1
|
Okhrimenko G, Borovikova I, Dankovtseva E, Zamyatin V, Nikulin D, Zobova E, Lyzhenkova A, Danilova A, Osipova N, Minushkina L, Zateyshchikov D, Poptsova M. The prevalence of pathogenic variants in the BMPR2 gene in patients with the idiopathic pulmonary arterial hypertension in the Russian population: sequencing data and meta-analysis. Respir Res 2025; 26:146. [PMID: 40229839 PMCID: PMC11998140 DOI: 10.1186/s12931-025-03214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Idiopathic pulmonary arterial hypertension (IPAH) is a rare and severe form of pulmonary hypertension, with a genetic basis most commonly associated with mutations in the BMPR2 gene. However, no genetic testing has been reported for IPAH patients in the Russian population, nor have systematic studies been conducted to assess the frequency of pathogenic variants in this group. METHODS The study cohort included 105 IPAH patients, consisting of 23 males and 82 females, who were managed at the PH care center in Moscow, Russia, from 2014 to 2024. Genetic testing was performed using whole-genome sequencing. Variant identification and annotation were conducted using GATK, DeepVariant, VEP, sv-callers and AnnotSV. A meta-analysis, performed with MOOSE, included 24 studies involving 3124 IPAH patients and 470 P/LP variants. Pathogenicity reassessment was carried out using InterVar, which incorporates ACMG criteria. RESULTS Analysis of 105 adult IPAH patients in Russia revealed 11 patients (10.48%) as carriers of pathogenic or likely pathogenetic (P/LP) BMPR2 variants. As the result of reassessment, the number of P/LP BMPR2 variants raised from 394 (59%) to 445 (67%) with 80 pathogenic variants became of uncertain significance, and 152 unclassified variants became P/LP. The meta-analysis of these reevaluated pathogenic variants showed that while the frequency of P/LP variants in our cohort (10.48%) is lower than the overall average of 17.75% from the meta-analysis, the difference is not statistically significant (p = 0.062). Additionally, we report three P/LP BMPR2 variants, not reported in literature, with one being structural, and four P/LP variants in TBX4, ATP13A3 and AQP1 genes from 27 IPAH genes in 3 patients. CONCLUSIONS For the first time, we present the results of genetic testing in IPAH patients from the Russian population. Despite the considerable heterogeneity in the world-wide data, the prevalence of pathogenic BMPR2 mutations in IPAH patients from the Russian population does not significantly differ from the overall average in the meta-analysis. It is crucial to periodically reassess the pathogenicity of published variants, as half of the pathogenic BMPR2 IPAH variants were reclassified as LP or of uncertain significance.
Collapse
Affiliation(s)
- Galina Okhrimenko
- Bioinformatics Lab, Institute of Artificial Intelligence and Digital Sciences, HSE University, Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Irina Borovikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | | | - Vladimir Zamyatin
- Bioinformatics Lab, Institute of Artificial Intelligence and Digital Sciences, HSE University, Moscow, Russia
| | - Dmitry Nikulin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Anna Danilova
- City Clinical Hospital Nu 29 By N.E. Bauman, Moscow, Russia
| | | | | | | | - Maria Poptsova
- Bioinformatics Lab, Institute of Artificial Intelligence and Digital Sciences, HSE University, Moscow, Russia.
| |
Collapse
|
2
|
Taizhanova D, Nurpissova T, Abildinova G, Martynyuk T, Kulmyrzayeva N, Zholdybayeva E. Hemodynamic and Genetic Associations with the Risk of Idiopathic Pulmonary Arterial Hypertension Development in an Ethnic Cohort of Kazakhs. Diagnostics (Basel) 2024; 14:2687. [PMID: 39682595 DOI: 10.3390/diagnostics14232687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
INTRODUCTION Idiopathic pulmonary arterial hypertension (IPAH) is a progressive and fatal disease. The aim of this study was to evaluate the association of polymorphism of the type 2 bone morphogenetic protein receptor gene (BMPR2) with the risk of IPAH development in an ethnic group of Kazakhs. We also describe the clinical and hemodynamic characteristics and outcomes of patients with and without carriers of BMPR2 gene mutations in IPAH. No available research highlights this problem in an ethnic group of Kazakhs. MATERIALS AND METHODS A total of 53 patients of only Kazakh nationality with IPAH participated in the study. Clinical, functional, and hemodynamic characteristics, as well as the outcome of the disease, were compared among carriers and non-carriers of the BMPR2 mutation. RESULTS When receiving IPAH diagnosis, the average age of patients was 40.0 (32.0-48.0) years. Women predominated among the patients (86.8%). Of these, 17 (32.0%) were carriers of the gene mutation, and 36 (68.0%) did not have this mutation. The results of our research demonstrate that the Rs17199249 variant in BMPR2 contributed to increased susceptibility to IPAH. The T allele was associated with an increased risk of IPAH, with T = 75 (70.75%), G = 31 (29.24%), MAF-0.2925, x2-0.001, and HWE p-0.975. Carriers of the BMPR2 mutation were predominantly women (80.0%), and they had higher pulmonary vascular resistance (8.7-14.9 vs. 5.9-12.6 WU; p = 0.038), a low cardiac index (1.9-2.6 vs. 2.3-3.1 L/min per m2; p = 0.027), and a shorter time to death (p = 0.022). CONCLUSIONS This is the first study of the genetic causes of IPAH that demonstrates the genetic polymorphism of BMPR2 is associated with an increased risk of IPAH developing with worse hemodynamic parameters and clinical outcomes.
Collapse
Affiliation(s)
- Dana Taizhanova
- Department of Internal Diseases, Karaganda Medical University Non-Commercial Joint Stock Company, Karaganda 100000, Kazakhstan
| | - Togzhan Nurpissova
- Department of Internal Diseases, Karaganda Medical University Non-Commercial Joint Stock Company, Karaganda 100000, Kazakhstan
- Department of Therapy No. 7, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana 010000, Kazakhstan
| | - Gulshara Abildinova
- Laboratory of Personalized Genomic Diagnostics, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana 010000, Kazakhstan
| | - Tamilla Martynyuk
- Institution «National Medical Cardiology Research Center Named After Academician Ye. I. Chazov» of the Ministry of Health of the Russian Federation, Moscow 105064, Russia
| | - Nazgul Kulmyrzayeva
- Department of Therapy No. 7, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana 010000, Kazakhstan
| | - Elena Zholdybayeva
- National Scientific Shared Laboratory of Biotechnology, National Center of Biotechnology Limited Liability Partnership, Astana 010000, Kazakhstan
| |
Collapse
|
3
|
Krzyżewska A, Kurakula K. Sex Dimorphism in Pulmonary Arterial Hypertension Associated With Autoimmune Diseases. Arterioscler Thromb Vasc Biol 2024; 44:2169-2190. [PMID: 39145392 DOI: 10.1161/atvbaha.124.320886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Pulmonary hypertension is a rare, incurable, and progressive disease. Although there is increasing evidence that immune disorders, particularly those associated with connective tissue diseases, are a strong predisposing factor in the development of pulmonary arterial hypertension (PAH), there is currently a lack of knowledge about the detailed molecular mechanisms responsible for this phenomenon. Exploring this topic is crucial because patients with an immune disorder combined with PAH have a worse prognosis and higher mortality compared with patients with other PAH subtypes. Moreover, data recorded worldwide show that the prevalence of PAH in women is 2× to even 4× higher than in men, and the ratio of PAH associated with autoimmune diseases is even higher (9:1). Sexual dimorphism in the pathogenesis of cardiovascular disease was explained for many years by the action of female sex hormones. However, there are increasing reports of interactions between sex hormones and sex chromosomes, and differences in the pathogenesis of cardiovascular disease may be controlled not only by sex hormones but also by sex chromosome pathways that are not dependent on the gonads. This review discusses the role of estrogen and genetic factors including the role of genes located on the X chromosome, as well as the potential protective role of the Y chromosome in sexual dimorphism, which is prominent in the occurrence of PAH associated with autoimmune diseases. Moreover, an overview of animal models that could potentially play a role in further investigating the aforementioned link was also reviewed.
