously attained, whereupon participants then continued to cycle for 10 min at that respective intensity. Expired gases were sampled at minutes 3–4, 5–6, 7–8, and 9–10. Individual data showed steady-state gas exchange was achieved within 4 min during SCEequal. Mean fat oxidation rates were not different across time within SCEequal nor compared with the graded test at FATMAX (both p > 0.05). However, the graded test displayed poor surrogate validity (SCEequal, minutes 3–4 vs. 5–6, 7–8, and 9–10) and day-to-day reliability (minutes 3–4, SCEequal vs. graded test) to determine PFO, as evident by correlations (range: 0.47–0.83) and typical errors and 95% limits of agreement (ranges: 0.03–0.05 and ±0.09–0.15 g·min−1, respectively). In conclusion, intraindividual variation in PFO is substantial despite 4-min stages establishing steady-state gas exchange in individuals with low fitness. Individual assessment of PFO may require multiple assessments.
Collapse
Affiliation(s)
- Oliver J. Chrzanowski-Smith
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Robert M. Edinburgh
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - James A. Betts
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Keith A. Stokes
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Javier T. Gonzalez
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
32
|
Amaro-Gahete FJ, Sanchez-Delgado G, Ruiz JR. Commentary: Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front Physiol 2018; 9:1460. [PMID: 30405428 PMCID: PMC6201563 DOI: 10.3389/fphys.2018.01460] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Francisco J Amaro-Gahete
- Departament of Medical Physiology, School of Medicine, University of Granada, Granada, Spain.,PROmoting FITness and Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Guillermo Sanchez-Delgado
- PROmoting FITness and Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Jonatan R Ruiz
- PROmoting FITness and Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
33
|
Maunder E, Plews DJ, Kilding AE. Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front Physiol 2018; 9:599. [PMID: 29875697 PMCID: PMC5974542 DOI: 10.3389/fphys.2018.00599] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022] Open
Abstract
Using a short-duration step protocol and continuous indirect calorimetry, whole-body rates of fat and carbohydrate oxidation can be estimated across a range of exercise workloads, along with the individual maximal rate of fat oxidation (MFO) and the exercise intensity at which MFO occurs (Fatmax). These variables appear to have implications both in sport and health contexts. After discussion of the key determinants of MFO and Fatmax that must be considered during laboratory measurement, the present review sought to synthesize existing data in order to contextualize individually measured fat oxidation values. Data collected in homogenous cohorts on cycle ergometers after an overnight fast was synthesized to produce normative values in given subject populations. These normative values might be used to contextualize individual measurements and define research cohorts according their capacity for fat oxidation during exercise. Pertinent directions for future research were identified.
Collapse
Affiliation(s)
- Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | | | | |
Collapse
|
34
|
Ishihara K, Taniguchi H. Fat max as an index of aerobic exercise performance in mice during uphill running. PLoS One 2018; 13:e0193470. [PMID: 29474428 PMCID: PMC5825145 DOI: 10.1371/journal.pone.0193470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/12/2018] [Indexed: 11/22/2022] Open
Abstract
Endurance exercise performance has been used as a representative index in experimental animal models in the field of health sciences, exercise physiology, comparative physiology, food function or nutritional physiology. The objective of the present study was to evaluate the effectiveness of Fatmax (the exercise intensity that elicits maximal fat oxidation) as an additional index of endurance exercise performance that can be measured during running at submaximal exercise intensity in mice. We measured both Fatmax and Vo2 peak of trained ICR mice that voluntary exercised for 8 weeks and compared them with a sedentary group of mice at multiple inclinations of 20, 30, 40, and 50° on a treadmill. The Vo2 at Fatmax of the training group was significantly higher than that of the sedentary group at inclinations of 30 and 40° (P < 0.001). The running speed at Fatmax of the training group was significantly higher than that of the sedentary group at inclinations of 20, 30, and 40° (P < 0.05). Blood lactate levels sharply increased in the sedentary group (7.33 ± 2.58 mM) compared to the training group (3.13 ± 1.00 mM, P < 0.01) when running speeds exceeded the Fatmax of sedentary mice. Vo2 at Fatmax significantly correlated to Vo2 peak, running time to fatigue, and lactic acid level during running (P < 0.05) although the reproducibility of Vo2 peak was higher than that of Vo2 at Fatmax. In conclusion, Fatmax can be used as a functional assessment of the endurance exercise performance of mice during submaximal exercise intensity.
