1
|
Sherpa T, Dey N. Development of robust constitutive synthetic promoter using genetic resources of plant pararetroviruses. FRONTIERS IN PLANT SCIENCE 2025; 15:1515921. [PMID: 39911660 PMCID: PMC11794816 DOI: 10.3389/fpls.2024.1515921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/18/2024] [Indexed: 02/07/2025]
Abstract
With the advancement of plant synthetic biology, complex genetic engineering circuits are being developed, which require more diverse genetic regulatory elements (promoters) to operate. Constitutive promoters are widely used for such gene engineering projects, but the list of strong, constitutive plant promoters with strength surpassing the widely used promoter, the CaMV35S, is limited. In this work, we attempted to increase the constitutive promoter library by developing efficient synthetic promoters suitable for high-level gene expression. To do that, we selected three strong pararetroviral-based promoters from Mirabilis mosaic virus (MMV), Figwort mosaic virus (FMV), and Horseradish latent virus (HRLV) and rationally designed and combined their promoter elements. We then tested the newly developed promoters in Nicotiana benthamiana and found a highly active tri-hybrid promoter, MuasFuasH17 (MFH17). We further used these promoter elements in generating random mutant promoters by DNA shuffling techniques in an attempt to change/improve the MFH17 promoter. We further evaluated the activity of the MFH17 promoter in Oryza sativa seedlings and studied the effect of as-1 elements present in it. Finally, we tested the efficacy and tissue specificity of the MFH17 promoter in planta by developing transgenic Nicotiana tabacum and Arabidopsis thaliana plants and found it highly constitutive and efficient in driving the gene throughout the plant tissues. Overall, we conclude that this tripartite synthetic promoter MFH17 is a strong, highly constitutive, and dual-species (dicot and monocot) expressing promoter, which can be a valuable addition to the constitutive plant promoter library for plant synthetic biology.
Collapse
Affiliation(s)
- Tsheten Sherpa
- Division of Plant Biotechnology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Nrisingha Dey
- Division of Plant Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
2
|
Mugunthan SP, Venkatesan D, Govindasamy C, Selvaraj D, Mani Chandra H. A preliminary study of the immunogenic response of plant-derived multi-epitopic peptide vaccine candidate of Mycoplasma gallisepticum in chickens. FRONTIERS IN PLANT SCIENCE 2024; 14:1298880. [PMID: 38322423 PMCID: PMC10846684 DOI: 10.3389/fpls.2023.1298880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Mycoplasma gallisepticum (MG) is responsible for chronic respiratory disease in avian species, characterized by symptoms like respiratory rales and coughing. Existing vaccines for MG have limited efficacy and require multiple doses. Certain MG cytoadherence proteins (GapA, CrmA, PlpA, and Hlp3) play a crucial role in the pathogen's respiratory tract colonization and infection. Plant-based proteins and therapeutics have gained attention due to their safety and efficiency. In this study, we designed a 21.4-kDa multi-epitope peptide vaccine (MEPV) using immunogenic segments from cytoadherence proteins. The MEPV's effectiveness was verified through computational simulations. We then cloned the MEPV, introduced it into the plant expression vector pSiM24-eGFP, and expressed it in Nicotiana benthamiana leaves. The plant-produced MEPV proved to be immunogenic when administered intramuscularly to chickens. It significantly boosted the production of immunoglobulin Y (IgY)-neutralizing antibodies against cytoadherence protein epitopes in immunized chickens compared to that in the control group. This preliminary investigation demonstrates that the plant-derived MEPV is effective in triggering an immune response in chickens. To establish an efficient poultry health management system and ensure the sustainability of the poultry industry, further research is needed to develop avian vaccines using plant biotechnology.
