1
|
Hasan S, Furtado A, Henry R. Reticulate Evolution in AA-Genome Wild Rice in Australia. FRONTIERS IN PLANT SCIENCE 2022; 13:767635. [PMID: 35360335 PMCID: PMC8963485 DOI: 10.3389/fpls.2022.767635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The wild rice gene pool, i.e., AA-genome, in Australia is geographically and genetically distinct from that in Asia. Two distinct taxa are found growing together in northern Australia, Oryza meridionalis (including annual and perennial forms) and an Oryza rufipogon like taxa that have been shown to have a chloroplast genome sequence that is closer to that of O. meridionalis than to O. rufipogon from Asia. Rare plants of intermediate morphology have been observed in the wild despite a reported reproductive barrier between these two species. We now report the resequencing of plants from 26 populations including both taxa and putative hybrids. A comparison of chloroplast and nuclear genome sequences indicated re-combinations that demonstrated hybridisation in both directions. Individuals with intermediate morphology had high nuclear genome heterozygosity consistent with a hybrid origin. An examination of specific genes (e.g., starch biosynthesis genes) revealed the presence of heterozygotes with alleles from both parents suggesting that some wild plants were early generation hybrids. These plants may have low cross-fertility preserving the continuation of the two distinct species. Repeated backcrossing of these rare hybrids to one parent would explain the plants exhibiting chloroplast capture. These observations suggest that reticulate evolution is continuing in wild Oryza populations and may have been a key process in rice evolution and domestication.
Collapse
Affiliation(s)
- Sharmin Hasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- Department of Botany, Jagannath University, Dhaka, Bangladesh
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Kim M, Xi H, Park J. Genome-wide comparative analyses of GATA transcription factors among 19 Arabidopsis ecotype genomes: Intraspecific characteristics of GATA transcription factors. PLoS One 2021; 16:e0252181. [PMID: 34038437 PMCID: PMC8153473 DOI: 10.1371/journal.pone.0252181] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
GATA transcription factors (TFs) are widespread eukaryotic regulators whose DNA-binding domain is a class IV zinc finger motif (CX2CX17-20CX2C) followed by a basic region. Due to the low cost of genome sequencing, multiple strains of specific species have been sequenced: e.g., number of plant genomes in the Plant Genome Database (http://www.plantgenome.info/) is 2,174 originated from 713 plant species. Thus, we investigated GATA TFs of 19 Arabidopsis thaliana genome-widely to understand intraspecific features of Arabidopsis GATA TFs with the pipeline of GATA database (http://gata.genefamily.info/). Numbers of GATA genes and GATA TFs of each A. thaliana genome range from 29 to 30 and from 39 to 42, respectively. Four cases of different pattern of alternative splicing forms of GATA genes among 19 A. thaliana genomes are identified. 22 of 2,195 amino acids (1.002%) from the alignment of GATA domain amino acid sequences display variations across 19 ecotype genomes. In addition, maximally four different amino acid sequences per each GATA domain identified in this study indicate that these position-specific amino acid variations may invoke intraspecific functional variations. Among 15 functionally characterized GATA genes, only five GATA genes display variations of amino acids across ecotypes of A. thaliana, implying variations of their biological roles across natural isolates of A. thaliana. PCA results from 28 characteristics of GATA genes display the four groups, same to those defined by the number of GATA genes. Topologies of bootstrapped phylogenetic trees of Arabidopsis chloroplasts and common GATA genes are mostly incongruent. Moreover, no relationship between geographical distribution and their phylogenetic relationships was found. Our results present that intraspecific variations of GATA TFs in A. thaliana are conserved and evolutionarily neutral along with 19 ecotypes, which is congruent to the fact that GATA TFs are one of the main regulators for controlling essential mechanisms, such as seed germination and hypocotyl elongation.
Collapse
Affiliation(s)
- Mangi Kim
- InfoBoss Inc., Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Gangnam-gu, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss Inc., Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Gangnam-gu, Seoul, Republic of Korea
| | - Jongsun Park
- InfoBoss Inc., Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Gangnam-gu, Seoul, Republic of Korea
| |
Collapse
|
3
|
Back to the Origins: Background and Perspectives of Grapevine Domestication. Int J Mol Sci 2021; 22:ijms22094518. [PMID: 33926017 PMCID: PMC8123694 DOI: 10.3390/ijms22094518] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
Domestication is a process of selection driven by humans, transforming wild progenitors into domesticated crops. The grapevine (Vitis vinifera L.), besides being one of the most extensively cultivated fruit trees in the world, is also a fascinating subject for evolutionary studies. The domestication process started in the Near East and the varieties obtained were successively spread and cultivated in different areas. Whether the domestication occurred only once, or whether successive domestication events occurred independently, is a highly debated mystery. Moreover, introgression events, breeding and intense trade in the Mediterranean basin have followed, in the last thousands of years, obfuscating the genetic relationships. Although a succession of studies has been carried out to explore grapevine origin and different evolution models are proposed, an overview of the topic remains pending. We review here the findings obtained in the main phylogenetic and genomic studies proposed in the last two decades, to clarify the fundamental questions regarding where, when and how many times grapevine domestication took place. Finally, we argue that the realization of the pan-genome of grapes could be a useful resource to discover and track the changes which have occurred in the genomes and to improve our understanding about the domestication.