Collapse
Affiliation(s)
- Kengo Ishihara
- Faculty of Agriculture, Ryukoku University, Shiga, Japan
- * E-mail:
| | | |
Collapse
|
35
|
Changes in fat oxidation in response to various regimes of high intensity interval training (HIIT). Eur J Appl Physiol 2017; 118:51-63. [PMID: 29124325 DOI: 10.1007/s00421-017-3756-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/28/2017] [Indexed: 02/08/2023]
Abstract
Increased whole-body fat oxidation (FOx) has been consistently demonstrated in response to moderate intensity continuous exercise training. Completion of high intensity interval training (HIIT) and its more intense form, sprint interval training (SIT), has also been reported to increase FOx in different populations. An explanation for this increase in FOx is primarily peripheral adaptations via improvements in mitochondrial content and function. However, studies examining changes in FOx are less common in response to HIIT or SIT than those determining increases in maximal oxygen uptake which is concerning, considering that FOx has been identified as a predictor of weight gain and glycemic control. In this review, we explored physiological and methodological issues underpinning existing literature concerning changes in FOx in response to HIIT and SIT. Our results show that completion of interval training increases FOx in approximately 50% of studies, with the frequency of increased FOx higher in response to studies using HIIT compared to SIT. Significant increases in β-HAD, citrate synthase, fatty acid binding protein, or FAT/CD36 are likely responsible for the greater FOx seen in these studies. We encourage scientists to adopt strict methodological procedures to attenuate day-to-day variability in FOx, which is dramatic, and develop standardized procedures for assessing FOx, which may improve detection of changes in FOx in response to HIIT.
Collapse
|
36
|
Randell RK, Rollo I, Roberts TJ, Dalrymple KJ, Jeukendrup AE, Carter JM. Maximal Fat Oxidation Rates in an Athletic Population. Med Sci Sports Exerc 2017; 49:133-140. [PMID: 27580144 DOI: 10.1249/mss.0000000000001084] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The aim of this study was to describe maximal fat oxidation (MFO) rates in an athletic population. METHOD In total, 1121 athletes (933 males and 188 females), from a variety of sports and competitive level, undertook a graded exercise test on a treadmill in a fasted state (≥5 h fasted). Rates of fat oxidation were determined using indirect calorimetry. RESULTS The average MFO was 0.59 ± 0.18 g·min, ranging from 0.17 to 1.27 g·min. Maximal rates occurred at an average exercise intensity of 49.3% ± 14.8% V˙O2max, ranging from 22.6% to 88.8% V˙O2max. In absolute terms, male athletes had significantly higher MFO compared with females (0.61 and 0.50 g·min, respectively, P < 0.001). Expressed relative to fat-free mass (FFM), MFO were higher in the females compared with males (MFO/FFM: 11.0 and 10.0 mg·kg·FFM·min, respectively, P < 0.001). Soccer players had the highest MFO/FFM (10.8 mg·kg·FFM·min), ranging from 4.1 to 20.5 mg·kg·FFM·min, whereas American Football players displayed the lowest rates of MFO/FFM (9.2 mg·kg·FFM·min). In all athletes, and when separated by sport, large individual variations in MFO rates were observed. Significant positive correlations were found between MFO (g·min) and the following variables: FFM, V˙O2max, FATMAX (the exercise intensity at which the MFO was observed), percent body fat, and duration of fasting. When taken together these variables account for 47% of the variation in MFO. CONCLUSION MFO and FATMAX vary significantly between athletes participating in different sports but also in the same sport. Although variance in MFO can be explained to some extent by body composition and fitness status, more than 50% of the variance is not explained by these variables and remains unaccounted for.