Collapse
Affiliation(s)
| | | | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Dhivya Selvaraj
- Artificial Intelligence Laboratory, School of Computer Information and Communication Engineering, Kunsan National University, Gunsan, Republic of Korea
| | - Harish Mani Chandra
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Hansen NL, Kjaerulff L, Heck QK, Forman V, Staerk D, Møller BL, Andersen-Ranberg J. Tripterygium wilfordii cytochrome P450s catalyze the methyl shift and epoxidations in the biosynthesis of triptonide. Nat Commun 2022; 13:5011. [PMID: 36008399 PMCID: PMC9411204 DOI: 10.1038/s41467-022-32667-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The diterpenoid triepoxides triptolide and triptonide from Tripterygium wilfordii (thunder god wine) exhibit unique bioactivities with potential uses in disease treatment and as a non-hormonal male contraceptives. Here, we show that cytochrome P450s (CYPs) from the CYP71BE subfamily catalyze an unprecedented 18(4→3) methyl shift required for biosynthesis of the abeo-abietane core structure present in diterpenoid triepoxides and in several other plant diterpenoids. In combination with two CYPs of the CYP82D subfamily, four CYPs from T. wilfordii are shown to constitute the minimal set of biosynthetic genes that enables triptonide biosynthesis using Nicotiana benthamiana and Saccharomyces cerevisiae as heterologous hosts. In addition, co-expression of a specific T. wilfordii cytochrome b5 (Twcytb5-A) increases triptonide output more than 9-fold in S. cerevisiae and affords isolation and structure elucidation by NMR spectroscopic analyses of 18 diterpenoids, providing insights into the biosynthesis of diterpenoid triepoxides. Our findings pave the way for diterpenoid triepoxide production via fermentation. How triptonide is made in the medicinal plant Tripterygium wilfordii is largely unknown. Here, the authors report the identification and characterization of a suite of cytochrome P450s and show their function in catalyzing the formation of triptonide from miltriadiene in tobacco and baker’s yeast.
Collapse
Affiliation(s)
- Nikolaj Lervad Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environment Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Quinn Kalby Heck
- Plant Biochemistry Laboratory, Department of Plant and Environment Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Victor Forman
- Plant Biochemistry Laboratory, Department of Plant and Environment Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environment Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Johan Andersen-Ranberg
- Plant Biochemistry Laboratory, Department of Plant and Environment Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
4
|
Transgenic tobacco expressing Medicago sativa Defensin (Msdef1) confers resistance to various phyto-pathogens. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
5
|
Agrobacterium-mediated horizontal gene transfer: Mechanism, biotechnological application, potential risk and forestalling strategy. Biotechnol Adv 2018; 37:259-270. [PMID: 30579929 DOI: 10.1016/j.biotechadv.2018.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 11/20/2022]
Abstract
The extraordinary capacity of Agrobacterium to transfer its genetic material to host cell makes it evolve from phytopathogen to a powerful transgenic vector. Agrobacterium-mediated stable transformation is widely used as the preferred method to create transgenic plants for molecular plant biology research and crop breeding. Recent years, both mechanism and application of Agrobacterium-mediated horizontal gene transfer have made significant progresses, especially Agrobacterium-mediated transient transformation was developed for plant biotechnology industry to produce recombinant proteins. Agrobacterium strains are almost used and saved not only by each of microbiology and molecular plant labs, but also by many of plant biotechnology manufacturers. Agrobacterium is able to transfer its genetic material to a broad range of hosts, including plant and non-plant hosts. As a consequence, the concern of environmental risk associated with the accidental release of genetically modified Agrobacterium arises. In this article, we outline the recent progress in the molecular mechanism of Agrobacterium-meditated gene transfer, focus on the application of Agrobacterium-mediated horizontal gene transfer, and review the potential risk associated with Agrobacterium-meditated gene transfer. Based on the comparison between the infecting process of Agrobacterium as a pathogen and the transgenic process of Agrobacterium as a transgenic vector, we realize that chemotaxis is the distinct difference between these two biological processes and thus discuss the possible role of chemotaxis in forestalling the potential risk of Agrobacterium-meditated horizontal gene transfer to non-target plant species.