Collapse
Affiliation(s)
- Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Poland (A.K.)
| | - Kondababu Kurakula
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Free University Medical Center, the Netherlands (K.K.)
| |
Collapse
|
4
|
Favoino E, Prete M, Liakouli V, Leone P, Sisto A, Navarini L, Vomero M, Ciccia F, Ruscitti P, Racanelli V, Giacomelli R, Perosa F. Idiopathic and connective tissue disease-associated pulmonary arterial hypertension (PAH): Similarities, differences and the role of autoimmunity. Autoimmun Rev 2024; 23:103514. [PMID: 38181859 DOI: 10.1016/j.autrev.2024.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Pre-capillary pulmonary arterial hypertension (PAH) is hemodynamically characterized by a mean pulmonary arterial pressure (mPAP) ≥ 20 mmHg, pulmonary capillary wedge pressure (PAWP) ≤15 mmHg and pulmonary vascular resistance (PVR) > 2. PAH is classified in six clinical subgroups, including idiopathic PAH (IPAH) and PAH associated to connective tissue diseases (CTD-PAH), that will be the main object of this review. The aim is to compare these two PAH subgroups in terms of epidemiology, histological and pathogenic findings in an attempt to define disease-specific features, including autoimmunity, that may explain the heterogeneity of response to therapy between IPAH and CTD-PAH.
Collapse
Affiliation(s)
- Elvira Favoino
- Laboratory of Cellular and Molecular Immunology, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy.
| | - Marcella Prete
- Internal Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy
| | - Vasiliki Liakouli
- Rheumatology Section, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Patrizia Leone
- Internal Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy
| | - Adriana Sisto
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy
| | - Luca Navarini
- Clinical and research section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy; Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Marta Vomero
- Clinical and research section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy; Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Francesco Ciccia
- Rheumatology Section, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vito Racanelli
- Centre for Medical Sciences, University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| | - Roberto Giacomelli
- Clinical and research section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy; Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
5
|
Ayon RJ, Yuan JXJ. Revisiting the Role of KCNA5 in Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2023; 69:123-125. [PMID: 37201951 PMCID: PMC10399140 DOI: 10.1165/rcmb.2023-0119ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/17/2023] [Indexed: 05/20/2023] Open
Affiliation(s)
- Ramon J Ayon
- Department of Molecular Physiology and Biological Physics University of Virginia Charlottesville, Virginia
| | - Jason X-J Yuan
- Department of Medicine University of California, San Diego La Jolla, California
| |
Collapse
|
6
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
7
|
DÜZGÜN Z, KAYIKÇIOĞLU M, AKTAN Ç, BARA B, EROĞLU Z, YAĞMUR B, BOZOK ÇETİNTAŞ V, BAYINDIR M, NALBANTGİL S, ı TETİK VARDARLI A. Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension. Turk J Med Sci 2023; 53:130-141. [PMID: 36945942 PMCID: PMC10388131 DOI: 10.55730/1300-0144.5566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/22/2023] [Accepted: 10/10/2022] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by maladaptation of pulmonary vasculature which is leading to right ventricular hypertrophy and heart failure. miRNAs play a crucial role in the regulation of many diseases such as viral infection, cancer, cardiovascular diseases, and pulmonary hypertension (PH). In this study, we aimed to investigate the expression pattern of eight human plasma miRNAs (hsa-miR-21-3p, hsa-miR-143- 3p, hsa-miR-138-5p, hsa-miR-145-3p, hsa-miR-190a, hsa-miR-204-3p, hsamiR-206, hsa-miR-210-3p) in mild-to-severe PH patients and healthy controls. METHODS : miRNAs were extracted from the peripheral plasma of the PH patients (n: 44) and healthy individuals (n: 30) by using the miRNA Isolation Kit. cDNA was synthesized using All in-One First strand cDNA Synthesis Kit. Expression of the human plasma hsa-miR- 21-3p, hsa-miR-143-3p, hsa-miR-138-5p, hsa-miR-145-3p, hsa-miR-190a, hsa-miR-204- 3p, hsa-miR-206, hsa-miR210-3p, and miRNAs were analyzed by qRT-PCR. RESULTS According to our results, in PH patients hsa-miR-21-3p and hsa-miR-143-3p expression levels were decreased by 4.7 and 2.3 times, respectively. No significant changes were detected in hsa-miR-138-5p, hsa-miR-145-3p, hsa-miR-190a, hsa-miR-204-3p, hsamiR-206, and hsa-miR-210-3p expression levels between PH and control groups. In addition, considering the severity of the disease, it was observed that the decrease in miR-138, miR-143, miR-145, miR-190, mir-204, mir-206 and miR-208 expressions was significant in patients with severe PH. DISCUSSION : In the early diagnosis of PAH, hsa-miR-21-3p and especially hsa-miR-143-3p in peripheral plasma can be considered as potential biomarkers.
Collapse
Affiliation(s)
- Zekeriya DÜZGÜN
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun,
Turkey
| | - Meral KAYIKÇIOĞLU
- Department of Cardiology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | - Çağdaş AKTAN
- Department of Medical Biology, Beykent University School of Medicine, İstanbul,
Turkey
| | - Busra BARA
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | - Zuhal EROĞLU
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | - Burcu YAĞMUR
- Department of Cardiology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | | | - Melike BAYINDIR
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | - Sanem NALBANTGİL
- Department of Cardiology, Faculty of Medicine, Ege University, İzmir,
Turkey
| | - As ı TETİK VARDARLI
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir,
Turkey
| |
Collapse
|
8
|
Ion channels as convergence points in the pathology of pulmonary arterial hypertension. Biochem Soc Trans 2021; 49:1855-1865. [PMID: 34346486 PMCID: PMC8421048 DOI: 10.1042/bst20210538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease of the cardiopulmonary system that lacks curative treatments. The main pathological event in PAH is elevated vascular resistance in the pulmonary circulation, caused by abnormal vasoconstriction and vascular remodelling. Ion channels are key determinants of vascular smooth muscle tone and homeostasis, and four PAH channelopathies (KCNK3, ABCC8, KCNA5, TRPC6) have been identified so far. However, the contribution of ion channels in other forms of PAH, which account for the majority of PAH patients, has been less well characterised. Here we reason that a variety of triggers of PAH (e.g. BMPR2 mutations, hypoxia, anorectic drugs) that impact channel function may contribute to the onset of the disease. We review the molecular mechanisms by which these ‘extrinsic’ factors converge on ion channels and provoke their dysregulation to promote the development of PAH. Ion channels of the pulmonary vasculature are therefore promising therapeutic targets because of the modulation they provide to both vasomotor tone and proliferation of arterial smooth muscle cells.
Collapse
|
9
|
Lago-Docampo M, Tenorio J, Hernández-González I, Pérez-Olivares C, Escribano-Subías P, Pousada G, Baloira A, Arenas M, Lapunzina P, Valverde D. Characterization of rare ABCC8 variants identified in Spanish pulmonary arterial hypertension patients. Sci Rep 2020; 10:15135. [PMID: 32934261 PMCID: PMC7492224 DOI: 10.1038/s41598-020-72089-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023] Open
Abstract
Pulmonary Arterial Hypertension (PAH) is a rare and fatal disease where knowledge about its genetic basis continues to increase. In this study, we used targeted panel sequencing in a cohort of 624 adult and pediatric patients from the Spanish PAH registry. We identified 11 rare variants in the ATP-binding Cassette subfamily C member 8 (ABCC8) gene, most of them with splicing alteration predictions. One patient also carried another variant in SMAD1 gene (c.27delinsGTAAAG). We performed an ABCC8 in vitro biochemical analyses using hybrid minigenes to confirm the correct mRNA processing of 3 missense variants (c.211C > T p.His71Tyr, c.298G > A p.Glu100Lys and c.1429G > A p.Val477Met) and the skipping of exon 27 in the novel splicing variant c.3394G > A. Finally, we used structural protein information to further assess the pathogenicity of the variants. The results showed 11 novel changes in ABCC8 and 1 in SMAD1 present in PAH patients. After in silico and in vitro biochemical analyses, we classified 2 as pathogenic (c.3288_3289del and c.3394G > A), 6 as likely pathogenic (c.211C > T, c.1429G > A, c.1643C > T, c.2422C > A, c.2694 + 1G > A, c.3976G > A and SMAD1 c.27delinsGTAAAG) and 3 as Variants of Uncertain Significance (c.298G > A, c.2176G > A and c.3238G > A). In all, we show that coupling in silico tools with in vitro biochemical studies can improve the classification of genetic variants.
Collapse
Affiliation(s)
- Mauro Lago-Docampo
- CINBIO, Universidade de Vigo, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Jair Tenorio
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Ignacio Hernández-González
- Servicio de Cardiología, Hospital Universitario Río Hortega, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Unidad Multidisciplinar de Hipertensión Pulmonar, Servicio de Cardiología, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Carmen Pérez-Olivares
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Unidad Multidisciplinar de Hipertensión Pulmonar, Servicio de Cardiología, Hospital Universitario, 12 de Octubre, Madrid, Spain
- Servicio de Cardiología, Hospital 12 de Octubre, Madrid, Spain
| | - Pilar Escribano-Subías
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Unidad Multidisciplinar de Hipertensión Pulmonar, Servicio de Cardiología, Hospital Universitario, 12 de Octubre, Madrid, Spain
- Servicio de Cardiología, Hospital 12 de Octubre, Madrid, Spain
| | - Guillermo Pousada
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Adolfo Baloira
- Servicio de Neumología, Complejo Hospitalario de Pontevedra, Pontevedra, Spain
| | - Miguel Arenas
- CINBIO, Universidade de Vigo, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Diana Valverde
- CINBIO, Universidade de Vigo, Vigo, Spain.