Collapse
Affiliation(s)
- Rebecca K Randell
- 1The Gatorade Sports Science Institute, Global Nutrition R&D, PepsiCo, Leicester, UNITED KINGDOM; and 2School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Dandanell S, Præst CB, Søndergård SD, Skovborg C, Dela F, Larsen S, Helge JW. Determination of the exercise intensity that elicits maximal fat oxidation in individuals with obesity. Appl Physiol Nutr Metab 2017; 42:405-412. [PMID: 28177732 DOI: 10.1139/apnm-2016-0518] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Maximal fat oxidation (MFO) and the exercise intensity that elicits MFO (FatMax) are commonly determined by indirect calorimetry during graded exercise tests in both obese and normal-weight individuals. However, no protocol has been validated in individuals with obesity. Thus, the aims were to develop a graded exercise protocol for determination of FatMax in individuals with obesity, and to test validity and inter-method reliability. Fat oxidation was assessed over a range of exercise intensities in 16 individuals (age: 28 (26-29) years; body mass index: 36 (35-38) kg·m-2; 95% confidence interval) on a cycle ergometer. The graded exercise protocol was validated against a short continuous exercise (SCE) protocol, in which FatMax was determined from fat oxidation at rest and during 10 min of continuous exercise at 35%, 50%, and 65% of maximal oxygen uptake. Intraclass and Pearson correlation coefficients between the protocols were 0.75 and 0.72 and within-subject coefficient of variation (CV) was 5 (3-7)%. A Bland-Altman plot revealed a bias of -3% points of maximal oxygen uptake (limits of agreement: -12 to 7). A tendency towards a systematic difference (p = 0.06) was observed, where FatMax occurred at 42 (40-44)% and 45 (43-47)% of maximal oxygen uptake with the graded and the SCE protocol, respectively. In conclusion, there was a high-excellent correlation and a low CV between the 2 protocols, suggesting that the graded exercise protocol has a high inter-method reliability. However, considerable intra-individual variation and a trend towards systematic difference between the protocols reveal that further optimization of the graded exercise protocol is needed to improve validity.
Collapse
Affiliation(s)
- Sune Dandanell
- a Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Science, Xlab, University of Copenhagen, Blegdamsvej 3, DK-2200, Denmark
- b Department for Physiotherapy and Occupational Therapy, Metropolitan University College, Sigurdsgade 26, DK-2200 Copenhagen, Denmark
| | - Charlotte Boslev Præst
- a Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Science, Xlab, University of Copenhagen, Blegdamsvej 3, DK-2200, Denmark
- b Department for Physiotherapy and Occupational Therapy, Metropolitan University College, Sigurdsgade 26, DK-2200 Copenhagen, Denmark
| | - Stine Dam Søndergård
- a Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Science, Xlab, University of Copenhagen, Blegdamsvej 3, DK-2200, Denmark
| | - Camilla Skovborg
- a Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Science, Xlab, University of Copenhagen, Blegdamsvej 3, DK-2200, Denmark
| | - Flemming Dela
- a Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Science, Xlab, University of Copenhagen, Blegdamsvej 3, DK-2200, Denmark
- c Department of Geriatrics, Bispebjerg University Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen, Denmark
| | - Steen Larsen
- a Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Science, Xlab, University of Copenhagen, Blegdamsvej 3, DK-2200, Denmark
| | - Jørn Wulff Helge
- a Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Science, Xlab, University of Copenhagen, Blegdamsvej 3, DK-2200, Denmark
| |
Collapse
|
39
|
