1
|
Escelsior A, Amadeo MB, Inuggi A, Guzzetti M, Massalha Y, Trabucco A, Marenco G, Pereira da Silva B, Gori M, Northoff G, Amore M, Serafini G. Time perception in bipolar disorder: a systematic review. Acta Neuropsychiatr 2025; 37:e5. [PMID: 39846127 DOI: 10.1017/neu.2024.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
OBJECTIVE Time distortions characterise severe mental disorders, exhibiting different clinical and neurobiological manifestations. This systematic review aims to explore the existing literature encompassing experimental studies on time perception in patients with bipolar disorder (BD), considering psychopathological and cognitive correlates. METHODS Studies using an experimental paradigm to objectively measure the capacity to judge time have been searched for. Selected studies have been described based on whether i) explicit or implicit time perception was investigated, ii) the temporal intervals involved were sub-second or supra-second, and iii) a perceptual or motor timing paradigm was used. RESULTS Only 11 met the criteria for inclusion in the review. The available literature shows that the performance of BD patients mostly aligns with controls within sub-second timeframes (six articles), while a different pattern emerges within supra-second intervals based on the clinical phase of the disease (seven articles). Specifically, for longer temporal spans, BD patients tend to overestimate the duration during manic states and underestimate it during depressive states. Notably, no studies have directly investigated the neurobiological mechanisms associated with time perception. CONCLUSION This review indicates that BD patients exhibit time perception similar to controls within sub-second intervals, but tend to overestimate time and underestimate it based on the clinical phase within supra-second intervals. Expanding the understanding of time perception in BD, particularly in relation to clinical phases and cognitive function, is of great importance. Such insights could deepen our understanding of the disorder, refine diagnostic processes, and guide the development of innovative therapeutic interventions.
Collapse
Affiliation(s)
- Andrea Escelsior
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genova, Italy
| | - Maria Bianca Amadeo
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Alberto Inuggi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genova, Italy
| | - Margherita Guzzetti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genova, Italy
| | - Yara Massalha
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alice Trabucco
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genova, Italy
| | - Giacomo Marenco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genova, Italy
| | - Beatriz Pereira da Silva
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genova, Italy
| | - Monica Gori
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genova, Italy
| | - Gianluca Serafini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genova, Italy
| |
Collapse
|
2
|
Croce E, Simonelli G, Ferrara M, Escelsior A, Folesani F, Bovio A, Muscettola A, Toffanin T, De Bellis GA, Nanni MG, Caruso R, Belvederi Murri M, Grassi L. Correlates of Impaired Timing Abilities in Schizophrenia: A Systematic Review. J Nerv Ment Dis 2024; 212:603-622. [PMID: 39808471 DOI: 10.1097/nmd.0000000000001810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
ABSTRACT This review aimed at summarizing the literature evidence on clinical, cognitive, and neurobiological correlates of impaired timing abilities in schizophrenia (SCZ). Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic literature search was conducted in PubMed, EMBASE, and PsycInfo by looking at correlates between timing abilities and either symptom severity, cognition, and neurobiological data (imaging and electroencephalography) in individuals with SCZ, without restrictions on study design. A total of 45 articles were selected: associations were identified between impaired timing performance and positive, negative, and disorganization symptoms, as well as with executive functioning, working memory, and attention. Timing impairments were associated with altered motor coordination neural circuits. Despite high methodological and clinical heterogeneity, timing dysfunction may be associated with the symptom severity and cognitive impairments in SCZ. Further studies are needed to clarify the pathophysiology of this association and offer new therapeutic targets.
Collapse
Affiliation(s)
- Enrico Croce
- Integrated Department of Mental Health and Pathological Addictions, Health Trust Ferrara, Ferrara, Italy
| | | | | | | | | | - Anna Bovio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Moussa-Tooks AB, Liu J, Armstrong K, Rogers B, Woodward ND, Heckers S. Cerebellar Effects on Abnormal Psychomotor Function Are Mediated by Processing Speed in Psychosis Spectrum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1215-1220. [PMID: 37540311 PMCID: PMC12039849 DOI: 10.1007/s12311-023-01591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Psychomotor disturbance has been identified as a key feature of psychotic disorders, with motor signs observed in upwards of 66% of unmedicated, first-episode patients. Aberrations in the cerebellum have been directly linked to sensorimotor processing deficits including processing speed, which may underly psychomotor disturbance in psychosis, though these brain-behavior-symptom relationships are unclear, in part due to within-diagnosis heterogeneity across these levels of analysis. In 339 psychosis patients (242 schizophrenia-spectrum, 97 bipolar with psychotic features) and 217 controls, we evaluated the relationship between cerebellar grey matter volume in the Yeo sensorimotor network and psychomotor disturbance (mannerisms and posturing, retardation, excitement of the Positive and Negative Syndrome Scale [PANSS]), as mediated by processing speed (assessed via the SCIP). Models included intracranial volume, age, sex, and chlorpromazine equivalents as covariates. We observed significant mediation by processing speed, with a small positive effect of the cerebellum on processing speed (ß = 0.172, p = 0.029, d = 0.24) and a medium negative effect of processing speed on psychomotor disturbance (ß = -0.254, p < 0.001, d = 0.60), with acceptable specificity and sensitivity suggesting this model is robust against unmeasured confounding. The current findings suggest a critical role of cerebellar circuitry in a well-established sensorimotor aberration in psychosis (processing speed) and the presentation of related psychomotor phenotypes within psychosis. Establishing such relationships is critical for intervention research, such as TMS. Future work will employ more dimensional measures of psychomotor disturbance and cognitive processes to capture normative and aberrant brain-behavior-symptom relationships and may also determine the magnitude of these relationships within subtypes of psychosis (e.g., disorganized behavior, catatonia).
Collapse
Affiliation(s)
- Alexandra B Moussa-Tooks
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA.
| | - Jinyuan Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
| | - Baxter Rogers
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
| |
Collapse
|
4
|
Shinn AK, Hurtado-Puerto AM, Roh YS, Ho V, Hwang M, Cohen BM, Öngür D, Camprodon JA. Cerebellar transcranial magnetic stimulation in psychotic disorders: intermittent, continuous, and sham theta-burst stimulation on time perception and symptom severity. Front Psychiatry 2023; 14:1218321. [PMID: 38025437 PMCID: PMC10679721 DOI: 10.3389/fpsyt.2023.1218321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background The cerebellum contributes to the precise timing of non-motor and motor functions, and cerebellum abnormalities have been implicated in psychosis pathophysiology. In this study, we explored the effects of cerebellar theta burst stimulation (TBS), an efficient transcranial magnetic stimulation protocol, on temporal discrimination and self-reported mood and psychotic symptoms. Methods We conducted a case-crossover study in which patients with psychosis (schizophrenias, schizoaffective disorders, or bipolar disorders with psychotic features) were assigned to three sessions of TBS to the cerebellar vermis: one session each of intermittent (iTBS), continuous (cTBS), and sham TBS. Of 28 enrolled patients, 26 underwent at least one TBS session, and 20 completed all three. Before and immediately following TBS, participants rated their mood and psychotic symptoms and performed a time interval discrimination task (IDT). We hypothesized that cerebellar iTBS and cTBS would modulate these measures in opposing directions, with iTBS being adaptive and cTBS maladaptive. Results Reaction time (RT) in the IDT decreased significantly after iTBS vs. Sham (LS-mean difference = -73.3, p = 0.0001, Cohen's d = 1.62), after iTBS vs. cTBS (LS-mean difference = -137.6, p < 0.0001, d = 2.03), and after Sham vs. cTBS (LS-mean difference = -64.4, p < 0.0001, d = 1.33). We found no effect on IDT accuracy. We did not observe any effects on symptom severity after correcting for multiple comparisons. Conclusion We observed a frequency-dependent dissociation between the effects of iTBS vs. cTBS to the cerebellar midline on the reaction time of interval discrimination in patients with psychosis. iTBS showed improved (adaptive) while cTBS led to worsening (maladaptive) speed of response. These results demonstrate behavioral target engagement in a cognitive dimension of relevance to patients with psychosis and generate testable hypotheses about the potential therapeutic role of cerebellar iTBS in this clinical population. Clinical Trial Registration clinicaltrials.gov, identifier NCT02642029.