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, Vigo, Spain.
| |
Collapse
|
10
|
Goyanes AM, Moldobaeva A, Marimoutou M, Varela LC, Wang L, Johnston LF, Aladdin MM, Peloquin GL, Kim BS, Damarla M, Suresh K, Sato T, Kolb TM, Hassoun PM, Damico RL. Functional Impact of Human Genetic Variants of COL18A1/Endostatin on Pulmonary Endothelium. Am J Respir Cell Mol Biol 2020; 62:524-534. [PMID: 31922883 PMCID: PMC7110972 DOI: 10.1165/rcmb.2019-0056oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an incurable disease characterized by disordered and dysfunctional angiogenesis leading to small-vessel loss and an obliterative vasculopathy. The pathogenesis of PAH is not fully understood, but multiple studies have demonstrated links between elevated angiostatic factors, disease severity, and adverse clinical outcomes. ES (endostatin), one such circulating angiostatic peptide, is the cleavage product of the proteoglycan COL18A1 (collagen α1[XVIII] chain). Elevated serum ES is associated with increased mortality and disease severity in PAH. A nonsynonymous variant of ES (aspartic acid-to-asparagine substitution at amino acid 104; p.D104N) is associated with differences in PAH survival. Although COL18A1/ES expression is markedly increased in remodeled pulmonary vessels in PAH, the impact of ES on pulmonary endothelial cell (PEC) biology and molecular contributions to PAH severity remain undetermined. In the present study, we characterized the effects of exogenous ES on human PEC biology and signaling. We demonstrated that ES inhibits PEC migration, proliferation, and cell survival, with significant differences between human variants, indicating that they are functional genetic variants. ES promotes proteasome-mediated degradation of the transcriptional repressor ID1, increasing expression and release of TSP-1 (thrombospondin 1). ES inhibits PEC migration via an ID1/TSP-1/CD36-dependent pathway, in contrast to proliferation and apoptosis, which require both CD36 and CD47. Collectively, the data implicate ES as a novel negative regulator of ID1 and an upstream propagator of an angiostatic signal cascade converging on CD36 and CD47, providing insight into the cellular and molecular effects of a functional genetic variant linked to altered outcomes in PAH.
Collapse
Affiliation(s)
| | - Aigul Moldobaeva
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Mery Marimoutou
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Lidenys C. Varela
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Lan Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Laura F. Johnston
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Meena M. Aladdin
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Grace L. Peloquin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Bo S. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Takahiro Sato
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Todd M. Kolb
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Paul M. Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Rachel L. Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
11
|
Ge X, Zhu T, Zhang X, Liu Y, Wang Y, Zhang W. Gender differences in pulmonary arterial hypertension patients with BMPR2 mutation: a meta-analysis. Respir Res 2020; 21:44. [PMID: 32028950 PMCID: PMC7006426 DOI: 10.1186/s12931-020-1309-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To investigate the differences in the proportions of BMPR2 mutations in familial hereditary pulmonary arterial hypertension (HPAH) and idiopathic pulmonary arterial hypertension (IPAH) between males and females and the relationship between BMPR2 mutation and PAH severity. METHODS A computer was used to search the electronic Cochrane Library, PubMed/MEDLINE, and EMBASE databases for clinical trials containing information on the relationship between PAH prognosis and BMPR2 mutations through March 2019. After obtaining the data, a meta-analysis was performed using Review Manager Version 5.3 and Stata. RESULTS A meta-analysis was performed on 17 clinical trials (2198 total patients: 644 male, 1554 female). The results showed that among patients with HPAH and IPAH, the BMPR2 mutation rate is higher in male than in female patients [male group (224/644, 34.78%), female group (457/1554, 29.41%), OR = 1.30, 95% CI: 1.06~1.60, P = 0.01, I2 = 10%]. Furthermore, haemodynamic and functional parameters were more severe in IPAH and HPAH patients with BMPR2 mutations than in those without, and those with BMPR2 mutation were diagnosed at a younger age. The risk of death or transplantation was higher in PAH patients with BMPR2 mutations than in those without (OR = 2.51, 95% CI: 1.29~3.57, P = 0.003, I2 = 24%). Furthermore, the difference was significant only in male patients (OR = 5.58, 95% CI: 2.16~14.39, P = 0.0004, I2 = 0%) and not in female patients (OR = 1.41, 95% CI: 0.75~2.67, P = 0.29, I2 = 0%). CONCLUSION Among patients with HPAH and IPAH, men are more likely to have BMPR2 mutations, which may predict more severe PAH indications and prognosis.
Collapse
Affiliation(s)
- Xiaoyue Ge
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Tiantian Zhu
- Teaching and Research Office of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xinyi Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ye Liu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yonglong Wang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
12
|
Pu Y, Zhang Y, Zhang T, Han J, Ma Y, Liu X. Identification of Novel lncRNAs Differentially Expressed in Placentas of Chinese Ningqiang Pony and Yili Horse Breeds. Animals (Basel) 2020; 10:E119. [PMID: 31940795 PMCID: PMC7022612 DOI: 10.3390/ani10010119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
As a nutrient sensor, the placenta plays a key role in regulating fetus growth and development. Long non-coding RNAs (lncRNAs) have been shown to regulate growth-related traits. However, the biological function of lncRNAs in horse placentas remains unclear. To compare the expression patterns of lncRNAs in the placentas of the Chinese Ningqiang (NQ) and Yili (YL) breeds, we performed a transcriptome analysis using RNA sequencing (RNA-seq) technology. NQ is a pony breed with an average adult height at the withers of less than 106 cm, whereas that of YL is around 148 cm. Based on 813 million high-quality reads and stringent quality control procedures, 3011 transcripts coding for 1464 placental lncRNAs were identified and mapped to the horse reference genome. We found 107 differentially expressed lncRNAs (DELs) between NQ and YL, including 68 up-regulated and 39 down-regulated DELs in YL. Six (TBX3, CACNA1F, EDN3, KAT5, ZNF281, TMED2, and TGFB1) out of the 233 genes targeted by DELs were identified as being involved in limb development, skeletal myoblast differentiation, and embryo development. Two DELs were predicted to target the TBX3 gene, which was found to be under strong selection and associated with small body size in the Chinese Debao pony breed. This finding suggests the potential functional significance of placental lncRNAs in regulating horse body size.
Collapse
Affiliation(s)
- Yabin Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.P.); (Y.Z.)
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China;
| | - Yanli Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.P.); (Y.Z.)
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China;
| | - Tian Zhang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China;
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.P.); (Y.Z.)
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China;
| | - Xuexue Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.P.); (Y.Z.)
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China;
| |
Collapse
|
13
|
Fernández AI, Yotti R, González-Mansilla A, Mombiela T, Gutiérrez-Ibanes E, Pérez del Villar C, Navas-Tejedor P, Chazo C, Martínez-Legazpi P, Fernández-Avilés F, Bermejo J. The Biological Bases of Group 2 Pulmonary Hypertension. Int J Mol Sci 2019; 20:ijms20235884. [PMID: 31771195 PMCID: PMC6928720 DOI: 10.3390/ijms20235884] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is a potentially fatal condition with a prevalence of around 1% in the world population and most commonly caused by left heart disease (PH-LHD). Usually, in PH-LHD, the increase of pulmonary pressure is only conditioned by the retrograde transmission of the left atrial pressure. However, in some cases, the long-term retrograde pressure overload may trigger complex and irreversible biomechanical and biological changes in the pulmonary vasculature. This latter clinical entity, designated as combined pre- and post-capillary PH, is associated with very poor outcomes. The underlying mechanisms of this progression are poorly understood, and most of the current knowledge comes from the field of Group 1-PAH. Treatment is also an unsolved issue in patients with PH-LHD. Targeting the molecular pathways that regulate pulmonary hemodynamics and vascular remodeling has provided excellent results in other forms of PH but has a neutral or detrimental result in patients with PH-LHD. Therefore, a deep and comprehensive biological characterization of PH-LHD is essential to improve the diagnostic and prognostic evaluation of patients and, eventually, identify new therapeutic targets. Ongoing research is aimed at identify candidate genes, variants, non-coding RNAs, and other biomarkers with potential diagnostic and therapeutic implications. In this review, we discuss the state-of-the-art cellular, molecular, genetic, and epigenetic mechanisms potentially involved in PH-LHD. Signaling and effective pathways are particularly emphasized, as well as the current knowledge on -omic biomarkers. Our final aim is to provide readers with the biological foundations on which to ground both clinical and pre-clinical research in the field of PH-LHD.