Collapse
|
4
|
Moner AM, Furtado A, Henry RJ. Two divergent chloroplast genome sequence clades captured in the domesticated rice gene pool may have significance for rice production. BMC PLANT BIOLOGY 2020; 20:472. [PMID: 33054735 PMCID: PMC7558744 DOI: 10.1186/s12870-020-02689-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/07/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND The whole chloroplast genomes of 3018 rice genotypes were assembled from available sequence data by alignment with a reference rice chloroplast genome sequence, providing high quality chloroplast genomes for analysis of diversity on a much larger scale than in any previous plant study. RESULTS Updated annotation of the chloroplast genome identified 13 more tRNA genes and 30 more introns and defined the function of more of the genes. Domesticated rice had chloroplast genomes that were distinct from those in wild relatives. Analysis confirms an Australian chloroplast clade as a sister to the domesticated clade. All domesticated rice genotypes could be assigned to one of two main clades suggesting the domestication of two distinct maternal genome clades that diverged long before domestication. These clades were very distinct having 4 polymorphisms between all 1486 accession in clade A and all 1532 accessions in clade B. These would result in expression of 3 proteins with altered amino acid sequences and a tRNA with an altered sequence and may be associated with adaptive evolution of the two chloroplast types. Diversity within these pools may have been captured during domestication with subclades enriched in specific groups such as basmati, tropical japonica and temperate japonica. However the phylogenies of the chloroplast and nuclear genomes differed possibly due to modern rice breeding and reticulate evolution prior to domestication. Indica and aus genotypes were common in both chloroplast clades while japonica genotypes were more likely to be found in the same clade (cladeB). CONCLUSIONS The different evolutionary paths of the cytoplasmic and nuclear genomes of rice have resulted in the presence of apparently functional chloroplast genome diversity and the implications for rice crop performance require further investigation.
Collapse
Affiliation(s)
- Ali Mohammad Moner
- Genetic Engineering and Biotechnology Institute for Post Graduate Studies, University of Baghdad, Baghdad, Iraq
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, 4072, Australia.
| |
Collapse
|
5
|
Kumar A, Daware A, Kumar A, Kumar V, Gopala Krishnan S, Mondal S, Patra BC, Singh AK, Tyagi AK, Parida SK, Thakur JK. Genome-wide analysis of polymorphisms identified domestication-associated long low-diversity region carrying important rice grain size/weight quantitative trait loci. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1525-1547. [PMID: 32432802 DOI: 10.1111/tpj.14845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 05/02/2023]
Abstract
Rice grain size and weight are major determinants of grain quality and yield and so have been under rigorous selection since domestication. However, the genetic basis for contrasting grain size/weight trait among Indian germplasms and their association with domestication-driven evolution is not well understood. In this study, two long (LGG) and two short grain (SGG) genotypes were resequenced. LGG (LGR and PB 1121) differentiated from SGG (Sonasal and Bindli) by 504 439 single nucleotide polymorphisms (SNPs) and 78 166 insertion-and-deletion polymorphisms. The LRK gene cluster was different and a truncation mutation in the LRK8 kinase domain was associated with LGG. Phylogeny with 3000 diverse rice accessions revealed that the four sequenced genotypes belonged to the japonica group and were at the edge of the clades indicating them to be the potential source of genetic diversity available in Indian rice germplasm. Six SNPs were significantly associated with grain size/weight and the top four of these could be validated in mapping a population, suggesting this study as a valuable resource for high-throughput genotyping. A contiguous long low-diversity region (LDR) of approximately 6 Mb carrying a major grain weight quantitative trait loci (harbouring OsTOR gene) was identified on Chromosome 5. This LDR was identified as an evolutionary important site with significant positive selection and multiple selection sweeps, and showed association with many domestication-related traits, including grain size/weight. The aus population retained more allelic variations in the LDR than the japonica and indica populations, suggesting it to be one of the divergence loci. All the data and analyses can be accessed from the RiceSzWtBase database.
Collapse
Affiliation(s)
- Angad Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Daware
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Arvind Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vinay Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - S Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Subhasish Mondal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Bhaskar C Patra
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - Ashok K Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
6
|
Islam MS, Coronejo S, Subudhi PK. Whole-genome sequencing reveals uniqueness of black-hulled and straw-hulled weedy rice genomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2461-2475. [PMID: 32488303 DOI: 10.1007/s00122-020-03611-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/13/2020] [Indexed: 05/22/2023]
Abstract
Both SH and BHA weedy rice genotypes evolved independently and have distinct genomic composition. Different genetic mechanisms may be responsible for their competitiveness and adaptation to diverse environmental conditions. Two major types of weedy rice are recognized in the USA based on morphology: straw-hull (SH) and black-hull awned (BHA) weedy rice. We performed whole-genome resequencing of a SH weedy rice 'PSRR-1', a BHA weedy rice 'BHA1115', and a japonica cultivar 'Cypress' to delineate genome-wide differences and their relevance to genetics and evolution of weedy attributes. The high-quality reads were uniformly distributed with 82-88% genome coverage. The number of genotype-specific SNPs and InDels was highest in Cypress, followed by BHA1115 and PSRR-1. However, more genes were affected in BHA1115 compared with other two genotypes which is evident from the number of high-impact SNPs and InDels. Haplotype analysis of selected genes involved in domestication, adaptation, and agronomic performance not only differentiated SH from BHA weedy rice and supported evolution of weedy rice through de-domestication, but also validated the function of several genes such as qAn-1, qAn-2, Bh4, Rc, SD1, OsLG1, and OsC1. Several candidate genes were identified for previously reported seed dormancy and seed shattering QTLs. The SH and BHA weedy rice have distinct genomic composition, and the BHA weedy rice likely diverged earlier than SH weedy rice. The accumulation of plant development, reproduction, and defense-related genes in weedy rice possibly helped them to compete, survive, and spread under a wide range of environmental conditions by employing novel and diverse mechanisms. The genomic resources will be useful for both weed management and rice improvement by exploring the molecular basis of key agronomic, adaptive, and domestication attributes.