Collapse
Affiliation(s)
- Ann K. Shinn
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Aura M. Hurtado-Puerto
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| | - Youkyung S. Roh
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Victoria Ho
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| | - Melissa Hwang
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Bruce M. Cohen
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Program for Neuropsychiatric Research, McLean Hospital, Belmont, MA, United States
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Joan A. Camprodon
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
5
|
Ewald VAM, Trapp NT, Sarrett ME, Pace BD, Wendt L, Richards JG, Gala IK, Miller JN, Wessel JR, Magnotta VA, Wemmie JA, Boes AD, Parker KL. Supra-second interval timing in bipolar disorder: examining the role of disorder sub-type, mood, and medication status. Int J Bipolar Disord 2023; 11:32. [PMID: 37779127 PMCID: PMC10542629 DOI: 10.1186/s40345-023-00312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Widely reported by bipolar disorder (BD) patients, cognitive symptoms, including deficits in executive function, memory, attention, and timing are under-studied. Work suggests that individuals with BD show impairments in interval timing tasks, including supra-second, sub-second, and implicit motor timing compared to the neuronormative population. However, how time perception differs within individuals with BD based on disorder sub-type (BDI vs II), depressed mood, or antipsychotic medication-use has not been thoroughly investigated. The present work administered a supra-second interval timing task concurrent with electroencephalography (EEG) to patients with BD and a neuronormative comparison group. As this task is known to elicit frontal theta oscillations, signal from the frontal (Fz) lead was analyzed at rest and during the task. RESULTS Results suggest that individuals with BD show impairments in supra-second interval timing and reduced frontal theta power during the task compared to neuronormative controls. However, within BD sub-groups, neither time perception nor frontal theta differed in accordance with BD sub-type, depressed mood, or antipsychotic medication use. CONCLUSIONS This work suggests that BD sub-type, depressed mood status or antipsychotic medication use does not alter timing profile or frontal theta activity. Together with previous work, these findings point to timing impairments in BD patients across a wide range of modalities and durations indicating that an altered ability to assess the passage of time may be a fundamental cognitive abnormality in BD.
Collapse
Affiliation(s)
| | - Nicholas T Trapp
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | | | - Benjamin D Pace
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
| | - Linder Wendt
- Institute for Clinical and Translational Science, The University of Iowa, Iowa City, IA, USA
| | - Jenny G Richards
- Department of Radiology, The University of Iowa, Iowa City, IA, USA
| | - Ilisa K Gala
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
| | | | - Jan R Wessel
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA
- Department of Neurology, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Vincent A Magnotta
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
- Department of Radiology, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - John A Wemmie
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Aaron D Boes
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
- Department of Pediatrics, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Krystal L Parker
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA.
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
6
|
Müller Ewald VA, Trapp NT, Sarrett ME, Pace BD, Wendt L, Richards JG, Gala IK, Miller JN, Wessel JR, Magnotta VA, Wemmie JA, Boes AD, Parker KL. Supra-second interval timing in bipolar disorder: examining the role of disorder sub-type, mood, and medication status. RESEARCH SQUARE 2023:rs.3.rs-3006203. [PMID: 37398216 PMCID: PMC10312933 DOI: 10.21203/rs.3.rs-3006203/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background : Widely reported by bipolar disorder (BD) patients, cognitive symptoms, including deficits in executive function, memory, attention, and timing are under-studied. Work suggests that individuals with BD show impairments in interval timing tasks, including supra-second, sub-second, and implicit motor timing compared to the neuronormative population. However, how time perception differs within individuals with BD based on BD sub-type (BDI vs II), mood, or antipsychotic medication-use has not been thoroughly investigated. The present work administered a supra-second interval timing task concurrent with electroencephalography (EEG) to patients with BD and a neuronormative comparison group. As this task is known to elicit frontal theta oscillations, signal from the frontal (Fz) lead was analyzed at rest and during the task. Results : Results suggest that individuals with BD show impairments in supra-second interval timing and reduced frontal theta power compared during the task to neuronormative controls. However, within BD sub-groups, neither time perception nor frontal theta differed in accordance with BD sub-type, mood, or antipsychotic medication use. Conclusions : his work suggests that BD sub-type, mood status or antipsychotic medication use does not alter timing profile or frontal theta activity. Together with previous work, these findings point to timing impairments in BD patients across a wide range of modalities and durations indicating that an altered ability to assess the passage of time may be a fundamental cognitive abnormality in BD.
Collapse
Affiliation(s)
- Victόria A. Müller Ewald
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - Nicholas T. Trapp
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - McCall E. Sarrett
- Department of Psychological and Brain sciences, Villanova University, Villanova, Pennsylvania, United States of America
| | - Benjamin D. Pace
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
| | - Linder Wendt
- Institute for Clinical and Translational Science, The University of Iowa, Iowa City, Iowa, United States of America
| | - Jenny G. Richards
- Department of Radiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Ilisa K. Gala
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
| | - Jacob N. Miller
- St. Luke’s Hospital, Cedar Rapids, Iowa, United States of America
| | - Jan R. Wessel
- Department of Psychological & Brain sciences, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - Vincent A. Magnotta
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Radiology, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - John A. Wemmie
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurosurgery, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - Aaron D. Boes
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - Krystal L. Parker
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience institute, The University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
7
|
Arrouet A, Polgári P, Giersch A, Joos E. Temporal Order Judgments in Schizophrenia and Bipolar Disorders – Explicit and Implicit Measures. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Ordering events in time is essential for the understanding of causal relationships between successive events. Incorrect causal links can lead to false beliefs and an altered perception of reality. These symptoms belong to psychosis, which is present in schizophrenia (SZ) spectrum and bipolar (BP) disorder. Experimental results show that patients with SZ have an altered perception of temporal order, while there are no data in patients with BP. We investigated the ability of patients with SZ, BP, and controls to judge the order of stimuli with a 100-ms Stimulus Onset Asynchrony (SOA), and how such large asynchronies facilitate temporal order judgments for small asynchronies. Explicit temporal order effects suggest that patients with SZ perform worse at a long SOA (100 ms) as compared to controls, whereas patients with BP show no difference compared to controls or to patients with SZ. Implicit order effects reveal improved performances in case of identical as compared to different relative order between two successive trials for all groups, with no differences between the groups. We replicated explicit order impairments in patients with SZ compared to controls, while implicit effects appear to be preserved. This difficulty for patients to consciously order stimuli in time might be understood under the light of the loosening-of-associations phenomenon well described in SZ. Further, we showed that patients with BP do not reveal such an explicit order impairment which is consistent with phenomenological descriptions, suggesting a difference in time experience in patients with SZ and BP.