Collapse
Affiliation(s)
- Ana I. Fernández
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Raquel Yotti
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Ana González-Mansilla
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Teresa Mombiela
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Enrique Gutiérrez-Ibanes
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Candelas Pérez del Villar
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Paula Navas-Tejedor
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Christian Chazo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Pablo Martínez-Legazpi
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Javier Bermejo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
- Correspondence: ; Tel.: +34-91-586-8279
| |
Collapse
|
14
|
Abstract
Background In genome-wide association studies (GWASs), meta-analysis has been widely used to improve statistical power by combining the results of different studies. Meta-analysis can detect phenotype associated variants that are failed to be detected in single studies. Especially, in biomedical sciences, meta-analysis is often necessary not only for improving statistical power, but also for reducing unavoidable limitation in data collection. As next-generation sequencing (NGS) technology has been developed, meta-analysis of rare variants is proceeding briskly along with meta-analysis of common variants in GWASs. However, meta-analysis on a single variant that is commonly used in common variant association test is improper for rare variants. A sparse signal of rare variant undermines the association signal and its large number causes multiple testing problem. To over-come these problems, we propose a meta-analysis method at the gene-level rather than variant level. Results Among many methods that have been developed, we used the unified quadratic tests (Q-tests); Q-test is more powerful than or as powerful as other tests such as Sequence Kernel Association Tests (SKAT). Since there are three different versions of Q-test (QTest1, QTest2, QTest3), each assumes different relationships among multiple rare variants, we extended them into meta-study accordingly. For meta-analysis, we consider two types of approaches, the one is to combine regression coefficients and the other is to combine test statistics from each single study. We extend the Q-test for meta-analysis, proposing Meta Quadratic Test (Meta-Qtest). Meta Q-test avoids the limitations of MetaSKAT. It does not only consider genetic heterogeneity among studies as MetaSKAT but also reflects diverse real situations; since we extend three different Q-tests into meta-analysis respectively, flexible Meta Q-test suggests way to deal with gene-level rare variant meta-analysis efficiently From the results of real data analysis of blood pressure trait, our meta-analysis could successfully discovered genes, KCNA5 and CABIN1 that are already well known for relevance with hypertension disease and they are not detected in MetaSKAT. Conclusion As exemplified by an application to T2D Genes projects data set, Meta-Qtest more effectively identified genes associated with hypertension disease than MetaSKAT did.
Collapse
Affiliation(s)
- Jieun Ka
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Jaehoon Lee
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Yongkang Kim
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Bermseok Oh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | | | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, South Korea. .,Interdisciplinary program in Bioinformatics, Seoul National University, Seoul, South Korea.
| |
Collapse
|
15
|
Antigny F. Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundam Clin Pharmacol 2019; 33:524-526. [DOI: 10.1111/fcp.12493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Fabrice Antigny
- Faculté de Médecine Univ. Paris–Sud Université Paris‐Saclay 8 rue du Général Leclerc Le Kremlin Bicêtre94275France
- AP‐HP, Service de Pneumologie Centre de Référence de l'Hypertension PulmonaireHôpital Bicêtre 8 rue du Général Leclerc Le Plessis-Robinson94275France
- Inserm UMR_S 999 Hôpital Marie Lannelongue 133 Avenue de la Résistance Le Plessis Robinson92350France
| |
Collapse
|
16
|
Dogan MF, Yildiz O, Arslan SO, Ulusoy KG. Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundam Clin Pharmacol 2019; 33:504-523. [PMID: 30851197 DOI: 10.1111/fcp.12461] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022]
Abstract
Potassium (K+ ) ion channel activity is an important determinant of vascular tone by regulating cell membrane potential (MP). Activation of K+ channels leads to membrane hyperpolarization and subsequently vasodilatation, while inhibition of the channels causes membrane depolarization and then vasoconstriction. So far five distinct types of K+ channels have been identified in vascular smooth muscle cells (VSMCs): Ca+2 -activated K+ channels (BKC a ), voltage-dependent K+ channels (KV ), ATP-sensitive K+ channels (KATP ), inward rectifier K+ channels (Kir ), and tandem two-pore K+ channels (K2 P). The activity and expression of vascular K+ channels are changed during major vascular diseases such as hypertension, pulmonary hypertension, hypercholesterolemia, atherosclerosis, and diabetes mellitus. The defective function of K+ channels is commonly associated with impaired vascular responses and is likely to become as a result of changes in K+ channels during vascular diseases. Increased K+ channel function and expression may also help to compensate for increased abnormal vascular tone. There are many pharmacological and genotypic studies which were carried out on the subtypes of K+ channels expressed in variable amounts in different vascular beds. Modulation of K+ channel activity by molecular approaches and selective drug development may be a novel treatment modality for vascular dysfunction in the future. This review presents the basic properties, physiological functions, pathophysiological, and pharmacological roles of the five major classes of K+ channels that have been determined in VSMCs.
Collapse
Affiliation(s)
- Muhammed Fatih Dogan
- Department of Pharmacology, Ankara Yildirim Beyazit University, Bilkent, Ankara, 06010, Turkey
| | - Oguzhan Yildiz
- Department of Pharmacology, Gulhane Faculty of Medicine, University of Health Sciences, Etlik, Ankara, 06170, Turkey
| | - Seyfullah Oktay Arslan
- Department of Pharmacology, Ankara Yildirim Beyazit University, Bilkent, Ankara, 06010, Turkey
| | - Kemal Gokhan Ulusoy
- Department of Pharmacology, Gulhane Faculty of Medicine, University of Health Sciences, Etlik, Ankara, 06170, Turkey
| |
Collapse
|
17
|
Yuan SM. Pulmonary artery hypertension in childhood: The transforming growth factor-β superfamily-related genes. Pediatr Neonatol 2018; 59:112-119. [PMID: 28967497 DOI: 10.1016/j.pedneo.2016.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 10/20/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023] Open
Abstract
Pulmonary artery hypertension (PAH) is very rare in childhood, and it can be divided into heritable, idiopathic drug- and toxin-induced and other disease (connective tissue disease, human immunodeficiency virus infection, portal hypertension, congenital heart disease, or schistosomiasis)-associated types. PAH could not be interpreted solely by pathophysiological theories. The impact of the transforming growth factor-β superfamily-related genes on the development of PAH in children remains to be clarified. Pertinent literature on the transforming growth factor-β superfamily-related genes in relation to PAH in children published after the year 2000 was reviewed and analyzed. Bone morphogenetic protein receptor type II gene mutation promotes cell division or prevents cell death, resulting in an overgrowth of cells in small arteries throughout the lungs. About 20% of individuals with a bone morphogenetic protein receptor type II gene mutation develop symptomatic PAH. In heritable PAH, bone morphogenetic protein receptor type II mutations may be absent; while mutations of other genes, such as type I receptor activin receptor-like kinase 1 and the type III receptor endoglin (both associated with hereditary hemorrhagic telangiectasia), caveolin-1 and KCNK3, the gene encoding potassium channel subfamily K, member 3, can be detected, instead. Gene mutations, environmental changes and acquired adjustment, etc. may explain the development of PAH. The researches on PAH rat model and familial PAH members may facilitate the elucidations of the mechanisms and further provide theories for prophylaxis and treatment of PAH.
Collapse
Affiliation(s)
- Shi-Min Yuan
- Department of Cardiothoracic Surgery, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, Fujian Province, People's Republic of China.
| |
Collapse
|
18
|
Pousada G, Lago‐Docampo M, Prado S, Varela‐Calviño R, Mantiñán B, Valverde D. Functional assessment of the BMPR2 gene in lymphoblastoid cell lines from Graves' disease patients. J Cell Mol Med 2018; 22:1538-1547. [PMID: 29266775 PMCID: PMC5824380 DOI: 10.1111/jcmm.13425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/16/2017] [Indexed: 12/28/2022] Open
Abstract
In this study, we analysed the possible influence of the c.419-43delT BMPR2 variant in patients with Graves' disease (GD), in a molecular basis, focusing our efforts on possible alterations in the mRNA processing and synthesis. The molecular assessment of this variant in patients with GD would shed light on the association between the BMPR2 gene and the disease. The variant was detected in 18%, 55% and 10% of patients with pulmonary arterial hypertension, GD and in general population, respectively. Patients with GD fold change showed increased BMPR2 expression when matched against the controls, with a mean of 4.21 ± 1.73 (P = 0.001); BMPR2 was overexpressed in the analysed cell cycle stages. Fold change analysis of variant carriers and non-carriers showed slight overexpression and differences between phases, but none of them were statistically significant. BMPR2 expression was confirmed in the lymphoblastoid cell lines (LCLs) with a molecular weight of 115 kD, and no differences between variant carriers and non-carriers were detected. To conclude, the BMPR2 variant c.419-19delT appears in high frequency in patients with GD, and independently of its presence, BMPR2 is overexpressed in the LCLs from the GD patients tested. This increase could be paired with the described decreased expression of transforming growth factor-β1 in thyroid tissue from patients with GD.