Collapse
Affiliation(s)
- Md Shofiqul Islam
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Sapphire Coronejo
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Prasanta Kumar Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
7
|
Henry RJ. Australian Wild Rice Populations: A Key Resource for Global Food Security. FRONTIERS IN PLANT SCIENCE 2019; 10:1354. [PMID: 31695720 PMCID: PMC6817564 DOI: 10.3389/fpls.2019.01354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/01/2019] [Indexed: 05/24/2023]
Abstract
Rice is one of the most important food crops contributing to the diet of large numbers of people especially in Asia. Rice (Oryza sativa) was domesticated in Asia many thousands of years ago and more recently independently in Africa. Wild rice populations are found around the tropical world. The extensive production of rice in many areas has displaced the wild populations that were the basis of the original domestications by humans. Recent research, reviewed here, has identified wild rice species in northern Australia that have been isolated from the impact of domestication in Asia. Wild rice populations contain novel alleles that are a source of desirable traits such as erect habit, disease resistance, large grain size, and unique starch properties. These populations include the most divergent genotypes within the primary gene pool of rice and more distant wild relatives. Genome sequencing also suggests the presence of populations that are close relatives of domesticated rice. Hybrid populations that demonstrate mechanisms of ongoing evolution of wild Oryza have been identified in the wild. These populations provide options for both new domestications and utilization of novel alleles to improve or adapt domesticated rice using conventional or preferably new breeding technologies. Climate change and growing food demands associated with population and economic growth are major challenges for agriculture including rice production. The availability of diverse genetic resources to support crop adaptation and new crop domestication is critical to continued production, and increased efforts to support in situ and ex situ conservation of wild Oryza and related species are warranted.
Collapse
|
8
|
|
9
|
Wang J, Yan S, Luo S, Deng W, Shen X, Chen D, Chen H. The evolution study on Oryza rufipogon. dw by whole-genome sequencing. J Genet 2019; 98:90. [PMID: 31544797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The species of Oryza rufipogon. dw was first discovered at Dongxiang, Jiangxi in 1978. It is recognized as abundant in genetic resources with the characteristics of cold and insect resistance. A total of 100.15 Gb raw data was obtained from seven pair-end libraries by Illumina Hiseq4000 platform. Subsequently, a draft assembly genome of O. rufipogon. dw was generated with a final size of 422.7 Mb with a contig N50 of 15 kb and a scaffold N50 of 296.2 bb. The assembly genome size was higher than the estimated genome size (413 Mb) based on k-mer analysis. The identified repeat sequences accounted for 40.09% of the entire genome, and 32,521 protein-coding genes with an average of 4.59 exons per gene was annotated in five databases. Phylogenetic analysis using 1460 single-copy gene, O. rufipogon. dw was close with O. rufipogon by Bayes method. The wild rice species of O. rufipogon. dw divergence was estimated at ∼0.3 million years ago (Mya) from O. rufipogon, and ∼0.6 Mya from the O. sativa. The draft genome of O. rufipogon. dw provided an essential resource for its origin and evolution study.
Collapse
Affiliation(s)
- Jilin Wang
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Raizada A, Souframanien J. Transcriptome sequencing, de novo assembly, characterisation of wild accession of blackgram (Vigna mungo var. silvestris) as a rich resource for development of molecular markers and validation of SNPs by high resolution melting (HRM) analysis. BMC PLANT BIOLOGY 2019; 19:358. [PMID: 31419947 PMCID: PMC6697964 DOI: 10.1186/s12870-019-1954-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/31/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Blackgram [Vigna mungo (L.) Hepper], is an important legume crop of Asia with limited genomic resources. We report a comprehensive set of genic simple sequence repeat (SSR) and single nucleotide polymorphism (SNPs) markers using Illumina MiSeq sequencing of transcriptome and its application in genetic variation analysis and mapping. RESULTS Transcriptome sequencing of immature seeds of wild blackgram, V. mungo var. silvestris by Illumina MiSeq technology generated 1.9 × 107 reads, which were assembled into 40,178 transcripts (TCS) with an average length of 446 bp covering 2.97 GB of the genome. A total of 38,753 CDS (Coding sequences) were predicted from 40,178 TCS and 28,984 CDS were annotated through BLASTX and mapped to GO and KEGG database resulting in 140 unique pathways. The tri-nucleotides were most abundant (39.9%) followed by di-nucleotide (30.2%). About 60.3 and 37.6% of SSR motifs were present in the coding sequences (CDS) and untranslated regions (UTRs) respectively. Among SNPs, the most abundant substitution type were transitions (Ts) (61%) followed by transversions (Tv) type (39%), with a Ts/Tv ratio of 1.58. A total of 2306 DEGs were identified by RNA Seq between wild and cultivar and validation was done by quantitative reverse transcription polymerase chain reaction. In this study, we genotyped SNPs with a validation rate of 78.87% by High Resolution Melting (HRM) Assay. CONCLUSION In the present study, 1621genic-SSR and 1844 SNP markers were developed from immature seed transcriptome sequence of blackgram and 31 genic-SSR markers were used to study genetic variations among different blackgram accessions. Above developed markers contribute towards enriching available genomic resources for blackgram and aid in breeding programmes.