Astorino TA, Edmunds RM, Clark A, Gallant R, King L, Ordille GM, Heath B, Montell M, Bandong J. Change in maximal fat oxidation in response to different regimes of periodized high-intensity interval training (HIIT). Eur J Appl Physiol 2017; 117:745-755. [PMID: 28251399 DOI: 10.1007/s00421-017-3535-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Increased capacity for fat oxidation (FatOx) is demonstrated in response to chronic endurance training as well as high-intensity interval training (HIIT). This study examined changes in maximal fat oxidation (MFO) in response to 20 sessions of periodized HIIT in an attempt to identify if various regimes of HIIT similarly augment capacity for FatOx. METHODS Thirty-nine habitually active men and women (mean age and VO2max = 22.5 ± 4.4 year and 40.0 ± 5.6 mL/kg/min) completed training and 32 men and women with similar physical activity and fitness level served as non-exercising controls (CON). Training consisted of ten sessions of progressive low-volume HIIT on the cycle ergometer after which participants completed an additional ten sessions of sprint interval training (SIT), high-volume HIIT, or periodized HIIT, whose assignment was randomized. Before and throughout training, MFO, FatOx, and carbohydrate oxidation (CHOOx) were assessed during progressive cycling to exhaustion. RESULTS Compared to CON, there was no effect of HIIT on MFO (p = 0.11). Small increases (p = 0.03) in FatOx were evident in response to HIIT leading to an additional 4.3 g of fat oxidized, although this value may not be clinically meaningful. CONCLUSIONS Our results refute the widely reported increases in capacity for FatOx demonstrated with HIIT, which is likely due to marked day-to-day variability in determinations of MFO and exercise fat oxidation as well as the heterogeneity of our sample.
Collapse
Affiliation(s)
- Todd A Astorino
- Department of Kinesiology, CSU-San Marcos, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, USA.
| | - Ross M Edmunds
- Department of Physical Therapy, SUNY-Stony Brook, Stony Brook, NY, USA
| | - Amy Clark
- Department of Kinesiology, CSU-San Marcos, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, USA
| | - Rachael Gallant
- Department of Kinesiology, CSU-San Marcos, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, USA
| | - Leesa King
- Department of Kinesiology, CSU-San Marcos, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, USA
| | - Gina M Ordille
- Department of Kinesiology, CSU-San Marcos, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, USA
| | - Brendyn Heath
- Department of Kinesiology, CSU-San Marcos, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, USA
| | - Matthew Montell
- Department of Kinesiology, CSU-San Marcos, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, USA
| | - Jason Bandong
- Department of Kinesiology, CSU-San Marcos, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA, USA
| |
Collapse
|
40
|
Isacco L, Ritter O, Tordi N, Laroche D, Degano B, Bouhaddi M, Rakobowchuk M, Mourot L. Similar substrate oxidation rates in concentric and eccentric cycling matched for aerobic power output. Appl Physiol Nutr Metab 2016; 41:1204-1207. [DOI: 10.1139/apnm-2016-0107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated substrate oxidation in concentric and eccentric cycling matched for aerobic power output in the postprandial state. Energy expenditure, respiratory exchange ratio, and fat and carbohydrate oxidation rates were measured at rest and after 15, 30, and 45 min of eccentric and concentric cycling in 12 men. Absolute and relative aerobic power output and energy expenditure were similar during concentric and eccentric exercise. No effect of exercise modality was observed for substrate metabolism.