Collapse
Affiliation(s)
- Alana Arrouet
- INSERM U1114, Cognitive Neuropsychology and Pathophysiology of Schizophrenia, 1 place de l’Hôpital, 67091 Strasbourg Cedex, France
- CERVO Brain Research Centre, 2301 Av. D’Estimauville, Québec, QC G1E 1T2, Canada
| | - Patrik Polgári
- INSERM U1114, Cognitive Neuropsychology and Pathophysiology of Schizophrenia, 1 place de l’Hôpital, 67091 Strasbourg Cedex, France
| | - Anne Giersch
- INSERM U1114, Cognitive Neuropsychology and Pathophysiology of Schizophrenia, 1 place de l’Hôpital, 67091 Strasbourg Cedex, France
| | - Ellen Joos
- INSERM U1114, Cognitive Neuropsychology and Pathophysiology of Schizophrenia, 1 place de l’Hôpital, 67091 Strasbourg Cedex, France
| |
Collapse
|
8
|
Liu P, Guo H, Ma R, Liu S, Wang X, Zhao K, Tan Y, Tan S, Yang F, Wang Z. Identifying the difference in time perception between major depressive disorder and bipolar depression through a temporal bisection task. PLoS One 2022; 17:e0277076. [PMID: 36469514 PMCID: PMC9721479 DOI: 10.1371/journal.pone.0277076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/19/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND It is difficult to make a precise diagnosis to distinguish patients with Major Depressive Disorder (MDD) from patients with Bipolar Depressive Disorder (current depressive episode, BD). This study will explore the difference in time perception between MDD and BD using a temporal bisection task. METHODS In this temporal bisection task, 30 MDD patients, 30 BD patients, and 30 healthy controls (HC) had to categorize a signal duration, between 400 and 1600 milliseconds (ms), as either short or long. A repeated measurement analysis of variance with 3 (subject type) × 7 (time interval) was performed on the long response ratio with Bonferroni correction for multiple comparisons. Origin software was used to calculate the subjective bisection point (BP), difference limen (DL), and Weber ratio (WR). The Hamilton Depression Rating Scale for depression-17 was used to assess depressive symptoms in the patients. RESULTS The data showed that the interaction effect between subject type and duration was significant (F (6,498) = 4.656, p <0.001, η2p = 0.101). At 400 ms, and the long response of the MDD group was greater than HC group (p<0.017, Bonferroni-corrected). At 1200, 1400 and 1600 ms, the long response of BD group is smaller than HC group, (p<0.017, Bonferroni-corrected). The one-way ANOVA revealed significant difference among the HC, MDD and BD groups in the BP values WR values, F(2, 81) = 3.462, p = 0.036 vs. F(2, 81) = 3.311, p = 0.042. Post-hoc tests showed that the value of BP in the MDD group was less than BD group (p = 0.027) and the value of BP in the MDD group was less than HC group (p = 0.027), while there was not significant difference of BP values between BD group and HC group. The WR values in MDD group larger than the HC group (p = 0.022). LIMITATIONS Severity of depression not divided and analyzed according to the Hamilton Depression Rating Scale score. CONCLUSION The time perception of the MDD and BD groups was different from that of the HC group, they overestimated short time periods. Compared with the BD group, the MDD group had a smaller time bisector, and these patients felt that time passed more slowly. The time sensitivity of MDD group and BD group were less than the HC group. However, there was no statistical difference in time sensitivity between the MDD and BD groups.
Collapse
Affiliation(s)
- Panqi Liu
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Hua Guo
- Zhumadian Mental Hospital, Zhumadian, Henan Province, China
| | - Ruihua Ma
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Sijia Liu
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Xuan Wang
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ke Zhao
- State Key Laboratory of Brain and Cognitive Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Yunlong Tan
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shuping Tan
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
- * E-mail: (ZW); (ST)
| | - Fude Yang
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Zhiren Wang
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
- * E-mail: (ZW); (ST)
| |
Collapse
|
9
|
Uraguchi M, Maulina VVR, Ohira H. Interoceptive accuracy correlates with precision of time perception in the millisecond range. Front Neurosci 2022; 16:993491. [PMID: 36452334 PMCID: PMC9701738 DOI: 10.3389/fnins.2022.993491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2023] Open
Abstract
It has been proposed that accuracy in time perception is related to interoceptive accuracy and vagal activity. However, studies investigating time perception in the supra-second range have provided mixed results, and few studies have investigated the sub-second range. Moreover, there is a lack of studies investigating the relationship between precision in time perception and interoceptive accuracy. A recent meta-analytic review of neuroimaging studies proposed a dynamic interaction between two types of timing processing-an endogenous time keeping mechanism and the use of exogenous temporal cues. Interoceptive accuracy may affect both accuracy and precision of primary temporal representations, as they are generated based on the endogenous time keeping mechanism. Temporal accuracy may vary when adapted to the environmental context. In contrast, temporal precision contains some constant noise, which may maintain the relationship with interoceptive accuracy. Based on these assumptions, we hypothesized that interoceptive accuracy would be associated with temporal precision in the sub-second range, while vagal activity would be associated with temporal accuracy. We used the temporal generalization task, which allowed us to calculate the indices of temporal accuracy and temporal precision in line with the existing research, and also compute the index of participants' sensitivity according to the signal detection theory. Specifically, we investigated whether (1) interoceptive accuracy would correlate with temporal accuracy, temporal precision, or sensitivity and (2) resting-state vagal activity would correlate with temporal accuracy, temporal precision, or sensitivity. The results indicated that interoceptive accuracy was positively correlated with temporal precision as well as sensitivity, but not with temporal accuracy, in the sub-second range time perception. Vagal activity was negatively correlated only with sensitivity. Furthermore, we found a moderation effect of sensitivity on the relationship between vagal activity and perceived duration, which affected the association between vagal activity and temporal accuracy. These findings suggest the importance of precision as an aspect of time perception, which future studies should further explore in relation to interoception and vagal activity, and of the moderation effects of factors such as participants' sensitivity in this context.