Collapse
Affiliation(s)
- Avi Raizada
- Nuclear Agriculture and Biotechnology Division, BARC, Trombay, Mumbai, Trombay, 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Anushakti Nagar, 400094, India
| | - J Souframanien
- Nuclear Agriculture and Biotechnology Division, BARC, Trombay, Mumbai, Trombay, 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Anushakti Nagar, 400094, India.
| |
Collapse
|
11
|
Fujino K, Hirayama Y, Obara M, Ikegaya T. Introgression of the chromosomal region with the Pi-cd locus from Oryza meridionalis into O. sativa L. during rice domestication. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1981-1990. [PMID: 30911779 DOI: 10.1007/s00122-019-03332-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/19/2019] [Indexed: 05/04/2023]
Abstract
The genotype of the Pi-cd locus found in blast-resistant rice variety Kitakurin, which is a cultivated rice from Japan belonging to Oryza sativa japonica, is identical to that of its wild relative O. meridionalis. Crop domestication from wild relatives to cultivated species has encompassed significant phenotypic changes. However, little is known about the genetic changes involved in domestication. Here, we surveyed the origin of the Pi-cd locus across Oryza species with AA genomes by comparison with the genome sequences of Hoshinoyume (HS), which does not carry the Pi-cd blast resistance gene, and Kitakurin (KK), which carries the Pi-cd blast resistance gene. We found that variety-specific transposons were enriched at the Pi-cd locus. The genotype of the Pi-cd locus characterized by transposons in HS and KK was specific to each Oryza species with the AA genome. The Kitaake (KT) genotype at the Pi-cd locus found in KK was identical only to that of O. meridionalis and distributed only in subgroups of japonica in the World Rice Collection and tropical japonica in the Japanese Rice Collection, whereas it was not present in O. rufipogon accessions. The distinct distributions of genotypes of the Pi-cd locus clearly demonstrated that the Pi-cd locus was introgressed from O. meridionalis into O. sativa, specific to tropical japonica.
Collapse
Affiliation(s)
- Kenji Fujino
- Hokkaido Agricultural Research Center, National Agricultural Research Organization, Sapporo, 062-8555, Japan.
| | - Yuji Hirayama
- Rice Breeding Group, Kamikawa Agricultural Experiment Station, Local Independent Administrative Agency Hokkaido Research Organization, Pippu, 078-0397, Japan
| | - Mari Obara
- Hokkaido Agricultural Research Center, National Agricultural Research Organization, Sapporo, 062-8555, Japan
| | - Tomohito Ikegaya
- Hokkaido Agricultural Research Center, National Agricultural Research Organization, Sapporo, 062-8555, Japan
| |
Collapse
|
12
|
The potentiality of rice microsatellite markers in assessment of cross-species transferability and genetic diversity of rice and its wild relatives. 3 Biotech 2019; 9:217. [PMID: 31114741 DOI: 10.1007/s13205-019-1757-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/11/2019] [Indexed: 10/26/2022] Open
Abstract
The main aim of this study is to assess the potentiality of SSR markers for the identification of the cross-species transferability frequency in a large set of the diverse genome types of wild relative rice along with cultivated rice. Here, we used 18 different rice genotypes representing nine different genome types with 70 SSR markers to investigate the potentiality of cross-species transferability rate. The overall cross-species transferability of SSR markers across the 18 rice genotypes ranged from 38.9% (RM280 and RM447) to 100% (RM490, RM318, RM279, RM18877 and RM20033, RM19303) with an average of 76.58%. Also, cross-species transferability across chromosome ranged from 54.4% (chromosome 4) to 86.5% (chromosome 2) with an average of 74.35%. The polymorphism information content of the markers varied from 0.198 (RM263) to 0.868 (RM510) with a mean of 0.549 ± 0.153, showing high discriminatory power. The highest rate of cross-transferability was observed in O. rufipogon (97%), The highest rate of cross-species transferability was in O. rufipogon (97.00%), followed by O. glaberrima (94.20%), O. nivara (92.80%), Swarna (92.80%), O. longistaminata (91.40%), O. eichingeri (90%), O. barthii (88.50%), O. alta (82.80%), O. australiensis (77.10%), O. grandiglumis (74.20%), O. officinalis (74.20%), Zizania latifolia (70.00%), O. latifolia (68.50%), O. brachyantha (62.80%), Leersia perrieri (57.10%) and O. ridleyi (41.40%) with least in O. coarctata (28.50%). A total of 341 alleles from 70 loci were detected with the number of alleles per locus ranged from 2 to 12. Based on dendrogram analysis, the AA genome groups was separated as distinct group from the rest of the genome types. Similarly, principal coordinate analysis and structure analysis clearly separated the AA genome type from the rest of the genome types. Through the analysis of molecular variance, more variance (51%) was observed among the individual, whereas less (14%) was observed among the population. Thus, our findings may offer a valuable resource for studying the genetic diversity and relationship to facilitate the understanding of the complex mechanism of the origin and evolutionary processes of different Oryza species and wild relative rice.