Collapse
Affiliation(s)
- Guillermo Pousada
- Department of Biochemistry, Genetics and ImmunologyFaculty of BiologyUniversity of VigoVigoPontevedraSpain
- Instituto de Investigación Biomédica de Ourense‐Pontevedra‐VigoPontevedraSpain
| | - Mauro Lago‐Docampo
- Department of Biochemistry, Genetics and ImmunologyFaculty of BiologyUniversity of VigoVigoPontevedraSpain
| | - Sonia Prado
- Department of Biochemistry, Genetics and ImmunologyFaculty of BiologyUniversity of VigoVigoPontevedraSpain
- Instituto de Investigación Biomédica de Ourense‐Pontevedra‐VigoPontevedraSpain
| | - Rubén Varela‐Calviño
- Department of Biochemistry and Molecular BiologyUniversity of Santiago de CompostelaA CoruñaSpain
| | - Beatriz Mantiñán
- Endocrine, Diabetes, Nutrition and Metabolism DepartmentComplexo Hospitalario Universitario de VigoPontevedraSpain
| | - Diana Valverde
- Department of Biochemistry, Genetics and ImmunologyFaculty of BiologyUniversity of VigoVigoPontevedraSpain
- Instituto de Investigación Biomédica de Ourense‐Pontevedra‐VigoPontevedraSpain
| |
Collapse
|
19
|
Barberà JA, Román A, Gómez-Sánchez MÁ, Blanco I, Otero R, López-Reyes R, Otero I, Pérez-Peñate G, Sala E, Escribano P. Guidelines on the Diagnosis and Treatment of Pulmonary Hypertension: Summary of Recommendations. Arch Bronconeumol 2018; 54:205-215. [PMID: 29472044 DOI: 10.1016/j.arbres.2017.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
Pulmonary hypertension is a hemodynamic disorder defined by abnormally high pulmonary artery pressure that can occur in numerous diseases and clinical situations. The causes of pulmonary hypertension are classified into 5 major groups: arterial, due to left heart disease, due to lung disease and/or hypoxemia, chronic thromboembolic, with unclear and/or multifactorial mechanisms. This is a brief summary of the Guidelines on the Diagnostic and Treatment of Pulmonary Hypertension of the Spanish Society of Pulmonology and Thoracic Surgery. These guidelines describe the current recommendations for the diagnosis and treatment of the different pulmonary hypertension groups.
Collapse
Affiliation(s)
- Joan Albert Barberà
- Servicio de Neumología, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, España.
| | - Antonio Román
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, España; Servicio de Neumología, Hospital Universitari Vall d'Hebron, Barcelona, España
| | - Miguel Ángel Gómez-Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, España; Unidad Multidisciplinar de Hipertensión Pulmonar, Servicio de Cardiología, Hospital 12 de Octubre, Madrid, España
| | - Isabel Blanco
- Servicio de Neumología, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, España
| | - Remedios Otero
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, España; Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, España
| | - Raquel López-Reyes
- Servicio de Neumología, Hospital Universitari i Politècnic La Fe, Valencia, España
| | - Isabel Otero
- Servicio de Neumología, Complexo Hospitalario Universitario, A Coruña, España
| | - Gregorio Pérez-Peñate
- Unidad Multidisciplinar de Circulación Pulmonar, Servicio de Neumología, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, España
| | - Ernest Sala
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, España; Servicio de Neumología, Hospital Son Espases, Palma de Mallorca, España
| | - Pilar Escribano
- Unidad Multidisciplinar de Hipertensión Pulmonar, Servicio de Cardiología, Hospital 12 de Octubre, Madrid, España; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, España
| |
Collapse
|
20
|
Abstract
Following its initial description over a century ago, pulmonary arterial hypertension (PAH) continues to challenge researchers committed to understanding its pathobiology and finding a cure. The last two decades have seen major developments in our understanding of the genetics and molecular basis of PAH that drive cells within the pulmonary vascular wall to produce obstructive vascular lesions; presently, the field of PAH research has taken numerous approaches to dissect the complex amalgam of genetic, molecular and inflammatory pathways that interact to initiate and drive disease progression. In this review, we discuss the current understanding of PAH pathology and the role that genetic factors and environmental influences share in the development of vascular lesions and abnormal cell function. We also discuss how animal models can assist in elucidating gene function and the study of novel therapeutics, while at the same time addressing the limitations of the most commonly used rodent models. Novel experimental approaches based on application of next generation sequencing, bioinformatics and epigenetics research are also discussed as these are now being actively used to facilitate the discovery of novel gene mutations and mechanisms that regulate gene expression in PAH. Finally, we touch on recent discoveries concerning the role of inflammation and immunity in PAH pathobiology and how they are being targeted with immunomodulatory agents. We conclude that the field of PAH research is actively expanding and the major challenge in the coming years is to develop a unified theory that incorporates genetic and mechanistic data to address viable areas for disease modifying drugs that can target key processes that regulate the evolution of vascular pathology of PAH.
Collapse
|
21
|
Fu LC, Lv Y, Zhong Y, He Q, Liu X, Du LZ. Tyrosine phosphorylation of Kv1.5 is upregulated in intrauterine growth retardation rats with exaggerated pulmonary hypertension. ACTA ACUST UNITED AC 2017; 50:e6237. [PMID: 28902925 PMCID: PMC5597283 DOI: 10.1590/1414-431x20176237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022]
Abstract
Intrauterine growth retardation (IUGR) is associated with the development of adult-onset diseases, including pulmonary hypertension. However, the underlying mechanism of the early nutritional insult that results in pulmonary vascular dysfunction later in life is not fully understood. Here, we investigated the role of tyrosine phosphorylation of voltage-gated potassium channel 1.5 (Kv1.5) in this prenatal event that results in exaggerated adult vascular dysfunction. A rat model of chronic hypoxia (2 weeks of hypoxia at 12 weeks old) following IUGR was used to investigate the physiological and structural effect of intrauterine malnutrition on the pulmonary artery by evaluating pulmonary artery systolic pressure and vascular diameter in male rats. Kv1.5 expression and tyrosine phosphorylation in pulmonary artery smooth muscle cells (PASMCs) were determined. We found that IUGR increased mean pulmonary artery pressure and resulted in thicker pulmonary artery smooth muscle layer in 14-week-old rats after 2 weeks of hypoxia, while no difference was observed in normoxia groups. In the PASMCs of IUGR-hypoxia rats, Kv1.5 mRNA and protein expression decreased while that of tyrosine-phosphorylated Kv1.5 significantly increased. These results demonstrate that IUGR leads to exaggerated chronic hypoxia pulmonary arterial hypertension (CH-PAH) in association with decreased Kv1.5 expression in PASMCs. This phenomenon may be mediated by increased tyrosine phosphorylation of Kv1.5 in PASMCs and it provides new insight into the prevention and treatment of IUGR-related CH-PAH.
Collapse
Affiliation(s)
- L C Fu
- Department of Neonatology, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Y Lv
- Department of Neonatology, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Y Zhong
- Department of Neonatology, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Q He
- Department of Neonatology, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - X Liu
- Department of Neonatology, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - L Z Du
- Department of Neonatology, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
22
|
Pousada G, Lupo V, Cástro-Sánchez S, Álvarez-Satta M, Sánchez-Monteagudo A, Baloira A, Espinós C, Valverde D. Molecular and functional characterization of the BMPR2 gene in Pulmonary Arterial Hypertension. Sci Rep 2017; 7:1923. [PMID: 28507310 PMCID: PMC5432510 DOI: 10.1038/s41598-017-02074-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/05/2017] [Indexed: 11/09/2022] Open
Abstract
Pulmonary arterial hypertension is a progressive disease that causes the obstruction of precapillary pulmonary arteries and a sustained increase in pulmonary vascular resistance. The aim was to analyze functionally the variants found in the BMPR2 gene and to establish a genotype-phenotype correlation. mRNA expression studies were performed using pSPL3 vector, studies of subcellular localization were performed using pEGFP-N1 vector and luciferase assays were performed using pGL3-Basic vector. We have identified 30 variants in the BMPR2 gene in 27 of 55 patients. In 16 patients we detected pathogenic mutations. Minigene assays revealed that 6 variants (synonymous, missense) result in splicing defect. By immunofluorescence assay, we observed that 4 mutations affect the protein localization. Finally, 4 mutations located in the 5'UTR region showed a decreased transcriptional activity in luciferase assays. Genotype-phenotype correlation, revealed that patients with pathogenic mutations have a more severe phenotype (sPaP p = 0.042, 6MWT p = 0.041), a lower age at diagnosis (p = 0.040) and seemed to have worse response to phosphodiesterase-5-inhibitors (p = 0.010). Our study confirms that in vitro expression analysis is a suitable approach in order to investigate the phenotypic consequences of the nucleotide variants, especially in cases where the involved genes have a pattern of expression in tissues of difficult access.