Collapse
Affiliation(s)
- Maki Uraguchi
- Department of Psychology, Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Venie Viktoria Rondang Maulina
- Department of Psychology, Graduate School of Informatics, Nagoya University, Nagoya, Japan
- Department of Psychology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Hideki Ohira
- Department of Psychology, Graduate School of Informatics, Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
Ciullo V, Piras F, Banaj N, Vecchio D, Piras F, Sani G, Ducci G, Spalletta G. Internal clock variability, mood swings and working memory in bipolar disorder. J Affect Disord 2022; 315:48-56. [PMID: 35907479 DOI: 10.1016/j.jad.2022.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Distortions in time processing may be regarded as an endophenotypic marker of neuropsychiatric diseases; however, investigations addressing Bipolar Disorder (BD) are still scarce. METHODS The present study compared timing abilities in 30 BD patients and 30 healthy controls (HC), and explored the relationship between time processing and affective-cognitive symptoms in BD, with the aim to determine whether timing difficulties are primary in bipolar patients or due to comorbid cognitive impairment. Four tasks measuring external timing were administered: a temporal and spatial orienting of attention task and a temporal and colour discrimination task, for assessing the ability to evaluate temporal properties of external events; two other tasks assessed the speed of the internal clock (i.e. temporal bisection and temporal production tasks). Attentional, executive and working memory (WM) demands were equated for controlling additional cognitive processes. RESULTS BD patients did not show differences in external timing accuracy compared to HC; conversely, we found increased variability of the internal clock in BD and this performance was related to Major Depressive Episodes recurrence and WM functioning. Hence, variability of the internal clock is influenced by the progressive course of BD and impacted by variations in WM. LIMITATIONS Future studies including BD patients stratified by mood episode will further specify timing alterations conditional to the current affective state. CONCLUSIONS Our results shed new light on the clinical phenotypes of BD, suggesting that timing might be used as a model system of the ongoing pathophysiological process.
Collapse
Affiliation(s)
- Valentina Ciullo
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giuseppe Ducci
- Department of Mental Health, ASL, Roma 1, 00135 Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
11
|
Wolff A, Gomez-Pilar J, Zhang J, Choueiry J, de la Salle S, Knott V, Northoff G. It's in the Timing: Reduced Temporal Precision in Neural Activity of Schizophrenia. Cereb Cortex 2021; 32:3441-3456. [PMID: 34875019 DOI: 10.1093/cercor/bhab425] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/26/2023] Open
Abstract
Studies of perception and cognition in schizophrenia (SCZ) show neuronal background noise (ongoing activity) to intermittently overwhelm the processing of external stimuli. This increased noise, relative to the activity evoked by the stimulus, results in temporal imprecision and higher variability of behavioral responses. What, however, are the neural correlates of temporal imprecision in SCZ behavior? We first report a decrease in electroencephalography signal-to-noise ratio (SNR) in two SCZ datasets and tasks in the broadband (1-80 Hz), theta (4-8 Hz), and alpha (8-13 Hz) bands. SCZ participants also show lower inter-trial phase coherence (ITPC)-consistency over trials in the phase of the signal-in theta. From these ITPC results, we varied phase offsets in a computational simulation, which illustrated phase-based temporal desynchronization. This modeling also provided a necessary link to our results and showed decreased neural synchrony in SCZ in both datasets and tasks when compared with healthy controls. Finally, we showed that reduced SNR and ITPC are related and showed a relationship to temporal precision on the behavioral level, namely reaction times. In conclusion, we demonstrate how temporal imprecision in SCZ neural activity-reduced relative signal strength and phase coherence-mediates temporal imprecision on the behavioral level.
Collapse
Affiliation(s)
- Annemarie Wolff
- University of Ottawa Institute of Mental Health Research, Ottawa, ON K1Z 7K4, Canada
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, Valladolid 47011, Spain.,Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Jianfeng Zhang
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310058, China.,College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
| | - Joelle Choueiry
- University of Ottawa Institute of Mental Health Research, Ottawa, ON K1Z 7K4, Canada
| | - Sara de la Salle
- University of Ottawa Institute of Mental Health Research, Ottawa, ON K1Z 7K4, Canada
| | - Verner Knott
- University of Ottawa Institute of Mental Health Research, Ottawa, ON K1Z 7K4, Canada
| | - Georg Northoff
- University of Ottawa Institute of Mental Health Research, Ottawa, ON K1Z 7K4, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1Z 7K4, Canada
| |
Collapse
|
12
|
Fung BJ, Sutlief E, Hussain Shuler MG. Dopamine and the interdependency of time perception and reward. Neurosci Biobehav Rev 2021; 125:380-391. [PMID: 33652021 PMCID: PMC9062982 DOI: 10.1016/j.neubiorev.2021.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 01/14/2023]
Abstract
Time is a fundamental dimension of our perception of the world and is therefore of critical importance to the organization of human behavior. A corpus of work - including recent optogenetic evidence - implicates striatal dopamine as a crucial factor influencing the perception of time. Another stream of literature implicates dopamine in reward and motivation processes. However, these two domains of research have remained largely separated, despite neurobiological overlap and the apothegmatic notion that "time flies when you're having fun". This article constitutes a review of the literature linking time perception and reward, including neurobiological and behavioral studies. Together, these provide compelling support for the idea that time perception and reward processing interact via a common dopaminergic mechanism.
Collapse
Affiliation(s)
- Bowen J Fung
- The Behavioural Insights Team, Suite 3, Level 13/9 Hunter St, Sydney NSW 2000, Australia.
| | - Elissa Sutlief
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Woods Basic Science Building Rm914, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Marshall G Hussain Shuler
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Woods Basic Science Building Rm914, 725 N. Wolfe Street, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
13
|
Osborne KJ, Damme KS, Gupta T, Dean DJ, Bernard JA, Mittal VA. Timing dysfunction and cerebellar resting state functional connectivity abnormalities in youth at clinical high-risk for psychosis. Psychol Med 2021; 51:1289-1298. [PMID: 32008594 PMCID: PMC9754787 DOI: 10.1017/s0033291719004161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Consistent with pathophysiological models of psychosis, temporal disturbances in schizophrenia spectrum populations may reflect abnormal cortical (e.g. prefrontal cortex) and subcortical (e.g. striatum) cerebellar connectivity. However, few studies have examined associations between cerebellar connectivity and timing dysfunction in psychosis populations, and none have been conducted in youth at clinical high-risk (CHR) for psychosis. Thus, it is currently unknown if impairments in temporal processes are present in CHR youth or how they may be associated with cerebellar connectivity and worsening of symptoms. METHODS A total of 108 (56 CHR/52 controls) youth were administered an auditory temporal bisection task along with a resting state imaging scan to examine cerebellar resting state connectivity. Positive and negative symptoms at baseline and 12 months later were also quantified. RESULTS Controlling for alcohol and cannabis use, CHR youth exhibited poorer temporal accuracy compared to controls, and temporal accuracy deficits were associated with abnormal connectivity between the bilateral anterior cerebellum and a right caudate/nucleus accumbens striatal cluster. Poor temporal accuracy accounted for 11% of the variance in worsening of negative symptoms over 12 months. CONCLUSIONS Behavioral findings suggest CHR youth perceive durations of auditory tones as shortened compared to objective time, which may indicate a slower internal clock. Poorer temporal accuracy in CHR youth was associated with abnormalities in brain regions involved in an important cerebellar network implicated in prominent pathophysiological models of psychosis. Lastly, temporal accuracy was associated with worsening of negative symptoms across 12 months, suggesting temporal dysfunction may be sensitive to illness progression.