Collapse
|
6
|
Yoon JS, Sahoo DK, Maiti IB, Palli SR. Identification of target genes for RNAi-mediated control of the Twospotted Spider Mite. Sci Rep 2018; 8:14687. [PMID: 30279530 PMCID: PMC6168543 DOI: 10.1038/s41598-018-32742-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/11/2018] [Indexed: 01/19/2023] Open
Abstract
RNA interference (RNAi) is being developed for the management of pests that destroy crops. The twospotted Spider Mite (TSSM), Tetranychus urticae is a worldwide pest due to its unique physiological and behavioral characteristics including extraordinary ability to detoxify a wide range of pesticides and feed on many host plants. In this study, we conducted experiments to identify target genes that could be used for the development of RNAi-based methods to control TSSM. Leaf disc feeding assays revealed that knockdown in the expression genes coding for proteins involved in the biosynthesis and action of juvenile hormone (JH) and action of ecdysteroids [Methoprene-tolerant (Met), retinoid X receptor β, farnesoic acid O-methyltransferase, and CREB-binding protein] caused 35-56% mortality. Transgenic tobacco plants expressing hairpin dsRNA targeting Met gene were generated and tested. About 48% mortality was observed in TSSM raised on transgenic tobacco plants expressing dsMet. These studies not only broaden our knowledge on understanding hormone action in TSSM but also identified target genes that could be used in RNAi-mediated control of TSSM.
Collapse
Affiliation(s)
- June-Sun Yoon
- Department of Entomology, University of Kentucky, Lexington, Kentucky, 40546, USA
| | - Dipak K Sahoo
- KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Indu B Maiti
- KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba R Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky, 40546, USA.
| |
Collapse
|
7
|
Enhanced and Complete Removal of Phenylurea Herbicides by Combinational Transgenic Plant-Microbe Remediation. Appl Environ Microbiol 2018; 84:AEM.00273-18. [PMID: 29752264 DOI: 10.1128/aem.00273-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/27/2018] [Indexed: 02/03/2023] Open
Abstract
The synergistic relationships between plants and their rhizospheric microbes can be used to develop a combinational bioremediation method, overcoming the constraints of individual phytoremediation or a bioaugmentation method. Here, we provide a combinational transgenic plant-microbe remediation system for a more efficient removal of phenylurea herbicides (PHs) from contaminated sites. The transgenic Arabidopsis thaliana plant synthesizing the bacterial N-demethylase PdmAB in the chloroplast was developed. The constructed transgenic Arabidopsis plant exhibited significant tolerance to isoproturon (IPU), a typical PH, and it took up the IPU through the roots and transported it to leaves, where the majority of the IPU was demethylated to 3-(4-isopropylphenyl)-1-methylurea (MDIPU). The produced intermediate was released outside the roots and further metabolized by the combinationally inoculated MDIPU-mineralizing bacterium Sphingobium sp. strain 1017-1 in the rhizosphere, resulting in an enhanced and complete removal of IPU from soil. Mutual benefits were built for both the transgenic Arabidopsis plant and strain 1017-1. The transgenic Arabidopsis plant offered strain 1017-1 a suitable accommodation, and in return, strain 1017-1 protected the plant from the phytotoxicity of MDIPU. The biomass of the transgenic Arabidopsis plant and the residence of the inoculated degrading microbes in the combinational treatment increased significantly compared to those in their respective individual transgenic plant treatment or bioaugmentation treatment. The influence of the structure of bacterial community by combinational treatment was between that of the two individual treatments. Overall, the combination of two approaches, phytoremediation by transgenic plants and bioaugmentation with intermediate-mineralizing microbes in the rhizosphere, represents an innovative strategy for the enhanced and complete remediation of pollutant-contaminated sites.IMPORTANCE Phytoremediation of organic pollutant-contaminated sites using transgenic plants expressing bacterial enzyme has been well described. The major constraint of transgenic plants transferred with a single catabolic gene is that they can also accumulate/release intermediates, still causing phytotoxicity or additional environmental problems. On the other hand, bioaugmentation with degrading strains also has its drawbacks, including the instability of the inoculated strains and low bioavailability of pollutants. In this study, the synergistic relationship between a transgenic Arabidopsis plant expressing the bacterial N-demethylase PdmAB in the chloroplast and the inoculated intermediate-mineralizing bacterium Sphingobium sp. strain 1017-1 in the rhizosphere is used to develop an intriguing bioremediation method. The combinational transgenic plant-microbe remediation system shows a more efficient and complete removal of phenylurea herbicides from contaminated sites and can overcome the constraints of individual phytoremediation or bioaugmentation methods.