Collapse
|
13
|
Re-sequencing Resources to Improve Starch and Grain Quality in Rice. Methods Mol Biol 2018. [PMID: 30397808 DOI: 10.1007/978-1-4939-8914-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Next-generation sequencing can identify differences in the rice genome that explain the genetic basis of grain quality variation. Differences in rice grain quality are mainly associated with differences in the major component of the grain, starch. Association of rice quality variation with rice genome variation can be conducted at the gene or whole-genome level. Re-sequencing of specific genes or whole genomes can be used depending on the extent to which candidate genes for the traits of interest are known. Amplicon sequencing of genes involved in starch metabolism can help in targeted discovery of the molecular genetic basis of differences in starch related quality attributes. Whole-genome re-sequencing can complement this, when the genetic basis of the trait is expected to be outside the coding region of starch metabolism genes. These approaches have been used successfully to understand the rice genome at specific loci and over the whole genome.
Collapse
|
14
|
Yu H, Shahid MQ, Li R, Li W, Liu W, Ghouri F, Liu X. Genome-Wide Analysis of Genetic Variations and the Detection of Rich Variants of NBS-LRR Encoding Genes in Common Wild Rice Lines. PLANT MOLECULAR BIOLOGY REPORTER 2018; 36:618-630. [PMID: 30363818 PMCID: PMC6182389 DOI: 10.1007/s11105-018-1103-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Common wild rice (Oryza rufipogon Griff.) is invaluable genetic resource for rice resistance breeding. Whole-genome re-sequencing was conducted to systematically analyze the variations in two new inbred lines (Huaye 3 and Huaye 4) developed from a common wild rice. A total of 4,841,127 SNPs, 1,170,479 InDels, 24,080 structural variations (SVs), and 298 copy number variations (CNVs) were identified in three materials. Approximately 16.24 and 5.64% of the total SNPs and InDels of Huaye 3 and Huaye 4 were located in genic regions, respectively. Together, 12,486 and 15,925 large-effect SNPs, and 12,417 and 14,513 large-effect InDels, which affect the integrity of the encoded protein, were identified in Huaye 3 and Huaye 4, respectively. The distribution map of 194 and 245 NBS-LRR encoding homologs was constructed across 12 rice chromosomes. Further, GO enrichment analysis of the homologs with identical genotype variations in Huaye 3 and Huaye 4 revealed 67, 82, and 58 homologs involved in cell death, response to stress, and both terms, respectively. Comparative analysis displayed that 550 out of 652 SNPs and 129 out of 147 InDels were present in a widely used blast-susceptible rice variety (LTH). Protein-protein interaction analysis revealed a strong interaction between NBS-LRR candidates and several known R genes. One homolog of disease resistance protein (RPM1) was involved in the plant-pathogen interaction pathway. Artificial inoculation of disease/insect displayed resistance phenotypes against rice blast and brown planthopper in two lines. The results will provide allele-specific markers for rice molecular breeding.
Collapse
Affiliation(s)
- Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China
| | - Wei Li
- College of Agronomy, Guangdong Ocean University, Zhanjiang, 524000 China
| | - Wen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Department of Tropical Crops, Guangdong Agriculture Industry Business Polytechnic College, Guangzhou, 510507 China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
15
|
Brozynska M, Copetti D, Furtado A, Wing RA, Crayn D, Fox G, Ishikawa R, Henry RJ. Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:765-774. [PMID: 27889940 PMCID: PMC5425390 DOI: 10.1111/pbi.12674] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/10/2016] [Accepted: 11/23/2016] [Indexed: 05/04/2023]
Abstract
The related A genome species of the Oryza genus are the effective gene pool for rice. Here, we report draft genomes for two Australian wild A genome taxa: O. rufipogon-like population, referred to as Taxon A, and O. meridionalis-like population, referred to as Taxon B. These two taxa were sequenced and assembled by integration of short- and long-read next-generation sequencing (NGS) data to create a genomic platform for a wider rice gene pool. Here, we report that, despite the distinct chloroplast genome, the nuclear genome of the Australian Taxon A has a sequence that is much closer to that of domesticated rice (O. sativa) than to the other Australian wild populations. Analysis of 4643 genes in the A genome clade showed that the Australian annual, O. meridionalis, and related perennial taxa have the most divergent (around 3 million years) genome sequences relative to domesticated rice. A test for admixture showed possible introgression into the Australian Taxon A (diverged around 1.6 million years ago) especially from the wild indica/O. nivara clade in Asia. These results demonstrate that northern Australia may be the centre of diversity of the A genome Oryza and suggest the possibility that this might also be the centre of origin of this group and represent an important resource for rice improvement.