Collapse
Affiliation(s)
- Guillermo Pousada
- Dep. Biochemistry, Genetics and Immunology. Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain.,Grupo de Investigación Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012, Valencia, Spain
| | - Sheila Cástro-Sánchez
- Dep. Biochemistry, Genetics and Immunology. Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain.,Grupo de Investigación Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - María Álvarez-Satta
- Dep. Biochemistry, Genetics and Immunology. Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain.,Grupo de Investigación Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Ana Sánchez-Monteagudo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012, Valencia, Spain
| | - Adolfo Baloira
- Neumology Service, Complexo Hospitalario Universitario de Pontevedra, 36071, Pontevedra, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012, Valencia, Spain
| | - Diana Valverde
- Dep. Biochemistry, Genetics and Immunology. Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain. .,Grupo de Investigación Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
| |
Collapse
|
23
|
Pousada G, Baloira A, Valverde D. Mutational screening in genes related with porto-pulmonary hypertension: An analysis of 6 cases. Med Clin (Barc) 2017; 148:310-313. [PMID: 28245912 DOI: 10.1016/j.medcli.2017.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/02/2017] [Accepted: 01/12/2017] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Portopulmonary hypertension (PPH) is a rare disease with a low incidence and without a clearly-identified genetic component. The aim of this work was to check genes and genetic modifiers related to pulmonary arterial hypertension in patients with PPH in order to clarify the molecular basis of the pathology. PATIENTS We selected a total of 6 patients with PPH and amplified the exonic regions and intronic flanking regions of the relevant genes and regions of interest of the genetic modifiers. RESULTS Six patients diagnosed with PPH were analyzed and compared to 55 healthy individuals. Potentially-pathogenic mutations were identified in the analyzed genes of 5 patients. None of these mutations, which are highly conserved throughout evolution, were detected in the control patients nor different databases analyzed (1000 Genomes, ExAC and DECIPHER). After analyzing for genetic modifiers, we found different variations that could favor the onset of the disease. CONCLUSIONS The genetic analysis carried out in this small cohort of patients with PPH revealed a large number of mutations, with the ENG gene showing the greatest mutational frequency.
Collapse
Affiliation(s)
- Guillermo Pousada
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, Pontevedra, España; Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), Pontevedra, España; Centro de Investigaciones Biomédicas (CINBIO), Pontevedra, España
| | - Adolfo Baloira
- Servicio de Neumología, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, España
| | - Diana Valverde
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, Pontevedra, España; Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), Pontevedra, España.
| |
Collapse
|
24
|
Idiopathic Pulmonary Arterial Hypertension in Children: A Review. Pulm Ther 2017. [DOI: 10.1007/s41030-017-0035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
25
|
Hayabuchi Y. The Action of Smooth Muscle Cell Potassium Channels in the Pathology of Pulmonary Arterial Hypertension. Pediatr Cardiol 2017; 38:1-14. [PMID: 27826710 DOI: 10.1007/s00246-016-1491-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023]
Abstract
Many different types of potassium channels with various functions exist in pulmonary artery smooth muscle cells, contributing to many physiological actions and pathological conditions. The deep involvement of these channels in the onset and exacerbation of pulmonary arterial hypertension (PAH) also continues to be revealed. In 2013, KCNK3 (TASK1), which encodes a type of two-pore domain potassium channel, was shown to be a predisposing gene for PAH by genetic mutation, and it was added to the PAH classification at the Fifth World Symposium on Pulmonary Hypertension (Nice International Conference). Decreased expression and inhibited activity of voltage-gated potassium channels, particularly KCNA5 (Kv1.5), are also seen in PAH, regardless of the cause, and facilitation of pulmonary arterial contraction and vascular remodeling has been shown. The calcium-activated potassium channels seen in smooth muscle cells also change from BKca (Kca1.1) to IKca (Kca3.1) predominance in PAH due to transformation and have effects including the facilitation of smooth muscle cell migration, enhancement of proliferation, and inhibition of apoptosis. Elucidation of these roles for potassium channels in pulmonary vasoconstriction and remodeling may help bring new therapeutic strategies into view.
Collapse
Affiliation(s)
- Yasunobu Hayabuchi
- Department of Pediatrics, Tokushima University, Kuramoto-cho-3, Tokushima, 770-8503, Japan.
| |
Collapse
|
26
|
Complex inheritance in Pulmonary Arterial Hypertension patients with several mutations. Sci Rep 2016; 6:33570. [PMID: 27630060 PMCID: PMC5024326 DOI: 10.1038/srep33570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022] Open
Abstract
Pulmonary Arterial Hypertension (PAH) is a rare and progressive disease with low incidence and prevalence, and elevated mortality. PAH is characterized by increased mean pulmonary artery pressure. The aim of this study was to analyse patients with combined mutations in BMPR2, ACVRL1, ENG and KCNA5 genes and to establish a genotype-phenotype correlation. Major genes were analysed by polymerase chain reaction (PCR) and direct sequencing. Genotype-phenotype correlation was performed. Fifty-seven (28 idiopathic PAH, 29 associated PAH group I) were included. Several mutations in different genes, classified as pathogenic by in silico analysis, were present in 26% of PAH patients. The most commonly involved gene was BMPR2 (12 patients) followed by ENG gene (9 patients). ACVRL1 and KCNA5 genes showed very low incidence of mutations (5 and 1 patients, respectively). Genotype-phenotype correlation showed statistically significant differences for gender (p = 0.045), age at diagnosis (p = 0.035), pulmonary vascular resistance (p = 0.030), cardiac index (p = 0.035) and absence of response to treatment (p = 0.011). PAH is consequence of a heterogeneous constellation of genetic arrangements. Patients with several pathogenic mutations seem to display a more severe phenotype.
Collapse
|
27
|
Baloira A, Bastos M, Pousada G, Valverde D. Pulmonary arterial hypertension associated with hereditary spherocytosis and splenectomy in a patient with a mutation in the BMPR2 gene. Clin Case Rep 2016; 4:752-5. [PMID: 27525076 PMCID: PMC4974420 DOI: 10.1002/ccr3.610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/27/2016] [Accepted: 05/20/2016] [Indexed: 11/06/2022] Open
Abstract
There is some question about the relationship between hereditary spherocytosis (HS) and pulmonary arterial hypertension, even associated with splenectomy. The finding of BMPR2 mutations in our patient suggests that other factors are necessary for the development of the disease, and perhaps, the incidence of pulmonary hypertension is not increased in patients with HS.