Collapse
|
8
|
Čermák T, Curtin SJ, Gil-Humanes J, Čegan R, Kono TJY, Konečná E, Belanto JJ, Starker CG, Mathre JW, Greenstein RL, Voytas DF. A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants. THE PLANT CELL 2017; 29:1196-1217. [PMID: 28522548 PMCID: PMC5502448 DOI: 10.1105/tpc.16.00922] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/25/2017] [Accepted: 05/16/2017] [Indexed: 05/18/2023]
Abstract
We report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A Web-based tool streamlines vector selection and construction. One advantage of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 (Csy4) and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing 12 gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare).
Collapse
Affiliation(s)
- Tomáš Čermák
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Shaun J Curtin
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Javier Gil-Humanes
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the CAS, CZ-61265 Brno, Czech Republic
| | - Thomas J Y Kono
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Eva Konečná
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Joseph J Belanto
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Colby G Starker
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jade W Mathre
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Rebecca L Greenstein
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Daniel F Voytas
- Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
9
|
Chatterjee A, Das NC, Raha S, Maiti IB, Shrestha A, Khan A, Acharya S, Dey N. Enrichment of apoplastic fluid with therapeutic recombinant protein for efficient biofarming. Biotechnol Prog 2017; 33:726-736. [PMID: 28371174 DOI: 10.1002/btpr.2461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/19/2017] [Indexed: 11/10/2022]
Abstract
OBJECTIVE For efficient biofarming we attempted to enrich plant interstitial fluid (IF)/apoplastic fluid with targeted recombinant therapeutic protein. We employed a synthetic human Glucocerebrosidase (GCB), a model biopharmaceutical protein gene in this study. RESULTS Twenty one Nicotiana varieties, species and hybrids were initially screened for individual IF recovery and based on the findings, we selected Nicotiana tabacum NN (S-9-6), Nicotiana tabacum nn (S-9-7) and Nicotiana benthamiana (S-6-6) as model plants for raising transgenic expressing GCB via Agrobacterium mediated transformation under the control of M24 promoter; GCB specific activity in each transgenic lines were analyzed and we observed higher concentration of recombinant GCB in IF of these transgenic lines (S-9-6, S-9-7, and S-6-6) in comparison to their concentration in crude leaf extracts. CONCLUSION Recovery of valuable therapeutics in plant IF as shown in the present study holds great promise for promoting plant based biofarming. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:726-736, 2017.
Collapse
Affiliation(s)
- Aparajita Chatterjee
- Dept. of Molecular Plant Virology and Plant Genetic Engineering, KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0236
| | - Narayan C Das
- Dept. of Molecular Plant Virology and Plant Genetic Engineering, KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0236
| | - Sumita Raha
- Dept. of Molecular Plant Virology and Plant Genetic Engineering, KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0236
| | - Indu B Maiti
- Dept. of Molecular Plant Virology and Plant Genetic Engineering, KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0236
| | - Ankita Shrestha
- Dept. of Gene Function and Regulation, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
- Dept. of Biotechnology, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Ahamed Khan
- Dept. of Gene Function and Regulation, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
- Dept. of Biotechnology, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Sefali Acharya
- Dept. of Gene Function and Regulation, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
- Dept. of Biotechnology, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Dept. of Gene Function and Regulation, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
- Dept. of Biotechnology, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| |
Collapse
|
10
|