Collapse
Affiliation(s)
- Marta Brozynska
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneQLDAustralia
| | - Dario Copetti
- Arizona Genomics InstituteSchool of Plant SciencesUniversity of ArizonaTucsonAZUSA
- International Rice Research InstituteT.T. Chang Genetic Resources CenterLos BañosLagunaPhilippines
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneQLDAustralia
| | - Rod A. Wing
- Arizona Genomics InstituteSchool of Plant SciencesUniversity of ArizonaTucsonAZUSA
- International Rice Research InstituteT.T. Chang Genetic Resources CenterLos BañosLagunaPhilippines
| | - Darren Crayn
- Australian Tropical HerbariumJames Cook UniversityCairnsQLDAustralia
| | - Glen Fox
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandToowoombaQLDAustralia
| | - Ryuji Ishikawa
- Faculty of Agriculture and Life ScienceHirosaki UniversityHirosakiAomoriJapan
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
16
|
Furuta T, Ashikari M, Jena KK, Doi K, Reuscher S. Adapting Genotyping-by-Sequencing for Rice F2 Populations. G3 (BETHESDA, MD.) 2017; 7:881-893. [PMID: 28082325 PMCID: PMC5345719 DOI: 10.1534/g3.116.038190] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/09/2017] [Indexed: 12/30/2022]
Abstract
Rapid and cost-effective genotyping of large mapping populations can be achieved by sequencing a reduced representation of the genome of every individual in a given population, and using that information to generate genetic markers. A customized genotyping-by-sequencing (GBS) pipeline was developed to genotype a rice F2 population from a cross of Oryza sativa ssp. japonica cv. Nipponbare and the African wild rice species O. longistaminata While most GBS pipelines aim to analyze mainly homozygous populations, we attempted to genotype a highly heterozygous F2 population. We show how species- and population-specific improvements of established protocols can drastically increase sample throughput and genotype quality. Using as few as 50,000 reads for some individuals (134,000 reads on average), we were able to generate up to 8154 informative SNP markers in 1081 F2 individuals. Additionally, the effects of enzyme choice, read coverage, and data postprocessing are evaluated. Using GBS-derived markers, we were able to assemble a genetic map of 1536 cM. To demonstrate the usefulness of our GBS pipeline, we determined quantitative trait loci (QTL) for the number of tillers. We were able to map four QTL to chromosomes 1, 3, 4, and 8, and partially confirm their effects using introgression lines. We provide an example of how to successfully use GBS with heterozygous F2 populations. By using the comparatively low-cost MiSeq platform, we show that the GBS method is flexible and cost-effective, even for smaller laboratories.
Collapse
Affiliation(s)
- Tomoyuki Furuta
- Bioscience and Biotechnology Center, Nagoya University, 464-8601, Japan
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, 464-8601, Japan
| | - Kshirod K Jena
- Plant Breeding Division, International Rice Research Institute, 1301 Manila, Philippines
| | - Kazuyuki Doi
- Associated Field Science and Research Center, Nagoya University, 470-0151, Japan
| | - Stefan Reuscher
- Bioscience and Biotechnology Center, Nagoya University, 464-8601, Japan
| |
Collapse
|
17
|
Whole-Genome Characteristics and Polymorphic Analysis of Vietnamese Rice Landraces as a Comprehensive Information Resource for Marker-Assisted Selection. Int J Genomics 2017; 2017:9272363. [PMID: 28265566 PMCID: PMC5318636 DOI: 10.1155/2017/9272363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/21/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Next generation sequencing technologies have provided numerous opportunities for application in the study of whole plant genomes. In this study, we present the sequencing and bioinformatic analyses of five typical rice landraces including three indica and two japonica with potential blast resistance. A total of 688.4 million 100 bp paired-end reads have yielded approximately 30-fold coverage to compare with the Nipponbare reference genome. Among them, a small number of reads were mapped to both chromosomes and organellar genomes. Over two million and eight hundred thousand single nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) in indica and japonica lines have been determined, which potentially have significant impacts on multiple transcripts of genes. SNP deserts, contiguous SNP-low regions, were found on chromosomes 1, 4, and 5 of all genomes of rice examined. Based on the distribution of SNPs per 100 kilobase pairs, the phylogenetic relationships among the landraces have been constructed. This is the first step towards revealing several salient features of rice genomes in Vietnam and providing significant information resources to further marker-assisted selection (MAS) in rice breeding programs.
Collapse
|
18
|
Development and validation of cross-transferable and polymorphic DNA markers for detecting alien genome introgression in Oryza sativa from Oryza brachyantha. Mol Genet Genomics 2016; 291:1783-94. [PMID: 27299359 DOI: 10.1007/s00438-016-1214-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
African wild rice Oryza brachyantha (FF), a distant relative of cultivated rice Oryza sativa (AA), carries genes for pests and disease resistance. Molecular marker assisted alien gene introgression from this wild species to its domesticated counterpart is largely impeded due to the scarce availability of cross-transferable and polymorphic molecular markers that can clearly distinguish these two species. Availability of the whole genome sequence (WGS) of both the species provides a unique opportunity to develop markers, which are cross-transferable. We observed poor cross-transferability (~0.75 %) of O. sativa specific sequence tagged microsatellite (STMS) markers to O. brachyantha. By utilizing the genome sequence information, we developed a set of 45 low cost PCR based co-dominant polymorphic markers (STS and CAPS). These markers were found cross-transferrable (84.78 %) between the two species and could distinguish them from each other and thus allowed tracing alien genome introgression. Finally, we validated a Monosomic Alien Addition Line (MAAL) carrying chromosome 1 of O. brachyantha in O. sativa background using these markers, as a proof of concept. Hence, in this study, we have identified a set molecular marker (comprising of STMS, STS and CAPS) that are capable of detecting alien genome introgression from O. brachyantha to O. sativa.