Collapse
Affiliation(s)
- Adolfo Baloira
- Respiratory Division Complejo Hospitalario Universitario de Pontevedra Pontevedra Spain
| | - María Bastos
- Department of Cardiology Complejo Hospitalario Universitario de Pontevedra Pontevedra Spain
| | - Guillermo Pousada
- Genetic Department, Faculty of Biology University of Vigo Vigo Spain
| | - Diana Valverde
- Genetic Department, Faculty of Biology University of Vigo Vigo Spain
| |
Collapse
|
28
|
Mutlu Z, Kayıkçıoğlu M, Nalbantgil S, Vuran Ö, Kemal H, Moğulkoç N, Ertürk B, Onay H, Eroğlu Z, Kültürsay H. Sequencing of mutations in the serine/threonine kinase domain of the bone morphogenetic protein receptor type 2 gene causing pulmonary arterial hypertension. Anatol J Cardiol 2016; 16:491-496. [PMID: 26645265 PMCID: PMC5331396 DOI: 10.5152/anatoljcardiol.2015.6297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Germline mutations in the bone morphogenetic protein receptor type-2 (BMPR2) gene are considered to be a major risk factor for pulmonary arterial hypertension (PAH). BMPR2 mutations have been reported in 10%-20% of idiopathic PAH and in 80% of familial PAH cases. The aim of this study was to evaluate the frequency of mutations in the serine/threonine kinase domain of the BMPR2 gene in a group of patients from a single PAH referral center in Turkey. METHODS This cross-sectional study used a DNA-sequencing method to investigate BMPR2 mutations in the serine-threonine-kinase domain in 43 patients diagnosed with PAH [8 with idiopathic PAH and 35 with congenital heart disease (CHD)] from a single PAH referral center. Patients were included if they had a hemodynamically measured mean pulmonary arterial pressure of >25 mm Hg with a mean pulmonary capillary wedge pressure of ≤15 mm Hg. Patients with severe left heart disease and/or pulmonary disease that could cause pulmonary hypertension were excluded. Associations between categoric variables were determined using the chi-square test. Differences between idiopathic and CHD-associated PAH groups were compared with the unpaired Student's t-test for continuous variables. RESULTS We detected a missense mutation, [p.C347Y (c.1040G>A)], in one patient with idiopathic PAH in exon 8 of the BMPR2 gene. The mutation was detected in a 27-year-old female with a remarkable family history for PAH. She had a favorable response to endothelin receptor antagonists. No mutations were detected in the exons 5-11 of the BMPR2 gene in the PAH-CHD group. CONCLUSION A missense mutation was detected in only one of the eight patients with idiopathic PAH. The BMPR2 missense mutation rate of 12.5% in this cohort of Turkish patients with idiopathic PAH was similar to that seen in European registries. The index patient was a young female with a family history remarkable for PAH; she had a good long-term response to PAH-specific treatment, probably due to the early initiation of the treatment. Genetic screening of families affected by PAH might have great value in identifying the disease at an early stage.
Collapse
Affiliation(s)
- Zeynep Mutlu
- Department of Medical Biology,Faculty of Medicine, Ege University; İzmir-Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pousada G, Baloira A, Fontán D, Núñez M, Valverde D. Mutational and clinical analysis of the ENG gene in patients with pulmonary arterial hypertension. BMC Genet 2016; 17:72. [PMID: 27260700 PMCID: PMC4893224 DOI: 10.1186/s12863-016-0384-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/25/2016] [Indexed: 02/03/2023] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a rare vascular disorder characterized by a capillary wedge pressure ≤ 15 mmHg and a mean pulmonary arterial pressure ≥ 25 mmHg at rest. PAH can be idiopathic, heritable or associated with other conditions. The aim of this study was to analyze the Endoglin (ENG) gene and assess the influence of the c.572G > A (p.G191D) mutation in patients with idiopathic or associated PAH. The correlation between the pathogenic mutations and clinical and functional parameters was further analyzed. Results Sixteen different changes in the ENG gene were found in 44 out of 57 patients. After in silico analysis, we classified eight mutations as pathogenic in 16 of patients. The c.572G>A (p.G191D) variation was observed in ten patients, and the analysis for the splicing process using hybrid minigenes, with pSPL3 vector to assess splicing alterations, do not generate a new transcript. Age at diagnosis (p = 0.049) and the 6-min walking test (p = 0.041) exhibited statistically significant differences between carriers and non-carriers of pathogenic mutations. Patients with pathogenic mutations exhibited disease symptoms 8 years before non-carriers. Five patients with pathogenic mutations were carriers of another mutation in the BMPR2 or ACVRL1 genes. Conclusions We present a series of PAH patients with mutations in the ENG gene, some of them not previously described, exhibiting clinical and hemodynamic alterations suggesting that the presence of these mutations may be associated with the severity of the disease. Moreover, genetic analysis in patients with PAH may be of clinical relevance and indicates the complexity of the genetic background.
Collapse
Affiliation(s)
- Guillermo Pousada
- Department Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain.,Instituto de Investigación Biomédica de Vigo (IBIV), Vigo, Spain
| | - Adolfo Baloira
- Complexo Hospitalario Universitario de Pontevedra, Servicio de neumología, Pontevedra, Spain
| | - Diego Fontán
- Department Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain
| | - Marta Núñez
- Complexo Hospitalario Universitario de Pontevedra, Servicio de neumología, Pontevedra, Spain
| | - Diana Valverde
- Department Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain. .,Instituto de Investigación Biomédica de Vigo (IBIV), Vigo, Spain.
| |
Collapse
|
30
|
Sung YK, Yuan K, de Jesus Perez VA. Novel approaches to pulmonary arterial hypertension drug discovery. Expert Opin Drug Discov 2016; 11:407-14. [PMID: 26901465 PMCID: PMC4933595 DOI: 10.1517/17460441.2016.1153625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is a rare disorder associated with abnormally elevated pulmonary pressures that, if untreated, leads to right heart failure and premature death. The goal of drug development for PAH is to develop effective therapies that halt, or ideally, reverse the obliterative vasculopathy that results in vessel loss and obstruction of blood flow to the lungs. AREAS COVERED This review summarizes the current approach to candidate discovery in PAH and discusses the currently available drug discovery methods that should be implemented to prioritize targets and obtain a comprehensive pharmacological profile of promising compounds with well-defined mechanisms. EXPERT OPINION To improve the successful identification of leading drug candidates, it is necessary that traditional pre-clinical studies are combined with drug screening strategies that maximize the characterization of biological activity and identify relevant off-target effects that could hinder the clinical efficacy of the compound when tested in human subjects. A successful drug discovery strategy in PAH will require collaboration of clinician scientists with medicinal chemists and pharmacologists who can identify compounds with an adequate safety profile and biological activity against relevant disease mechanisms.
Collapse
Affiliation(s)
- Yon K. Sung
- Division of Pulmonary and Critical Care Medicine, The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford Cardiovascular Institute, Stanford, California
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford Cardiovascular Institute, Stanford, California
| | - Vinicio A. de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford Cardiovascular Institute, Stanford, California
| |
Collapse
|
31
|
Pousada G, Baloira A, Castro-Añón O, Valverde D. [Pulmonary arterial hypertension associated with human immunodeficiency virus infection: study of 4 cases]. Med Clin (Barc) 2016; 146:350-3. [PMID: 26897508 DOI: 10.1016/j.medcli.2015.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Pulmonary arterial hypertension (PAH) is a rare and progressive disease that can be inherited as autosomal dominant form. The BMPR2, ACVRL1 and ENG genes are main genes involved in the pathology. PAH associated to human immunodeficiency virus (HIV) is another rare disease with a low incidence, prevalence and survival. The main objective of this analysis was to study the clinical and molecular characteristics of PAH associated to HIV patients. PATIENTS We present 4 cases of HIV patients who developed PAH and have been treated with ambrisentan. RESULTS Pathogenic mutations have been identify in analyzed genes in 3 of the four analyzed patients. In addition, these patients present other changes classified as benign after a thorough in silico analysis. We identified some changes in genetic modifiers that predispose to these patients to more severe phenotype. CONCLUSIONS The clinical analysis can help to define monitoring for these patients and the administration of appropriate treatment. These patients also have shown several pathogenic mutations.
Collapse
Affiliation(s)
- Guillermo Pousada
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, España; Instituto de Investigación Biomédica de Ourense-Pontevedra-Vigo, Pontevedra, España
| | - Adolfo Baloira
- Servicio de Neumología, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, España
| | - Olalla Castro-Añón
- Servicio de Neumología y Unidad de Desórdenes del Sueño, Hospital Universitario Lucus Augusti, Lugo, España
| | - Diana Valverde
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, España; Instituto de Investigación Biomédica de Ourense-Pontevedra-Vigo, Pontevedra, España.
| |
Collapse
|
32
|
Pousada G, Baloira A, Valverde D. Methylation Analysis of the BMPR2 Gene Promoter Region in Patients With Pulmonary Arterial Hypertension. Arch Bronconeumol 2015; 52:293-8. [PMID: 26654628 DOI: 10.1016/j.arbres.2015.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/25/2015] [Accepted: 10/15/2015] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Pulmonary arterial hypertension is characterizated by obstruction of the pulmonary arteries. The gene mainly related to pathology is the bone morphogenetic protein receptor type II (BMPR2). The aim of this study was to analyze the methylation pattern of the BMPR2 promoter region in patients and controls. METHODS We used Methyl Primer Express(®) v.1.0 and MatInspector softwares to analyze this region. Genomic DNA obtained from the peripheral blood of patients and controls was modified with sodium bisulphite. Methylation was analyzed using methylation-specific PCR. DNA treated with CpG methyltransferase was used as a positive control for methylation and H1299 cell culture DNA was used as positive control for gene expression. RESULTS We identified a CpG island, which may have been methylated, in the BMPR2 promoter region, in addition to NIT-2 (global-acting regulatory protein), sex-determining region Y) and heat shock factor transcription factor binding sites. We found no evidence of methylation in patients and controls. No methylated CpG sites were identified in H1299 cells expressing the BMPR2 gene. CONCLUSIONS The BMPR2 promoter region is the most suitable for study because of the high number of transcription factor binding sites that could alter gene function. No evidence of methylation was detected in this region in patients and controls.