Collapse
Affiliation(s)
- K. Juston Osborne
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | | | - Tina Gupta
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - Derek J. Dean
- University of Colorado Boulder, Department of Psychology, Boulder, CO, USA
| | - Jessica A. Bernard
- Texas A & M University, Department of Psychology, College Station, TX, USA
| | - Vijay A. Mittal
- Northwestern University, Department of Psychology, Department of Psychiatry, Institute for Policy Research, Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences (DevSci), Evanston, Chicago, IL, USA
| |
Collapse
|
14
|
Chassignolle M, Jovanovic L, Schmidt-Mutter C, Behr G, Giersch A, Coull JT. Dopamine Precursor Depletion in Healthy Volunteers Impairs Processing of Duration but Not Temporal Order. J Cogn Neurosci 2021; 33:946-963. [PMID: 33656394 DOI: 10.1162/jocn_a_01700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Studies in animals and humans have implicated the neurotransmitter dopamine in duration processing. However, very few studies have examined dopamine's involvement in other forms of temporal processing such as temporal order judgments. In a randomized within-subject placebo-controlled design, we used acute phenylalanine/tyrosine depletion (APTD) to reduce availability of the dopamine precursors tyrosine and phenylalanine in healthy human volunteers. As compared to a nutritionally balanced drink, APTD significantly impaired the ability to accurately reproduce interval duration in a temporal reproduction task. In addition, and confirming previous findings, the direction of error differed as a function of individual differences in underlying dopamine function. Specifically, APTD caused participants with low baseline dopamine precursor availability to overestimate the elapse of time, whereas those with high dopamine availability underestimated time. In contrast to these effects on duration processing, there were no significant effects of APTD on the accuracy of discriminating the temporal order of visual stimuli. This pattern of results does not simply represent an effect of APTD on motor, rather than perceptual, measures of timing because APTD had no effect on participants' ability to use temporal cues to speed RT. Our results demonstrate, for the first time in healthy volunteers, a dopaminergic dissociation in judging metrical (duration) versus ordinal (temporal order) aspects of time.
Collapse
|
15
|
Timing behavior in genetic murine models of neurological and psychiatric diseases. Exp Brain Res 2021; 239:699-717. [PMID: 33404792 DOI: 10.1007/s00221-020-06021-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/16/2020] [Indexed: 01/17/2023]
Abstract
How timing behavior is altered in different neurodevelopmental and neurodegenerative disorders is a contemporary research question. Genetic murine models (GMM) that offer high construct validity also serve as useful tools to investigate this question. But the literature on timing behavior of different GMMs largely remains to be consolidated. The current paper addresses this gap by reviewing studies that have been conducted with GMMs of neurodevelopmental (e.g. ADHD, schizophrenia, autism spectrum disorder), neurodegenerative disorders (e.g., Alzheimer's disease, Huntington's disease) as well as circadian and other mutant lines. The review focuses on those studies that specifically utilized the peak interval procedure to improve the comparability of findings both within and between different disease models. The reviewed studies revealed timing deficits that are characteristic of different disorders. Specifically, Huntington's disease models had weaker temporal control over the termination of their anticipatory responses, Alzheimer's disease models had earlier timed responses, schizophrenia models had weaker temporal control, circadian mutants had shifted timed responses consistent with shifts in the circadian periods. The differences in timing behavior were less consistent for other conditions such as attention deficit and hyperactivity disorder and mutations related to intellectual disability. We discuss the implications of these findings for the neural basis of an internal stopwatch. Finally, we make methodological recommendations for future research for improving the comparability of the timing behavior across different murine models.
Collapse
|
16
|
Nuyens FM, Kuss DJ, Lopez-Fernandez O, Griffiths MD. The Potential Interaction Between Time Perception and Gaming: A Narrative Review. Int J Ment Health Addict 2020. [DOI: 10.1007/s11469-019-00121-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Abstract
Compromised time control is a variable of interest among disordered gamers because time spent on videogames can directly affect individuals’ lives. Although time perception appears to be closely associated with this phenomenon, previous studies have not systematically found a relationship between time perception and gaming. Therefore, the purpose of this narrative review is to explore how gaming disorder may be associated with time perception. It has been found that gamers exhibit a stronger attentional focus as well as an improved working memory compared with non-gamers. However, gamers (and especially disordered gamers) exhibit a stronger reaction to gaming cues which—coupled with an altered emotion regulation observed among disordered gamers—could directly affect their time perception. Finally, “'flow states”' direct most of the attentional resources to the ongoing activity, leading to a lack of resources allocated to the time perception. Therefore, entering a flow state will result in an altered time perception, most likely an underestimation of duration. The paper concludes that the time loss effect observed among disordered gamers can be explained via enhanced emotional reactivity (facilitated by impaired emotion regulation).
Collapse
|
17
|
Apthorp D, Bolbecker AR, Bartolomeo LA, O’Donnell BF, Hetrick WP. Postural Sway Abnormalities in Schizotypal Personality Disorder. Schizophr Bull 2019; 45:512-521. [PMID: 30376125 PMCID: PMC6483590 DOI: 10.1093/schbul/sby141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Motor abnormalities are among the most robust findings in schizophrenia, and increasing evidence suggests they are a core feature of the disorder. Postural sway during balance tasks is a highly sensitive probe of sensorimotor systems including the cerebellum, basal ganglia, and motor cortices. Postural sway deficits are present in schizophrenia as well as groups at high risk for psychosis, suggesting altered postural control may be sensitive to the pathophysiological processes associated with risk and expression of schizophrenia spectrum disorders. This study examined postural sway performance in schizotypal personality disorder (SPD). Individuals with SPD have attenuated psychotic symptoms and share genetic risk with schizophrenia but are usually free from antipsychotic medication and other illness confounds, making SPD useful for assessing candidate biomarkers. We measured postural sway using force plates in 27 individuals with SPD, 27 carefully matched controls, and 27 matched patients with schizophrenia. It was predicted that postural sway in the SPD group would fall intermediate to schizophrenia and controls. In all conditions (eyes open and closed, with feet together or apart), the SPD group swayed significantly more than the controls, as measured by path length and sway area. Moreover, the magnitude of the sway deficit was comparable in the SPD and schizophrenia groups. These findings suggest that postural sway measures may represent a sensorimotor biomarker of schizophrenia spectrum disorders.
Collapse
Affiliation(s)
- Deborah Apthorp
- School of Psychology and Behavioural Science, Faculty of Medicine and Health, University of New England, Armidale, NSW, Australia,To whom correspondence should be addressed; tel: 61 2 6773 4316, fax: 61 2 6773 3820, e-mail:
| | - Amanda R Bolbecker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | | | - Brian F O’Donnell
- Department of Psychiatry, Indiana University Medical Centre, Bloomington, IN,Program in Neuroscience, Indiana University, Bloomington, IN
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN,Program in Neuroscience, Indiana University, Bloomington, IN
| |
Collapse
|
18
|
Maaß SC, van Rijn H. 1-s Productions: A Validation of an Efficient Measure of Clock Variability. Front Hum Neurosci 2018; 12:519. [PMID: 30622465 PMCID: PMC6309103 DOI: 10.3389/fnhum.2018.00519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Objective: Clock variance is an important statistic in many clinical and developmental studies. Existing methods require a large number of trials for accurate clock variability assessment, which is problematic in studies using clinical or either young or aged participants. Furthermore, these existing methods often implicitly convolute clock and memory processes, making it difficult to disentangle whether the clock or memory system are driving the observed deviations. Here we assessed whether 20 repeated productions of a well-engrained interval (1 s), a task that does not incorporate memory updating nor the processing of feedback, could provide an accurate assessment of clock variability. Method: Sixty-eight undergraduate students completed two tasks: a 1-s production task in which they were asked to produce a 1-s duration by ending a tone by a keypress, and a multi-duration reproduction task. Durations presented in the reproduction task were tones lasting 1.17, 1.4 and 1.68 s. No feedback was presented in either task, and the order of presentation was counterbalanced between participants. Results: The observed central tendency in the reproduction task was better explained by models including the measures of clock variability derived from the 1-s production task than by models without it. Three clock variability measures were calculated for each participant [standard deviation, root mean squared residuals (RMSRs) from an estimated linear slope, and RMSR scaled by mean production duration]. The model including the scaled RMSR was preferred over the alternative models, and no notable effects of the order of task presentation were observed. These results suggest that: (1) measures of variability should account for drift; (2) the presentation of another timing task before a 1-s production task did not influence the assessment of the clock variability; and (3) the observed variability adheres to the scalar property and predicts temporal performance, and is thus a usable index of clock variability. Conclusion: This study shows that just 20 repeated productions of 1 s provide a reliable index of clock variability. As administering this task is fast and easy, it could prove to be useful in a large variety of developmental and clinical populations.