Sahoo DK, Sarkar S, Maiti IB, Dey N. Novel Synthetic Promoters from the Cestrum Yellow Leaf Curling Virus. Methods Mol Biol 2016; 1482:111-38. [PMID: 27557764 DOI: 10.1007/978-1-4939-6396-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Constitutive promoters direct gene expression uniformly in most tissues and cells at all stages of plant growth and development; they confer steady levels of transgene expression in plant cells and hence their demand is high in plant biology. The gene silencing due to promoter homology can be avoided by either using diverse promoters isolated from different plant and viral genomes or by designing synthetic promoters. The aim of this chapter was to describe the basic protocols needed to develop and analyze novel, synthetic, nearly constitutive promoters from Cestrum yellow leaf curling virus (CmYLCV) through promoter/leader deletion and activating cis-sequence analysis. We also describe the methods to evaluate the strength of the promoters efficiently in various transient expression systems like agroinfiltration assay, gene-gun method, and assay in tobacco protoplasts. Besides, the detailed methods for developing transgenic plants (tobacco and Arabidopsis) for evaluation of the promoter using the GUS reporter gene are also described. The detailed procedure for electrophoretic mobility shift assay (EMSA) coupled with super-shift EMSA analysis are also described for showing the binding of tobacco transcription factor, TGA1a to cis-elements in the CmYLCV distal promoter region.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Shayan Sarkar
- Department of Gene Function and Regulation, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Indu B Maiti
- KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Nrisingha Dey
- Department of Gene Function and Regulation, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India.
- Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India.
| |
Collapse
|
11
|
Sarkar S, Jain S, Rai V, Sahoo DK, Raha S, Suklabaidya S, Senapati S, Rangnekar VM, Maiti IB, Dey N. Plant-derived SAC domain of PAR-4 (Prostate Apoptosis Response 4) exhibits growth inhibitory effects in prostate cancer cells. FRONTIERS IN PLANT SCIENCE 2015; 6:822. [PMID: 26500666 PMCID: PMC4595782 DOI: 10.3389/fpls.2015.00822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/22/2015] [Indexed: 05/10/2023]
Abstract
The gene Par-4 (Prostate Apoptosis Response 4) was originally identified in prostate cancer cells undergoing apoptosis and its product Par-4 showed cancer specific pro-apoptotic activity. Particularly, the SAC domain of Par-4 (SAC-Par-4) selectively kills cancer cells leaving normal cells unaffected. The therapeutic significance of bioactive SAC-Par-4 is enormous in cancer biology; however, its large scale production is still a matter of concern. Here we report the production of SAC-Par-4-GFP fusion protein coupled to translational enhancer sequence (5' AMV) and apoplast signal peptide (aTP) in transgenic Nicotiana tabacum cv. Samsun NN plants under the control of a unique recombinant promoter M24. Transgene integration was confirmed by genomic DNA PCR, Southern and Northern blotting, Real-time PCR, and Nuclear run-on assays. Results of Western blot analysis and ELISA confirmed expression of recombinant SAC-Par-4-GFP protein and it was as high as 0.15% of total soluble protein. In addition, we found that targeting of plant recombinant SAC-Par-4-GFP to the apoplast and endoplasmic reticulum (ER) was essential for the stability of plant recombinant protein in comparison to the bacterial derived SAC-Par-4. Deglycosylation analysis demonstrated that ER-targeted SAC-Par-4-GFP-SEKDEL undergoes O-linked glycosylation unlike apoplast-targeted SAC-Par-4-GFP. Furthermore, various in vitro studies like mammalian cells proliferation assay (MTT), apoptosis induction assays, and NF-κB suppression suggested the cytotoxic and apoptotic properties of plant-derived SAC-Par-4-GFP against multiple prostate cancer cell lines. Additionally, pre-treatment of MAT-LyLu prostate cancer cells with purified SAC-Par-4-GFP significantly delayed the onset of tumor in a syngeneic rat prostate cancer model. Taken altogether, we proclaim that plant made SAC-Par-4 may become a useful alternate therapy for effectively alleviating cancer in the new era.