Collapse
Affiliation(s)
- Laurie Isacco
- EA 3920 and Exercise Performance Health Innovation Platform, Franche-Comté University, 25000 Besançon, France
| | - Ophélie Ritter
- EA 4267 and Exercise Performance Health Innovation Platform, Franche-Comté University, 25000 Besançon, France
- Cardiac and Pulmonary Rehabilitation Centre of Franche-Comté, 25770 Franois, France
| | - Nicolas Tordi
- EA 4267 and Exercise Performance Health Innovation Platform, Franche-Comté University, 25000 Besançon, France
- Inserm CIC-CIT 808, Regional University Hospital of Besançon, 25000 Besançon, France
| | - Davy Laroche
- Inserm CIC-P 803, Technologic Investigation Platform, University Hospital of Dijon, 21079 Dijon, France
| | - Bruno Degano
- EA 3920 and Exercise Performance Health Innovation Platform, Franche-Comté University, 25000 Besançon, France
- Physiology–Functional Explorations, Regional University Hospital of Besançon, 25000 Besançon, France
| | - Malika Bouhaddi
- EA 3920 and Exercise Performance Health Innovation Platform, Franche-Comté University, 25000 Besançon, France
- Physiology–Functional Explorations, Regional University Hospital of Besançon, 25000 Besançon, France
| | - Mark Rakobowchuk
- Faculty of Science, Department of Biological Sciences, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
| | - Laurent Mourot
- EA 3920 and Exercise Performance Health Innovation Platform, Franche-Comté University, 25000 Besançon, France
- Inserm CIC-CIT 808, Regional University Hospital of Besançon, 25000 Besançon, France
| |
Collapse
|
41
|
Croci I, Byrne NM, Chachay VS, Hills AP, Clouston AD, O’Moore-Sullivan TM, Prins JB, Macdonald GA, Hickman IJ. Independent effects of diet and exercise training on fat oxidation in non-alcoholic fatty liver disease. World J Hepatol 2016; 8:1137-1148. [PMID: 27721919 PMCID: PMC5037327 DOI: 10.4254/wjh.v8.i27.1137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/13/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the independent effects of 6-mo of dietary energy restriction or exercise training on whole-body and hepatic fat oxidation of patients with non-alcoholic fatty liver disease (NAFLD).
METHODS Participants were randomised into either circuit exercise training (EX; n = 13; 3 h/wk without changes in dietary habits), or dietary energy restriction (ER) without changes in structured physical activity (ER; n = 8). Respiratory quotient (RQ) and whole-body fat oxidation rates (Fatox) were determined by indirect calorimetry under basal, insulin-stimulated and exercise conditions. Severity of disease and steatosis was determined by liver histology; hepatic Fatox was estimated from plasma β-hydroxybutyrate concentrations; cardiorespiratory fitness was expressed as VO2peak. Complete-case analysis was performed (EX: n = 10; ER: n = 6).
RESULTS Hepatic steatosis and NAFLD activity score decreased with ER but not with EX. β-hydroxybutyrate concentrations increased significantly in response to ER (0.08 ± 0.02 mmol/L vs 0.12 ± 0.04 mmol/L, P = 0.03) but remained unchanged in response to EX (0.10 ± 0.03 mmol/L vs 0.11 ± 0.07 mmol/L, P = 0.39). Basal RQ decreased (P = 0.05) in response to EX, while this change was not significant after ER (P = 0.38). VO2peak (P < 0.001) and maximal Fatox during aerobic exercise (P = 0.03) improved with EX but not with ER (P > 0.05). The increase in β-hydroxybutyrate concentrations was correlated with the reduction in hepatic steatosis (r = -0.56, P = 0.04).
CONCLUSION ER and EX lead to specific benefits on fat metabolism of patients with NAFLD. Increased hepatic Fatox in response to ER could be one mechanism through which the ER group achieved reduction in steatosis.