Collapse
Affiliation(s)
- Sarah C Maaß
- Department of Experimental Psychology, University of Groningen, Groningen, Netherlands.,Behavioral and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
| | - Hedderik van Rijn
- Department of Experimental Psychology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
19
|
Johnson CP, Christensen GE, Fiedorowicz JG, Mani M, Shaffer JJ, Magnotta VA, Wemmie JA. Alterations of the cerebellum and basal ganglia in bipolar disorder mood states detected by quantitative T1ρ mapping. Bipolar Disord 2018; 20:381-390. [PMID: 29316081 PMCID: PMC5995598 DOI: 10.1111/bdi.12581] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 10/21/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Quantitative mapping of T1 relaxation in the rotating frame (T1ρ) is a magnetic resonance imaging technique sensitive to pH and other cellular and microstructural factors, and is a potentially valuable tool for identifying brain alterations in bipolar disorder. Recently, this technique identified differences in the cerebellum and cerebral white matter of euthymic patients vs healthy controls that were consistent with reduced pH in these regions, suggesting an underlying metabolic abnormality. The current study built upon this prior work to investigate brain T1ρ differences across euthymic, depressed, and manic mood states of bipolar disorder. METHODS Forty participants with bipolar I disorder and 29 healthy control participants matched for age and gender were enrolled. Participants with bipolar disorder were imaged in one or more mood states, yielding 27, 12, and 13 imaging sessions in euthymic, depressed, and manic mood states, respectively. Three-dimensional, whole-brain anatomical images and T1ρ maps were acquired for all participants, enabling voxel-wise evaluation of T1ρ differences between bipolar mood state and healthy control groups. RESULTS All three mood state groups had increased T1ρ relaxation times in the cerebellum compared to the healthy control group. Additionally, the depressed and manic groups had reduced T1ρ relaxation times in and around the basal ganglia compared to the control and euthymic groups. CONCLUSIONS The study implicated the cerebellum and basal ganglia in the pathophysiology of bipolar disorder and its mood states, the roles of which are relatively unexplored. These findings motivate further investigation of the underlying cause of the abnormalities, and the potential role of altered metabolic activity in these regions.
Collapse
Affiliation(s)
| | - Gary E. Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA,Department of Radiation Oncology, University of Iowa, Iowa City, IA
| | - Jess G. Fiedorowicz
- Department of Psychiatry, University of Iowa, Iowa City, IA,Department of Epidemiology, University of Iowa, Iowa City, IA,Department of Internal Medicine, University of Iowa, Iowa City, IA,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA
| | - Merry Mani
- Department of Radiology, University of Iowa, Iowa City, IA
| | | | - Vincent A. Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA,Department of Psychiatry, University of Iowa, Iowa City, IA,Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA,Department of Biomedical Engineering, University of Iowa, Iowa City, IA,Corresponding Authors: Vincent A. Magnotta, PhD, L311 PBDB, 169 Newton Road, Iowa City, IA 52242, Tel: 319-335-5482, Fax: 319-353-6275, ; John A. Wemmie, MD, PhD, 1314 PBDB, 169 Newton Road, Iowa City, IA 52242, Tel: 319-384-3174, Fax: 319-384-3176,
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA,Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA,Department of Neurosurgery, University of Iowa, Iowa City, IA,Veterans Affairs Medical Center, Iowa City, IA,Corresponding Authors: Vincent A. Magnotta, PhD, L311 PBDB, 169 Newton Road, Iowa City, IA 52242, Tel: 319-335-5482, Fax: 319-353-6275, ; John A. Wemmie, MD, PhD, 1314 PBDB, 169 Newton Road, Iowa City, IA 52242, Tel: 319-384-3174, Fax: 319-384-3176,
| |
Collapse
|
20
|
Ciullo V, Piras F, Vecchio D, Banaj N, Coull JT, Spalletta G. Predictive timing disturbance is a precise marker of schizophrenia. Schizophr Res Cogn 2018; 12:42-49. [PMID: 29928596 PMCID: PMC6007042 DOI: 10.1016/j.scog.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/02/2018] [Accepted: 04/21/2018] [Indexed: 12/16/2022]
Abstract
Timing disturbances have being proposed as a key component of schizophrenia pathogenesis. However, the contribution of cognitive impairment to such disorders has not been clarified. Here, we investigated duration estimation and predictive timing in 30 patients with DSM-5 diagnosis of schizophrenia (SZ) compared to 30 healthy controls (HC). Duration estimation was examined in a temporal and colour discrimination task, fully controlled for working memory (WM) and attention requirements, and by more traditional temporal production and temporal bisection tasks. Predictive timing was measured in a temporal and spatial orienting of attention task. Expectations about stimulus onset (temporal condition) or location (spatial condition) were induced by valid and invalid symbolic cues. Results showed that discrimination of temporal and colour stimulus attributes was equally impaired in SZ. This, taken with the positive correlation between temporal bisection performance and neuropsychological measures of WM, indicates that duration estimation impairments in SZ are underpinned by WM dysfunction. Conversely, we found dissociation in temporal and spatial predictive ability in SZ. Unlike controls, patients were selectively unperturbed by events appearing at an unexpected moment in time, though were perturbed by targets appearing at an unexpected location. Moreover, patients were able to generate temporal expectations more implicitly, as their performance was influenced by the predictive nature of the flow of time itself. Our findings shed new light on the debate over the specificity of timing distortions in SZ, providing evidence that predictive timing is a precise marker of SZ, more sensitive than duration estimation, serving as a valid heuristic for studying the pathophysiology of the disorder.