Collapse
|
19
|
Rathinasabapathi P, Purushothaman N, Parani M. Genome-wide DNA polymorphisms in Kavuni, a traditional rice cultivar with nutritional and therapeutic properties. Genome 2016; 59:363-6. [PMID: 27093133 DOI: 10.1139/gen-2016-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although rice genome was sequenced in the year 2002, efforts in resequencing the large number of available accessions, landraces, traditional cultivars, and improved varieties of this important food crop are limited. We have initiated resequencing of the traditional cultivars from India. Kavuni is an important traditional rice cultivar from South India that attracts premium price for its nutritional and therapeutic properties. Whole-genome sequencing of Kavuni using Illumina platform and SNPs analysis using Nipponbare reference genome identified 1 150 711 SNPs of which 377 381 SNPs were located in the genic regions. Non-synonymous SNPs (62 708) were distributed in 19 251 genes, and their number varied between 1 and 115 per gene. Large-effect DNA polymorphisms (7769) were present in 3475 genes. Pathway mapping of these polymorphisms revealed the involvement of genes related to carbohydrate metabolism, translation, protein-folding, and cell death. Analysis of the starch biosynthesis related genes revealed that the granule-bound starch synthase I gene had T/G SNPs at the first intron/exon junction and a two-nucleotide combination, which were reported to favour high amylose content and low glycemic index. The present study provided a valuable genomics resource to study the rice varieties with nutritional and medicinal properties.
Collapse
Affiliation(s)
- Pasupathi Rathinasabapathi
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India.,Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India
| | - Natarajan Purushothaman
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India.,Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India
| | - Madasamy Parani
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India.,Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India
| |
Collapse
|
20
|
Brozynska M, Furtado A, Henry RJ. Genomics of crop wild relatives: expanding the gene pool for crop improvement. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1070-85. [PMID: 26311018 PMCID: PMC11389173 DOI: 10.1111/pbi.12454] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/26/2015] [Accepted: 07/16/2015] [Indexed: 05/20/2023]
Abstract
Plant breeders require access to new genetic diversity to satisfy the demands of a growing human population for more food that can be produced in a variable or changing climate and to deliver the high-quality food with nutritional and health benefits demanded by consumers. The close relatives of domesticated plants, crop wild relatives (CWRs), represent a practical gene pool for use by plant breeders. Genomics of CWR generates data that support the use of CWR to expand the genetic diversity of crop plants. Advances in DNA sequencing technology are enabling the efficient sequencing of CWR and their increased use in crop improvement. As the sequencing of genomes of major crop species is completed, attention has shifted to analysis of the wider gene pool of major crops including CWR. A combination of de novo sequencing and resequencing is required to efficiently explore useful genetic variation in CWR. Analysis of the nuclear genome, transcriptome and maternal (chloroplast and mitochondrial) genome of CWR is facilitating their use in crop improvement. Genome analysis results in discovery of useful alleles in CWR and identification of regions of the genome in which diversity has been lost in domestication bottlenecks. Targeting of high priority CWR for sequencing will maximize the contribution of genome sequencing of CWR. Coordination of global efforts to apply genomics has the potential to accelerate access to and conservation of the biodiversity essential to the sustainability of agriculture and food production.
Collapse
Affiliation(s)
- Marta Brozynska
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
21
|
Henry RJ, Rangan P, Furtado A. Functional cereals for production in new and variable climates. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:11-18. [PMID: 26828379 DOI: 10.1016/j.pbi.2015.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Adaptation of cereal crops to variable or changing climates requires that essential quality attributes are maintained to deliver food that will be acceptable to human consumers. Advances in cereal genomics are delivering insights into the molecular basis of nutritional and functional quality traits in cereals and defining new genetic resources. Understanding the influence of the environment on expression of these traits will support the retention of these essential functional properties during climate adaptation. New cereals for use as whole grain or ground to flour for other food products may be based upon the traditional species such as rice and wheat currently used in these food applications but may also include new options exploiting genomics tools to allow accelerated domestication of new species.
Collapse
Affiliation(s)
- Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Parimalan Rangan
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
22
|
Kim K, Lee SC, Lee J, Yu Y, Yang K, Choi BS, Koh HJ, Waminal NE, Choi HI, Kim NH, Jang W, Park HS, Lee J, Lee HO, Joh HJ, Lee HJ, Park JY, Perumal S, Jayakodi M, Lee YS, Kim B, Copetti D, Kim S, Kim S, Lim KB, Kim YD, Lee J, Cho KS, Park BS, Wing RA, Yang TJ. Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species. Sci Rep 2015; 5:15655. [PMID: 26506948 PMCID: PMC4623524 DOI: 10.1038/srep15655] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022] Open
Abstract
Cytoplasmic chloroplast (cp) genomes and nuclear ribosomal DNA (nR) are the primary sequences used to understand plant diversity and evolution. We introduce a high-throughput method to simultaneously obtain complete cp and nR sequences using Illumina platform whole-genome sequence. We applied the method to 30 rice specimens belonging to nine Oryza species. Concurrent phylogenomic analysis using cp and nR of several of specimens of the same Oryza AA genome species provides insight into the evolution and domestication of cultivated rice, clarifying three ambiguous but important issues in the evolution of wild Oryza species. First, cp-based trees clearly classify each lineage but can be biased by inter-subspecies cross-hybridization events during speciation. Second, O. glumaepatula, a South American wild rice, includes two cytoplasm types, one of which is derived from a recent interspecies hybridization with O. longistminata. Third, the Australian O. rufipogan-type rice is a perennial form of O. meridionalis.