Collapse
|
42
|
De Souza Silveira R, Carlsohn A, Langen G, Mayer F, Scharhag-Rosenberger F. Reliability and day-to-day variability of peak fat oxidation during treadmill ergometry. J Int Soc Sports Nutr 2016; 13:4. [PMID: 26816497 PMCID: PMC4727277 DOI: 10.1186/s12970-016-0115-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/20/2016] [Indexed: 11/30/2022] Open
Abstract
Background Exercising at intensities where fat oxidation rates are high has been shown to induce metabolic benefits in recreational and health-oriented sportsmen. The exercise intensity (Fatpeak) eliciting peak fat oxidation rates is therefore of particular interest when aiming to prescribe exercise for the purpose of fat oxidation and related metabolic effects. Although running and walking are feasible and popular among the target population, no reliable protocols are available to assess Fatpeak as well as its actual velocity (VPFO) during treadmill ergometry. Our purpose was therefore, to assess the reliability and day-to-day variability of VPFO and Fatpeak during treadmill ergometry running. Methods Sixteen recreational athletes (f = 7, m = 9; 25 ± 3 y; 1.76 ± 0.09 m; 68.3 ± 13.7 kg; 23.1 ± 2.9 kg/m2) performed 2 different running protocols on 3 different days with standardized nutrition the day before testing. At day 1, peak oxygen uptake (VO2peak) and the velocities at the aerobic threshold (VLT) and respiratory exchange ratio (RER) of 1.00 (VRER) were assessed. At days 2 and 3, subjects ran an identical submaximal incremental test (Fat-peak test) composed of a 10 min warm-up (70 % VLT) followed by 5 stages of 6 min with equal increments (stage 1 = VLT, stage 5 = VRER). Breath-by-breath gas exchange data was measured continuously and used to determine fat oxidation rates. A third order polynomial function was used to identify VPFO and subsequently Fatpeak. The reproducibility and variability of variables was verified with an intraclass correlation coefficient (ICC), Pearson’s correlation coefficient, coefficient of variation (CV) and the mean differences (bias) ± 95 % limits of agreement (LoA). Results ICC, Pearson’s correlation and CV for VPFO and Fatpeak were 0.98, 0.97, 5.0 %; and 0.90, 0.81, 7.0 %, respectively. Bias ± 95 % LoA was −0.3 ± 0.9 km/h for VPFO and −2 ± 8 % of VO2peak for Fatpeak. Conclusion In summary, relative and absolute reliability indicators for VPFO and Fatpeak were found to be excellent. The observed LoA may now serve as a basis for future training prescriptions, although fat oxidation rates at prolonged exercise bouts at this intensity still need to be investigated.
Collapse
Affiliation(s)
- Raul De Souza Silveira
- University Outpatient Clinic, Center of Sports Medicine, Potsdam University, Potsdam, Germany ; Swiss Federal Institute of Sport Magglingen, Magglingen, Switzerland
| | - Anja Carlsohn
- University Outpatient Clinic, Center of Sports Medicine, Potsdam University, Potsdam, Germany ; Department of Health Sciences, University of Education Schwaebisch Gmuend, Schwaebisch Gmuend, Germany
| | - Georg Langen
- University Outpatient Clinic, Center of Sports Medicine, Potsdam University, Potsdam, Germany
| | - Frank Mayer
- University Outpatient Clinic, Center of Sports Medicine, Potsdam University, Potsdam, Germany
| | - Friederike Scharhag-Rosenberger
- University Outpatient Clinic, Center of Sports Medicine, Potsdam University, Potsdam, Germany ; Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
43
|
Ipavec-Levasseur S, Croci I, Choquette S, Byrne NM, Cowin G, O'Moore-Sullivan TM, Prins JB, Hickman IJ. Effect of 1-h moderate-intensity aerobic exercise on intramyocellular lipids in obese men before and after a lifestyle intervention. Appl Physiol Nutr Metab 2015; 40:1262-8. [PMID: 26575100 DOI: 10.1139/apnm-2015-0258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intramyocellular lipids (IMCL) are depleted in response to an acute bout of exercise in lean endurance-trained individuals; however, it is unclear whether changes in IMCL content are also seen in response to acute and chronic exercise in obese individuals. We used magnetic resonance spectroscopy in 18 obese men and 5 normal-weight controls to assess IMCL content before and after an hour of cycling at the intensity corresponding with each participant's maximal whole-body rate of fat oxidation (Fatmax). Fatmax was determined via indirect calorimetry during a graded exercise test on a cycle ergometer. The same outcome measures were reassessed in the obese group after a 16-week lifestyle intervention comprising dietary calorie restriction and exercise training. At baseline, IMCL content decreased in response to 1 h of cycling at Fatmax in controls (2.8 ± 0.4 to 2.0 ± 0.3 A.U., -39%, p = 0.02), but not in obese (5.4 ± 2.1 vs. 5.2 ± 2.2 A.U., p = 0.42). The lifestyle intervention lead to weight loss (-10.0 ± 5.4 kg, p < 0.001), improvements in maximal aerobic power (+5.2 ± 3.4 mL/(kg·min)), maximal fat oxidation rate (+0.19 ± 0.22 g/min), and a 29% decrease in homeostasis model assessment score (all p < 0.05). However, when the 1 h of cycling at Fatmax was repeated after the lifestyle intervention, there remained no observable change in IMCL (4.6 ± 1.8 vs. 4.6 ± 1.9 A.U., p = 0.92). In summary, there was no IMCL depletion in response to 1 h of cycling at moderate intensity either before or after the lifestyle intervention in obese men. An effective lifestyle intervention including moderate-intensity exercise training did not impact rate of utilisation of IMCL during acute exercise in obese men.