Collapse
Affiliation(s)
- Valentina Ciullo
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Italy
| | - Federica Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Italy
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Jennifer T. Coull
- Laboratoire des Neurosciences Cognitives UMR 7291, Aix-Marseille University, CNRS, Marseille, France
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
21
|
Wilquin H, Delevoye-Turrell Y, Dione M, Giersch A. Motor Synchronization in Patients With Schizophrenia: Preserved Time Representation With Abnormalities in Predictive Timing. Front Hum Neurosci 2018; 12:193. [PMID: 29867416 PMCID: PMC5965021 DOI: 10.3389/fnhum.2018.00193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
Objective: Basic temporal dysfunctions have been described in patients with schizophrenia, which may impact their ability to connect and synchronize with the outer world. The present study was conducted with the aim to distinguish between interval timing and synchronization difficulties and more generally the spatial-temporal organization disturbances for voluntary actions. A new sensorimotor synchronization task was developed to test these abilities. Method: Twenty-four chronic schizophrenia patients matched with 27 controls performed a spatial-tapping task in which finger taps were to be produced in synchrony with a regular metronome to six visual targets presented around a virtual circle on a tactile screen. Isochronous (time intervals of 500 ms) and non-isochronous auditory sequences (alternated time intervals of 300/600 ms) were presented. The capacity to produce time intervals accurately versus the ability to synchronize own actions (tap) with external events (tone) were measured. Results: Patients with schizophrenia were able to produce the tapping patterns of both isochronous and non-isochronous auditory sequences as accurately as controls producing inter-response intervals close to the expected interval of 500 and 900 ms, respectively. However, the synchronization performances revealed significantly more positive asynchrony means (but similar variances) in the patient group than in the control group for both types of auditory sequences. Conclusion: The patterns of results suggest that patients with schizophrenia are able to perceive and produce both simple and complex sequences of time intervals but are impaired in the ability to synchronize their actions with external events. These findings suggest a specific deficit in predictive timing, which may be at the core of early symptoms previously described in schizophrenia.
Collapse
Affiliation(s)
- Hélène Wilquin
- Aix Marseille Univ, Laboratory of Clinical Psychology, Psychopathology and Psychoanalysis, Aix-en-Provence, France
| | - Yvonne Delevoye-Turrell
- SCALab, UMR 9193 – National Center for Scientific Research, University of Lille, Villeneuve d’Ascq, France
| | - Mariama Dione
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne Giersch
- INSERM U1114, Department of Psychiatry, Federation of Translational Medicine of Strasbourg, Strasbourg University Hospital, Strasbourg, France
| |
Collapse
|
22
|
Northoff G, Magioncalda P, Martino M, Lee HC, Tseng YC, Lane T. Too Fast or Too Slow? Time and Neuronal Variability in Bipolar Disorder-A Combined Theoretical and Empirical Investigation. Schizophr Bull 2018; 44:54-64. [PMID: 28525601 PMCID: PMC5768053 DOI: 10.1093/schbul/sbx050] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Time is an essential feature in bipolar disorder (BP). Manic and depressed BP patients perceive the speed of time as either too fast or too slow. The present article combines theoretical and empirical approaches to integrate phenomenological, psychological, and neuroscientific accounts of abnormal time perception in BP. Phenomenology distinguishes between perception of inner time, ie, self-time, and outer time, ie, world-time, that desynchronize or dissociate from each other in BP: inner time speed is abnormally slow (as in depression) or fast (as in mania) and, by taking on the role as default-mode function, impacts and modulates the perception of outer time speed in an opposite way, ie, as too fast in depression and too slow in mania. Complementing, psychological investigation show opposite results in time perception, ie, time estimation and reproduction, in manic and depressed BP. Neuronally, time speed can be indexed by neuronal variability, ie, SD. Our own empirical data show opposite changes in manic and depressed BP (and major depressive disorder [MDD]) with abnormal SD balance, ie, SD ratio, between somatomotor and sensory networks that can be associated with inner and outer time. Taken together, our combined theoretical-empirical approach demonstrates that desynchronization or dissociation between inner and outer time in BP can be traced to opposite neuronal variability patterns in somatomotor and sensory networks. This opens the door for individualized therapeutic "normalization" of neuronal variability pattern in somatomotor and sensory networks by stimulation with TMS and/or tDCS.
Collapse
Affiliation(s)
- Georg Northoff
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, China,University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada,Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China,TMU Research Centre for Brain and Consciousness, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan,To whom correspondence should be addressed; Mental Health Centre/7th Hospital, Zhejiang University School of Medicine, Hangzhou, Tianmu Road 305, Hangzhou, Zhejiang Province, 310013, China; Mind, Brain Imaging and Neuroethics, Canada Research Chair, EJLB-Michael Smith Chair for Neuroscience and Mental Health, Royal Ottawa Healthcare Group, University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Room 6467, Ottawa, ON K1Z 7K4, Canada; tel: 613-722-6521 ex. 6959, fax: 613-798-2982, e-mail: , website: http://www.georgnorthoff.com
| | - Paola Magioncalda
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Matteo Martino
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Hsin-Chien Lee
- Department of Psychiatry, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chi Tseng
- Department of Radiology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Timothy Lane
- TMU Research Centre for Brain and Consciousness, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
23
|
Alústiza I, Radua J, Pla M, Martin R, Ortuño F. Meta-analysis of functional magnetic resonance imaging studies of timing and cognitive control in schizophrenia and bipolar disorder: Evidence of a primary time deficit. Schizophr Res 2017; 188:21-32. [PMID: 28169089 DOI: 10.1016/j.schres.2017.01.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/22/2017] [Accepted: 01/24/2017] [Indexed: 01/11/2023]
Abstract
Schizophrenia (SZ) and Bipolar Disorder (BD) are associated with deficits in both timing and cognitive control functions. However, the underlying neurological dysfunctions remain poorly understood. The main goal of this study was to identify brain structures activated both by increases in cognitive activity and during timing tasks in patients with SZ and BD relative to controls. We conducted two signed differential mapping (SDM) meta-analyses of functional magnetic resonance imaging studies assessing the brain response to increasing levels of cognitive difficulty: one concerned SZ, and the other BD patients. We conducted a similar SDM meta-analysis on neuroimaging of timing in SZ (no studies in BD could be included). Finally, we carried out a multimodal meta-analysis to identify common brain regions in the findings of the two previous meta-analyses. We found that SZ patients showed hypoactivation in timing-related cortical-subcortical areas. The dysfunction observed during timing partially coincided with deficits for cognitive control functions. We hypothesize that a dysfunctional temporal/cognitive control network underlies the persistent cognitive impairment observed in SZ.
Collapse
Affiliation(s)
- Irene Alústiza
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Navarra, Spain.
| | - Joaquim Radua
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Sweden; FIDMAG Germanes Hospitalaries, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Marta Pla
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Navarra, Spain
| | - Raquel Martin
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Navarra, Spain
| | - Felipe Ortuño
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Navarra, Spain
| |
Collapse
|
24
|
Thoenes S, Oberfeld D. Meta-analysis of time perception and temporal processing in schizophrenia: Differential effects on precision and accuracy. Clin Psychol Rev 2017; 54:44-64. [DOI: 10.1016/j.cpr.2017.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/19/2017] [Accepted: 03/25/2017] [Indexed: 12/11/2022]
|
25
|
Krukow P, Szaniawska O, Harciarek M, Plechawska-Wójcik M, Jonak K. Cognitive inconsistency in bipolar patients is determined by increased intra-individual variability in initial phase of task performance. J Affect Disord 2017; 210:222-225. [PMID: 28063384 DOI: 10.1016/j.jad.2016.12.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/18/2016] [Accepted: 12/31/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Bipolar patients show high intra-individual variability during cognitive processing. However, it is not known whether there are a specific fluctuations of variability contributing to the overall high cognitive inconsistency. The objective was to compare dynamic profiles of patients and healthy controls to identify hypothetical differences and their associations with overall variability and processing speed. METHODS Changes of reaction times iSD during processing speed test performance over time was measured by dividing the iSD for whole task into four consecutive parts. Motor speed and cognitive effort were controlled. RESULTS Patients with BD exhibited significantly lower results regarding processing speed and higher intra-individual variability comparing with HC. The profile of intra-individual variability changes over time of performance was significantly different in BD versus HC groups: F(3, 207)=8.60, p<0.0001, ηp2=0.11. iSD of BD patients in the initial phase of performance was three times higher than in the last. There was no significant differences between four intervals in HC group. Inter-group difference in the initial part of the profiles was significant also after controlling for several cognitive and clinical variables. LIMITATIONS Applied computer version of Cognitive Speed Test was relatively new and, thus, replication studies are needed. Effect seen in the present study is driven mainly by the BD type I. CONCLUSIONS Patients with BD exhibits problems with setting a stimulus-response association in starting phase of cognitive processing. This deficit may negatively interfere with the other cognitive functions, decreasing level of psychosocial functioning, therefore should be explored in future studies.