Collapse
Affiliation(s)
- Shayan Sarkar
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of IndiaBhubaneswar, India
| | - Sumeet Jain
- Department of Translational Research and Technology Development, Institute of Life Sciences, Department of Biotechnology, Government of IndiaBhubaneswar, India
- Manipal UniversityManipal, India
| | - Vineeta Rai
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of IndiaBhubaneswar, India
| | - Dipak K. Sahoo
- Kentucky Tobacco Research & Development Center, Plant Genetic Engineering Research and Services, College of Agriculture, Food and Environment, University of Kentucky, LexingtonKY, USA
- Department of Agronomy, Iowa State University, AmesIA, USA
| | - Sumita Raha
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, ChicagoIL, USA
| | - Sujit Suklabaidya
- Department of Translational Research and Technology Development, Institute of Life Sciences, Department of Biotechnology, Government of IndiaBhubaneswar, India
| | - Shantibhusan Senapati
- Department of Translational Research and Technology Development, Institute of Life Sciences, Department of Biotechnology, Government of IndiaBhubaneswar, India
| | - Vivek M. Rangnekar
- Department of Radiation Medicine, Markey Cancer Center, University of Kentucky, LexingtonKY, USA
| | - Indu B. Maiti
- Kentucky Tobacco Research & Development Center, Plant Genetic Engineering Research and Services, College of Agriculture, Food and Environment, University of Kentucky, LexingtonKY, USA
- *Correspondence: Nrisingha Dey, Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha-751 023, India, ; Indu B. Maiti, Kentucky Tobacco Research & Development Center, Plant Genetic Engineering Research and Services, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA,
| | - Nrisingha Dey
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of IndiaBhubaneswar, India
- *Correspondence: Nrisingha Dey, Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha-751 023, India, ; Indu B. Maiti, Kentucky Tobacco Research & Development Center, Plant Genetic Engineering Research and Services, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA,
| |
Collapse
|
12
|
Sahoo DK, Sarkar S, Raha S, Maiti IB, Dey N. Comparative analysis of synthetic DNA promoters for high-level gene expression in plants. PLANTA 2014; 240:855-75. [PMID: 25092118 DOI: 10.1007/s00425-014-2135-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/21/2014] [Indexed: 05/25/2023]
Abstract
MAIN CONCLUSION We have designed two near- constitutive and stress-inducible promoters (CmYLCV9.11 and CmYLCV4); those are highly efficient in both dicot and monocot plants and have prospective to substitute the CaMV 35S promoter. We performed structural and functional studies of the full-length transcript promoter from Cestrum yellow leaf curling virus (CmYLCV) employing promoter/leader deletion and activating cis-sequence analysis. We designed a 465-bp long CmYLCV9.11 promoter fragment (-329 to +137 from transcription start site) that showed enhanced promoter activity and was highly responsive to both biotic and abiotic stresses. The CmYLCV9.11 promoter was about 28-fold stronger than the CaMV35S promoter in transient and stable transgenic assays using β-glucuronidase (GUS) reporter gene. The CmYLCV9.11 promoter also demonstrated stronger activity than the previously reported CmYLCV promoter fragments, CmpC (-341 to +5) and CmpS (-349 to +59) in transient systems like maize protoplasts and onion epidermal cells as well as transgenic systems. A good correlation between CmYLCV9.11 promoter-driven GUS-accumulation/enzymatic activities with corresponding uidA-mRNA level in transgenic tobacco plants was shown. Histochemical (X-Gluc) staining of transgenic seedlings, root and floral parts expressing the GUS under the control of CmYLCV9.11, CaMV35S, CmpC and CmpS promoters also support the above findings. The CmYLCV9.11 promoter is a constitutive promoter and the expression level in tissues of transgenic tobacco plants was in the following order: root > leaf > stem. The tobacco transcription factor TGA1a was found to bind strongly to the CmYLCV9.11 promoter region, as shown by Gel-shift assay and South-Western blot analysis. In addition, the CmYLCV9.11 promoter was regulated by a number of abiotic and biotic stresses as studied in transgenic Arabidopsis and tobacco plants. The newly derived CmYLCV9.11 promoter is an efficient tool for biotechnological applications.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- KTRDC, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA,
| | | | | | | | | |
Collapse
|