Collapse
Affiliation(s)
- Guillermo Pousada
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, España; Instituto de Investigación Biomédica de Vigo (IBIV), Vigo, España
| | - Adolfo Baloira
- Servicio de Neumología, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, España
| | - Diana Valverde
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, España; Instituto de Investigación Biomédica de Vigo (IBIV), Vigo, España.
| |
Collapse
|
33
|
Viales RR, Eichstaedt CA, Ehlken N, Fischer C, Lichtblau M, Grünig E, Hinderhofer K. Mutation in BMPR2 Promoter: A 'Second Hit' for Manifestation of Pulmonary Arterial Hypertension? PLoS One 2015; 10:e0133042. [PMID: 26167679 PMCID: PMC4500409 DOI: 10.1371/journal.pone.0133042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/22/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Hereditary pulmonary arterial hypertension (HPAH) can be caused by autosomal dominant inherited mutations of TGF-β genes, such as the bone morphogenetic protein receptor 2 (BMPR2) and Endoglin (ENG) gene. Additional modifier genes may play a role in disease manifestation and severity. In this study we prospectively assessed two families with known BMPR2 or ENG mutations clinically and genetically and screened for a second mutation in the BMPR2 promoter region. METHODS We investigated the BMPR2 promoter region by direct sequencing in two index-patients with invasively confirmed diagnosis of HPAH, carrying a mutation in the BMPR2 and ENG gene, respectively. Sixteen family members have been assessed clinically by non-invasive methods and genetically by direct sequencing. RESULTS In both index patients with a primary BMPR2 deletion (exon 2 and 3) and Endoglin missense variant (c.1633G>A, p.(G545S)), respectively, we detected a second mutation (c.-669G>A) in the promoter region of the BMPR2 gene. The index patients with 2 mutations/variants were clinically severely affected at early age, whereas further family members with only one mutation had no manifest HPAH. CONCLUSION The finding of this study supports the hypothesis that additional mutations may lead to an early and severe manifestation of HPAH. This study shows for the first time that in the regulatory region of the BMPR2 gene the promoter may be important for disease penetrance. Further studies are needed to assess the incidence and clinical relevance of mutations of the BMPR2 promoter region in a larger patient cohort.
Collapse
Affiliation(s)
- Rebecca Rodríguez Viales
- University Hospital Heidelberg, Centre for pulmonary hypertension of the Thoraxclinic Heidelberg, Heidelberg, Germany; Heidelberg University, Institute of Human Genetics, Heidelberg, Germany
| | - Christina A Eichstaedt
- University Hospital Heidelberg, Centre for pulmonary hypertension of the Thoraxclinic Heidelberg, Heidelberg, Germany
| | - Nicola Ehlken
- University Hospital Heidelberg, Centre for pulmonary hypertension of the Thoraxclinic Heidelberg, Heidelberg, Germany
| | - Christine Fischer
- Heidelberg University, Institute of Human Genetics, Heidelberg, Germany
| | - Mona Lichtblau
- University Hospital Heidelberg, Centre for pulmonary hypertension of the Thoraxclinic Heidelberg, Heidelberg, Germany
| | - Ekkehard Grünig
- University Hospital Heidelberg, Centre for pulmonary hypertension of the Thoraxclinic Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
34
|
Pousada G, Baloira A, Valverde D. Molecular and clinical analysis of TRPC6 and AGTR1 genes in patients with pulmonary arterial hypertension. Orphanet J Rare Dis 2015; 10:1. [PMID: 25603901 PMCID: PMC4307182 DOI: 10.1186/s13023-014-0216-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a rare and progressive vascular disorder characterized by increased pulmonary vascular resistance and right heart failure. The aim of this study was to analyze 5'UTR region in canonical transient receptor potential isoform 6 (TRPC6) and 3'UTR region in Angiotensin II type I receptor (AGTR1) genes in patients with idiopathic and associated PAH. Correlation among mutations and clinical and functional parameters was further analyzed. METHODS Analysis of TRPC6 and AGTR1 genes was performed by polymerase chain reaction (PCR) and direct sequencing. We used a non-parametric test to determine if significant differences were found between the groups studied and chi-square test to compare clinical and hemodynamic variables among genotypes. RESULTS Fifty five patients and fifty two controls were included in this study. We found statistically significant differences for c.1-361A > T (p = 0.0077), c.1-254C > G (p < 0.0001) and c.1-218C > T (p = 0.0021) in TRPC6 gene and c.1166A > C (p < 0.001) in AGTR1 gene, between patients and controls. Idiopathic PAH patients (IPAH) and controls presented significant differences for all 3 TRPC6 polymorphisms (p = 0.020), (p = 0.002) and (p = 0.008) respectively, and also showed differences for AGTR1 gene (p < 0.001). In associated PAH (APAH) patients we found statistical differences for c.1-254C > G (p < 0.001) and c.1-218C > T (p = 0.001) in TRPC6 gene and c.1166A > C (p = 0.001) in AGTR1 gene. Several clinical and hemodynamic parameters showed significant differences between carriers and non-carriers of these single nucleotide polymorphisms (SNPs). Nineteen patients were carriers of all 3 SNPs in TRPC6 gene and presented a more severe phenotype with differences in mean pulmonary arterial pressure (p = 0.016), systolic pulmonary arterial pressure (p = 0.040), cardiac index (p < 0.001) and 6 minute walking test (p = 0.049). 16 of these patients harbored the SNP in AGTR1 gene. These patients showed differences in age at diagnosis (p = 0.049), mean pulmonary arterial pressure (p = 0.033), cardiac index (p = 0.002) and 6 minute walking test (p = 0.039). CONCLUSIONS PAH is a rare disease with pulmonary vascular remodeling caused in part by a heterogeneous constellation of genetic arrangements. This study seems to suggest that c.1-361A > T, c.1-254C > G and c.1-218C > T polymorphisms in TRPC6 gene and c.1166A > C polymorphism in AGTR1 could have a role in the development of this disease.
Collapse
Affiliation(s)
- Guillermo Pousada
- Department Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Campus As Lagoas Marcosende S/N, 36310, Vigo, Spain. .,Instituto de Investigación Biomédica de Vigo (IBIV), Vigo, Spain.
| | - Adolfo Baloira
- Complexo Hospitalario Universitario de Pontevedra, Servicio de Neumología, Pontevedra, Spain.
| | - Diana Valverde
- Department Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Campus As Lagoas Marcosende S/N, 36310, Vigo, Spain. .,Instituto de Investigación Biomédica de Vigo (IBIV), Vigo, Spain.
| |
Collapse
|
35
|
Pousada G, Baloira A, Valverde D. Pulmonary arterial hypertension and portal hypertension in a patient with hereditary hemorrhagic telangiectasia. Med Clin (Barc) 2014; 144:261-4. [PMID: 25543221 DOI: 10.1016/j.medcli.2014.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/11/2014] [Accepted: 09/18/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Pulmonary arterial hypertension (PAH) is a rare disease that could be inherited with an autosomal dominant pattern. Mutations in BMPR2 gene are described in over 70% of cases, although other genes are involved in lesser extend in PAH. Hereditary hemorrhagic telangiectasia (HHT) is another rare autosomal dominant disease. PAH is a rare complication of HHT that occurs in less than 1% of cases. Liver cirrhosis with portal hypertension is also associated with the presence of PAHs in 1-2% of cases. PATIENTS We present here a patient with HHT who developed PAH shortly after showing portal hypertension. RESULTS Some genes (BMPR2, ACVRL1, ENG) seem to play an important role in PAH pathogenesis. We analyzed these genes, detecting mutations in BMPR2 gene (c.1021G>A (V341L), c.327G>A (p.Q109Q)), ACVRL1 (c.313+20C>A, c.1502+7A>G) and ENG (c.498G>A (Q166Q)). The patient also had 3 polymorphisms in the TRPC6 gene (c.1-361A>T, c.1-254C>G, c.1-218C>T). CONCLUSIONS The study of these genes will help us to identify and track individuals susceptible for developing PAH associated with other diseases.
Collapse
Affiliation(s)
- Guillermo Pousada
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain; Biomedical Research Institute of Vigo (IBIV), Vigo, Spain
| | - Adolfo Baloira
- Respiratory Division, Complejo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Diana Valverde
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain; Biomedical Research Institute of Vigo (IBIV), Vigo, Spain.
| |
Collapse
|