Collapse
Affiliation(s)
- Paweł Krukow
- Department of Clinical Neuropsychiatry, Medical University of Lublin, Poland.
| | - Ola Szaniawska
- Institute of Psychology, Maria Curie-Skłodowska University in Lublin, Poland
| | | | | | - Kamil Jonak
- Institute of Technological Systems of Information, Lublin University of Technology, Poland
| |
Collapse
|
26
|
Ciullo V, Spalletta G, Caltagirone C, Jorge RE, Piras F. Explicit Time Deficit in Schizophrenia: Systematic Review and Meta-Analysis Indicate It Is Primary and Not Domain Specific. Schizophr Bull 2016; 42:505-18. [PMID: 26253596 PMCID: PMC4753592 DOI: 10.1093/schbul/sbv104] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although timing deficits are a robust finding in schizophrenia (SZ), the notion of a genuine time perception disorder in SZ is still being debated because distortions in timing might depend on neuropsychological deficits that are characteristics of the illness. Here we used meta-analytic methods to summarize the evidence of timing deficits in SZ and moderator analyses to determine whether defective timing in SZ arises from nontemporal sources or from defective time perception. PubMed Services, PsycNET, and Scopus were searched through March 2015, and all references in articles were investigated to find other relevant studies. Studies were selected if they included subjects with a primary diagnosis of SZ compared to a healthy control (HC) group and if they reported behavioral measures of duration estimation (perceptual and motor explicit timing). Data from 24 studies published from 1956 to 2015, which comprised 747 SZ individuals and 808 HC, were included. Results indicate that SZ individuals are less accurate than HC in estimating time duration across a wide range of tasks. Subgroup analyses showed that the fundamental timing deficit in SZ is independent from the length of the to-be-timed duration (automatic and cognitively controlled timing) and from methods of stimuli estimation (perceptual and motor timing). Thus, time perception per se is disturbed in SZ (not just task-specific timing processes) and this perturbation is independent from more generalized cognitive impairments. Behavioral evidence of disturbed automatic timing should be more thoroughly investigated with the aim of defining it as a cognitive phenotype for more homogeneous diagnostic subgrouping.
Collapse
Affiliation(s)
- Valentina Ciullo
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX;
| | - Carlo Caltagirone
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ricardo E Jorge
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX
| | - Federica Piras
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
27
|
Bolbecker AR, Petersen IT, Kent JS, Howell JM, O'Donnell BF, Hetrick WP. New Insights into the Nature of Cerebellar-Dependent Eyeblink Conditioning Deficits in Schizophrenia: A Hierarchical Linear Modeling Approach. Front Psychiatry 2016; 7:4. [PMID: 26834653 PMCID: PMC4725217 DOI: 10.3389/fpsyt.2016.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/11/2016] [Indexed: 11/18/2022] Open
Abstract
Evidence of cerebellar dysfunction in schizophrenia has mounted over the past several decades, emerging from neuroimaging, neuropathological, and behavioral studies. Consistent with these findings, cerebellar-dependent delay eyeblink conditioning (dEBC) deficits have been identified in schizophrenia. While repeated-measures analysis of variance is traditionally used to analyze dEBC data, hierarchical linear modeling (HLM) more reliably describes change over time by accounting for the dependence in repeated-measures data. This analysis approach is well suited to dEBC data analysis because it has less restrictive assumptions and allows unequal variances. The current study examined dEBC measured with electromyography in a single-cue tone paradigm in an age-matched sample of schizophrenia participants and healthy controls (N = 56 per group) using HLM. Subjects participated in 90 trials (10 blocks) of dEBC, during which a 400 ms tone co-terminated with a 50 ms air puff delivered to the left eye. Each block also contained 1 tone-alone trial. The resulting block averages of dEBC data were fitted to a three-parameter logistic model in HLM, revealing significant differences between schizophrenia and control groups on asymptote and inflection point, but not slope. These findings suggest that while the learning rate is not significantly different compared to controls, associative learning begins to level off later and a lower ultimate level of associative learning is achieved in schizophrenia. Given the large sample size in the present study, HLM may provide a more nuanced and definitive analysis of differences between schizophrenia and controls on dEBC.
Collapse
Affiliation(s)
- Amanda R Bolbecker
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Isaac T Petersen
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Jerillyn S Kent
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Josselyn M Howell
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Brian F O'Donnell
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| |
Collapse
|
28
|
Alústiza I, Pujol N, Molero P, Ortuño F. El procesamiento temporal en la esquizofrenia: Revisión. Schizophr Res Cogn 2015. [DOI: 10.1016/j.scog.2015.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
29
|
Alústiza I, Pujol N, Molero P, Ortuño F. Temporal processing in schizophrenia: Review. Schizophr Res Cogn 2015. [DOI: 10.1016/j.scog.2015.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
30
|
Fritz TH, Steixner A, Boettger J, Villringer A. Losing track of time through delayed body representations. Front Psychol 2015; 6:405. [PMID: 25918507 PMCID: PMC4394659 DOI: 10.3389/fpsyg.2015.00405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/23/2015] [Indexed: 11/13/2022] Open
Abstract
The ability to keep track of time is perceived as crucial in most human societies. However, to lose track of time may also serve an important social role, associated with recreational purpose. To this end a number of social technologies are employed, some of which may relate to a manipulation of time perception through a modulation of body representation. Here, we investigated an influence of real-time or delayed videos of own-body representations on time perception in an experimental setup with virtual mirrors. Seventy participants were asked to either stay in the installation until they thought that a defined time (90 s) had passed, or they were encouraged to stay in the installation as long as they wanted and after exiting were asked to estimate the duration of their stay. Results show that a modulation of body representation by time-delayed representations of the mirror-video displays influenced time perception. Furthermore, these time-delayed conditions were associated with a greater sense of arousal and intoxication. We suggest that feeding in references to the immediate past into working memory could be the underlying mental mechanism mediating the observed modulation of time perception. We argue that such an influence on time perception would probably not only be achieved visually, but might also work with acoustic references to the immediate past (e.g., with music).
Collapse
Affiliation(s)
- Thomas H Fritz
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Department of Nuclear Medicine, University of Leipzig Leipzig, Germany ; Institute for Psychoacoustics and Electronic Music Ghent, Belgium
| | - Agnes Steixner
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Joachim Boettger
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| |
Collapse
|