Collapse
Affiliation(s)
- Kyunghee Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.,Phyzen Genome Institute, 501-1, Gwanak Century Tower, Kwanak-gu, Seoul, 151-836, Republic of Korea
| | - Sang-Choon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Junki Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Yeisoo Yu
- Phyzen Genome Institute, 501-1, Gwanak Century Tower, Kwanak-gu, Seoul, 151-836, Republic of Korea.,Arizona Genomics Institute, School of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Kiwoung Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Beom-Soon Choi
- Phyzen Genome Institute, 501-1, Gwanak Century Tower, Kwanak-gu, Seoul, 151-836, Republic of Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Nomar Espinosa Waminal
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hong-Il Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Nam-Hoon Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Woojong Jang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hyun-Seung Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Jonghoon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hyun Oh Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.,Phyzen Genome Institute, 501-1, Gwanak Century Tower, Kwanak-gu, Seoul, 151-836, Republic of Korea
| | - Ho Jun Joh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hyeon Ju Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Jee Young Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sampath Perumal
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Murukarthick Jayakodi
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Yun Sun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Backki Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Dario Copetti
- Arizona Genomics Institute, School of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Soonok Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 404-170, Republic of Korea
| | - Sunggil Kim
- Department of Plant Biotechnology, Biotechnology Research Institute, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Ki-Byung Lim
- Department of Horticultural Science, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Young-Dong Kim
- Department of Life Science, Hallym University, Chuncheon, Kangwon-do, 200-702, Republic of Korea
| | - Jungho Lee
- Green Plant Institute, #2-202 Biovalley, 89 Seoho-ro, Kwonseon-gu, Suwon, Republic of Korea
| | - Kwang-Su Cho
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang-gun, Kangwon-do, 232-955, Republic of Korea
| | - Beom-Seok Park
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Republic of Korea
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
23
|
Anacleto R, Cuevas RP, Jimenez R, Llorente C, Nissila E, Henry R, Sreenivasulu N. Prospects of breeding high-quality rice using post-genomic tools. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1449-66. [PMID: 25993897 DOI: 10.1007/s00122-015-2537-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 05/08/2015] [Indexed: 05/15/2023]
Abstract
The holistic understanding derived from integrating grain quality and sensory research outcomes in breeding high-quality rice in the light of post-genomics resources has been synthesized. Acceptance of new rice genotypes by producers and consumers hinges not only on their potential for higher yield but recent emphasis has also been on premium-value genotypes that have the ability to satisfy consumer preferences for grain quality. This review article provides insights into how to link grain quality attributes and sensory perception to support breeding superior rice varieties. Recent advances in quality profiling and omics technologies have provided efficient approaches to identify the key genes and biochemical markers involved in rice quality traits. Emphasis has been given to the upcoming area of holistic understanding of grain quality and attributes derived from sensory evaluation to leverage integrative gene discovery strategies that enable breeding programs to efficiently tap the huge genetic diversity in rice for novel genes that enhance rice food quality.
Collapse
Affiliation(s)
- Roslen Anacleto
- International Rice Research Institute, DAPO Box 7777, Metro Manila, 1301, Philippines,
| | | | | | | | | | | | | |
Collapse
|
24
|
Rathinasabapathi P, Purushothaman N, Ramprasad VL, Parani M. Whole genome sequencing and analysis of Swarna, a widely cultivated indica rice variety with low glycemic index. Sci Rep 2015; 5:11303. [PMID: 26068787 PMCID: PMC4464077 DOI: 10.1038/srep11303] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/18/2015] [Indexed: 12/13/2022] Open
Abstract
Swarna is a popular cultivated indica rice variety with low glycemic index (GI) but its genetic basis is not known. The whole genome of Swarna was sequenced using Illumina’s paired-end technology, and the reads were mapped to the Nipponbare reference genome. Overall, 65,984 non-synonymous SNPs were identified in 20,350 genes, and in silico analysis predicted that 4,847 of them in 2,214 genes may have deleterious effect on protein functions. Polymorphisms were found in all the starch biosynthesis genes, except the gene for branching enzyme IIa. It was found that T/G SNP at position 246, ‘A’ at position 2,386, and ‘C’ at position 3,378 in the granule bound starch synthase I gene, and C/T SNP at position 1,188 in the glucose-6-phosphate translocator gene may contribute to the low GI phenotype in Swarna. All these variants were also found in the genome of another low GI indica rice variety from Columbia, Fedearroz 50. The whole genome analysis of Swarna helped to understand the genetic basis of GI in rice, which is a complex trait involving multiple factors.
Collapse
Affiliation(s)
- Pasupathi Rathinasabapathi
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu- 603 203, India
| | - Natarajan Purushothaman
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu- 603 203, India
| | | | - Madasamy Parani
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu- 603 203, India
| |
Collapse
|
25
|
Rivers J, Warthmann N, Pogson BJ, Borevitz JO. Genomic breeding for food, environment and livelihoods. Food Secur 2015. [DOI: 10.1007/s12571-015-0431-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
|