Collapse
Affiliation(s)
| | - Ilaria Croci
- a The University of Queensland Diamantina Institute, Brisbane, Australia.,b School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia.,c Mater Research Institute, University of Queensland, Brisbane, Australia
| | - Stéphane Choquette
- d Faculty of Physical Education and Sports, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nuala M Byrne
- e Bond Institute of Health and Sport, Bond University, Robina, Australia.,f Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Gary Cowin
- g Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Trisha M O'Moore-Sullivan
- c Mater Research Institute, University of Queensland, Brisbane, Australia.,h Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Australia
| | - Johannes B Prins
- c Mater Research Institute, University of Queensland, Brisbane, Australia
| | - Ingrid J Hickman
- a The University of Queensland Diamantina Institute, Brisbane, Australia.,c Mater Research Institute, University of Queensland, Brisbane, Australia
| |
Collapse
|
44
|
Croci I, Hickman IJ, Wood RE, Borrani F, Macdonald GA, Byrne NM. Fat oxidation over a range of exercise intensities: fitness versus fatness. Appl Physiol Nutr Metab 2014; 39:1352-9. [PMID: 25356842 DOI: 10.1139/apnm-2014-0144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maximal fat oxidation (MFO), as well as the exercise intensity at which it occurs (Fatmax), have been reported as lower in sedentary overweight individuals but have not been studied in trained overweight individuals. The aim of this study was to compare Fatmax and MFO in lean and overweight recreationally trained males matched for cardiorespiratory fitness (CRF) and to study the relationships between these variables, anthropometric characteristics, and CRF. Twelve recreationally trained overweight (high fatness (HiFat) group, 30.0% ± 5.3% body fat) and 12 lean males (low fatness (LoFat), 17.2% ± 5.7% body fat) matched for CRF (maximal oxygen consumption (V̇O2max) 39.0 ± 5.5 vs. 41.4 ± 7.6 mL·kg(-1)·min(-1), p = 0.31) and age (p = 0.93) performed a graded exercise test on a cycle ergometer. V̇O2max and fat and carbohydrate oxidation rates were determined using indirect calorimetry; Fatmax and MFO were determined with a mathematical model (SIN); and % body fat was assessed by air displacement plethysmography. MFO (0.38 ± 0.19 vs. 0.42 ± 0.16 g·min(-1), p = 0.58), Fatmax (46.7% ± 8.6% vs. 45.4% ± 7.2% V̇O2max, p = 0.71), and fat oxidation rates over a wide range of exercise intensities were not significantly different (p > 0.05) between HiFat and LoFat groups. In the overall cohort (n = 24), MFO and Fatmax were correlated with V̇O2max (r = 0.46, p = 0.02; r = 0.61, p = 0.002) but not with % body fat or body mass index (p > 0.05). Fat oxidation during exercise was similar in recreationally trained overweight and lean males matched for CRF. Consistently, substrate oxidation rates during exercise were not related to adiposity (% body fat) but were related to CRF. The benefits of high CRF independent of body weight and % body fat should be further highlighted in the management of obesity.
Collapse
Affiliation(s)
- Ilaria Croci
- a The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, St Lucia QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|