1
|
Kringel D, Kaunisto MA, Lippmann C, Kalso E, Lötsch J. Development of an AmpliSeq TM Panel for Next-Generation Sequencing of a Set of Genetic Predictors of Persisting Pain. Front Pharmacol 2018; 9:1008. [PMID: 30283335 PMCID: PMC6156278 DOI: 10.3389/fphar.2018.01008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Many gene variants modulate the individual perception of pain and possibly also its persistence. The limited selection of single functional variants is increasingly being replaced by analyses of the full coding and regulatory sequences of pain-relevant genes accessible by means of next generation sequencing (NGS). Methods: An NGS panel was created for a set of 77 human genes selected following different lines of evidence supporting their role in persisting pain. To address the role of these candidate genes, we established a sequencing assay based on a custom AmpliSeqTM panel to assess the exomic sequences in 72 subjects of Caucasian ethnicity. To identify the systems biology of the genes, the biological functions associated with these genes were assessed by means of a computational over-representation analysis. Results: Sequencing generated a median of 2.85 ⋅ 106 reads per run with a mean depth close to 200 reads, mean read length of 205 called bases and an average chip loading of 71%. A total of 3,185 genetic variants were called. A computational functional genomics analysis indicated that the proposed NGS gene panel covers biological processes identified previously as characterizing the functional genomics of persisting pain. Conclusion: Results of the NGS assay suggested that the produced nucleotide sequences are comparable to those earned with the classical Sanger sequencing technique. The assay is applicable for small to large-scale experimental setups to target the accessing of information about any nucleotide within the addressed genes in a study cohort.
Collapse
Affiliation(s)
- Dario Kringel
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany
| | - Mari A Kaunisto
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Catharina Lippmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Eija Kalso
- Division of Pain Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology, Frankfurt, Germany
| |
Collapse
|
2
|
Kaczmarek-Ryś M, Ziemnicka K, Pławski A, Budny B, Michalak M, Hryhorowicz S, Hoppe-Gołębiewska J, Boruń P, Gołąb M, Czetwertyńska M, Sromek M, Szalata M, Ruchała M, Słomski R. Modifying impact of RET gene haplotypes on medullary thyroid carcinoma clinical course. Endocr Relat Cancer 2018; 25:421-436. [PMID: 29386230 DOI: 10.1530/erc-17-0452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022]
Abstract
The clinical course of medullary thyroid carcinoma (MTC) associated with the MEN2A syndrome as well as of sporadic MTC shows considerable heterogeneity. The disease picture varies not only between the same RET proto-oncogene mutation carriers but also among sporadic MTC patients with no RET germinal mutations, which suggests the involvement of additional modulators of the disease. However, genetic factors responsible for this heterogeneity of the MTC clinical course still remain unknown. The aim of this study was to determine if polymorphic variants or specific haplotypes of the RET gene may modify the MTC clinical course. We genotyped the following loci: c.73+9277T>C, c.135G>A, c.1296A>G, c.2071G>A, c.2307T>C, c.2508C>T and c.2712C>G in 142 MTC patients and controls. We demonstrated considerable differences in the genotypes distribution within c.73+9277T>C, c.135G>A and c.2307T>C loci Our results show that the c.73+9277T variant associated with a decreased activity of the MCS+9.7 RET enhancer is rare in hereditary MTC patients with primary hyperparathyroidism, and thus, may influence the MTC clinical picture. The decreased activity of the RET promoter enhancer reduces RET expression level and may counterbalance the activating mutation in this gene. Frequent co-occurrence of the c.73+9277T allele with p.E768D, p.Y791F, p.V804M or p.R844Q RET mutations may be associated with their attenuation and milder clinical picture of the disease. Haplotypes analysis showed that C-G-A-G-T-(C)-C (c.73+9277T>C - c.135G>A - c.1296A>G - c.2071G>A - c.2307T>G - (c.2508C>T) - c.2712C>G) alleles combination predisposes to pheochromocytomas and primary hyperparathyroidism. We consider that RET haplotypes defining may become an auxiliary diagnostic tool in MTC patients.
Collapse
Affiliation(s)
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Department of General, Endocrinological Surgery and Gastroenterological Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Paweł Boruń
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Monika Gołąb
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Małgorzata Czetwertyńska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Institute - Oncology Centre, Warsaw, Poland
| | - Maria Sromek
- Department of Immunology, Maria Sklodowska-Curie Institute - Oncology Centre, Warsaw, Poland
| | - Marlena Szalata
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
3
|
Yang D, Yang J, Li S, Jiang M, Cao G, Yang L, Zhang X, Zhou Y, Li K, Tang ST. Effects of RET, NRG1 and NRG3 Polymorphisms in a Chinese Population with Hirschsprung Disease. Sci Rep 2017; 7:43222. [PMID: 28256518 PMCID: PMC5335705 DOI: 10.1038/srep43222] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022] Open
Abstract
The RET proto-oncogene was identified as a major locus involved in Hirschsprung disease (HSCR). A genome-wide association study (GWAS) and whole exome sequencing identified NRG1 and NRG3 as additional HSCR susceptibility loci. We investigated the effects of RET (rs2506030 and rs2435357), NRG1 (rs2439302, rs16879552 and rs7835688) and NRG3 (rs10748842, rs10883866 and rs6584400) polymorphisms in a Chinese population with HSCR. We assessed single nucleotide polymorphisms (SNPs) in the RET, NRG1 and NRG3 genes in a cohort of 362 sporadic HSCR patients and 1,448 normal controls using a TaqMan genotyping assay. Significant associations were found between HSCR risk and rs2506030, rs2435357, rs2439302 and rs7835688 (odds ratio [OR] 1.64, P = 1.72E-06; 2.97, P = 5.15E-33; 1.84, P = 9.36E-11; and 1.93, P = 1.88E-12, respectively). Two locus analyses of SNPs indicated increased disease risks of HSCR between NRG1 rs2439302 and RET rs2435357 or rs2506030. RET rs2506030 (GG genotype) and rs2435357 (TT genotype), in combination with NRG1 rs2439302 (GG genotype), were strongly associated with the highest risk of HSCR (OR = 56.53, P = 4.50E-07) compared with the two loci or a single SNP of either RET or NRG1. Our results support the association between genetic variation of RET and NRG1 and susceptibility to HSCR in the Chinese population.
Collapse
Affiliation(s)
- Dehua Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Yang
- Department of Pediatric Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430015, China
| | - Shuai Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meng Jiang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoqing Cao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xi Zhang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Zhou
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kang Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shao-Tao Tang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
4
|
Zhang Z, Jiang Q, Li Q, Cheng W, Qiao G, Xiao P, Gan L, Su L, Miao C, Li L. Genotyping analysis of 3 RET polymorphisms demonstrates low somatic mutation rate in Chinese Hirschsprung disease patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:5528-5534. [PMID: 26191260 PMCID: PMC4503131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Genetic mosaicism has been reported for both coding and non-coding sequences in the RET gene in Hirschsprung disease (HSCR) patients. This study aimed to investigate somatic mutation rate in Chinese population by comparing both homozygous genotype percentage and risk allele frequency of 3 RET single nucleotide polymorphisms (SNPs) among blood and colon samples. METHODS DNA was extracted from 59 HSCR blood samples, 59 control blood samples and 76 fresh frozen colon tissue samples (grouped into ganglionic, transitional and aganglionic level). Genotype status of rs2435357 and rs2506030 was examined by competitive allele specific hydrolysis probes (Taqman) PCR technology, and rs2506004 was examined by Sanger sequencing. Homozygous genotype percentage and risk allele frequency were calculated for each type of sample and compared by chi-square test. P<0.05 was regarded as being statistically significant. RESULTS Colon tissue DNA samples showed similar frequency of SNPs as that of the blood DNA samples in HSCR patients, both of which are significantly higher than the control blood group (rs2435357 TT genotype: 71.2%, 74.7% versus 22.0% in HSCR blood, HSCR colon and control blood DNA respectively, P=0.000; rs2506004 AA genotype: 72.4%, 83.1% versus 25.5%, P=0.000; rs2506030 GG genotype: 79.7%, 77.2% versus 54.2%, P=0.000 and 0.004). With respect to DNA extracted from ganglionic, transitional and aganglionic levels, no statistically significant difference was demonstrated in those 3 regions (rs2435357: P=0.897; rs2506004: P=0.740; rs2506030: P=0.901). CONCLUSION Our data does not support the notion that high frequency of somatic changes as an underlying etiology of Chinese HSCR population.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Pediatric Surgery, Capital Institute of PediatricsBeijing, China
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of PediatricsBeijing, China
| | - Qi Li
- Department of Pediatric Surgery, Capital Institute of PediatricsBeijing, China
| | - Wei Cheng
- Department of Surgery, Beijing United Family HospitalChina
- Department of Paediatrics and Surgery, Faculty of Medicine, Nursing and Health Sciences, Monash UniversityVictoria, Australia
| | - Guoliang Qiao
- Department of Pediatric Surgery, Capital Institute of PediatricsBeijing, China
| | - Ping Xiao
- Department of Pathology, Capital Institute of Pediatrics Affiliated Children’s HospitalBeijing, China
| | - Liang Gan
- Department of Pediatric Surgery, Capital Institute of PediatricsBeijing, China
| | - Lin Su
- Anhui Medical UniversityHefei, China
| | - Chunyue Miao
- Peking University Capital Institute of Pediatrics Teaching HospitalBeijing, China
| | - Long Li
- Department of Pediatric Surgery, Capital Institute of PediatricsBeijing, China
| |
Collapse
|