1
|
Luise D, Chalvon-Demersay T, Correa F, Bosi P, Trevisi P. Review: A systematic review of the effects of functional amino acids on small intestine barrier function and immunity in piglets. Animal 2023; 17 Suppl 2:100771. [PMID: 37003917 DOI: 10.1016/j.animal.2023.100771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023] Open
Abstract
The need to reduce the use of antibiotics and zinc oxide at the pharmacological level, while preserving the performance of postweaning piglets, involves finding adequate nutritional strategies which, coupled with other preventive strategies, act to improve the sustainability of the piglet-rearing system. Amino acids (AAs) are the building blocks of proteins; however, they also have many other functions within the body. AA supplementation, above the suggested nutritional requirement for piglets, has been investigated in the diets of postweaning piglets to limit the detrimental consequences occurring during this stressful period. A systematic review was carried out to summarise the effects of AAs on gut barrier function and immunity, two of the parameters contributing to gut health. An initial manual literature search was completed using an organised search strategy on PubMed, utilising the search term " AND ". These searches yielded 302 articles (published before October 2021); 59 were selected. Based on the method for extracting data (synthesis of evidence), this review showed that L-Arginine, L-Glutamine and L-Glutamate are important functional AAs playing major roles in gut morphology and immune functions. Additional benefits of AA supplementation, refereed to a supplementation above the suggested nutritional requirement for piglets, could also be observed; however, data are needed to provide consistent evidence. Taken together, this review showed that supplementation with AAs during the weaning phase supported a plethora of the physiological functions of piglets. In addition, the data reported confirmed that each amino acid targets different parameters related to gut health, suggesting the existence of potential synergies among them.
Collapse
Affiliation(s)
- D Luise
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy.
| | | | - F Correa
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Bosi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
2
|
Liang SJ, Wang XQ. Deoxynivalenol induces intestinal injury: insights from oxidative stress and intestinal stem cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48676-48685. [PMID: 36856999 DOI: 10.1007/s11356-023-26084-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/19/2023] [Indexed: 04/16/2023]
Abstract
Mycotoxins are fungal secondary metabolites that frequently occur in human and animal diets. Deoxynivalenol (DON) is one of the most widely occurring mycotoxins globally and poses significant harm to the animal husbandry industry and human health. People are increasingly aware of the adverse effects of DON on vulnerable structures and functions in the intestine, especially in the field of intestinal stem cells (ISCs). In this review, we present insights into DON that induces oxidative stress and affects the expansion of ISCs. Related studies of strategies for reducing its harm are summarized. We also discussed promising approaches such as regulation of microbiota, molecular docking, and modulation of the redox status via reducing the expression of Keap1 protein and single-cell sequencing, which may be critical for further revealing the mechanism of DON that induces oxidative stress and affects the expansion of ISCs.
Collapse
Affiliation(s)
- Shao-Jie Liang
- Guangdong Laboratory Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiu-Qi Wang
- Guangdong Laboratory Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
3
|
Ferroptosis is involved in deoxynivalenol-induced intestinal damage in pigs. J Anim Sci Biotechnol 2023; 14:29. [PMID: 36922863 PMCID: PMC10018831 DOI: 10.1186/s40104-023-00841-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/13/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Deoxynivalenol (DON) is a widespread issue for feed and food safety, leading to animal and human health risks. The objective of this study was to determine whether ferroptosis is involved in DON-induced intestinal injury in piglets. Three groups of 21-day-old male weanling piglets (n = 7/group) were fed a control diet, or diet adding 1.0 or 3.0 mg DON/kg. At week 4, serum and small intestines were collected to assay for biochemistry, histology, redox status and ferroptosis-related genes expression. In addition, the involvement of ferroptosis and the role of FTL gene in DON-induced cell death were further verified in the IPEC-J2 cells. RESULTS Compared to the control, dietary supplementation of DON at 1.0 and 3.0 mg/kg induced different degrees of damage in the duodenum, jejunum and ileum, and increased (P < 0.05) serum lipopolysaccharide concentration by 46.2%-51.4%. Dietary DON supplementation at 1.0 and (or) 3.0 mg/kg increased (P < 0.05) concentrations of malondialdehyde (17.4%-86.5%) and protein carbonyl by 33.1%-92.3% in the duodenum, jejunum and ileum. In addition, dietary supplemented with DON upregulated (P < 0.05) ferroptotic gene (DMT1) and anti-ferroptotic genes (FTL and FTH1), while downregulated (P < 0.05) anti-ferroptotic genes (FPN, FSP1 and CISD1) in the duodenum of the porcine. Furthermore, the in vitro study has demonstrated that deferiprone, a potent ferroptotic inhibitor, mitigated (P < 0.05) DON-induced cytotoxicity in porcine small intestinal IPEC-J2 cells. Additionally, deferiprone prevented or alleviated (P < 0.05) the dysregulation of ferroptosis-related genes (ACSL4 and FTL) by DON in IPEC-J2 cells. Moreover, specific siRNA knockdown FTL gene expression compromised the DON-induced cell death in IPEC-J2 cells. CONCLUSIONS In conclusion, this study revealed that ferroptosis is involved in DON-induced intestinal damage in porcine, and sheds a new light on the toxicity of DON to piglets.
Collapse
|
4
|
Lactoferrin Restores the Deoxynivalenol-Impaired Spermatogenesis and Blood-Testis Barrier Integrity via Improving the Antioxidant Capacity and Modifying the Cell Adhesion and Inflammatory Response. Antioxidants (Basel) 2023; 12:antiox12010152. [PMID: 36671014 PMCID: PMC9855165 DOI: 10.3390/antiox12010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Deoxynivalenol (DON) is among the most prevalent contaminants in cereal crops and has been demonstrated to impair male spermatogenesis and induce oxidative stress, testicular apoptosis, and disruption of the blood-testis barrier (BTB). Lactoferrin (LF) is an iron-binding glycoprotein with multifunctions including anti-inflammation and antioxidation. Thus, this study aimed to investigate the effects of LF on the spermatogenesis and integrity of the BTB in DON-exposed mice. Thirty-two male mice were allotted to four groups for a 35-day feeding period: vehicle (basal diet), DON (12 mg/kg), LF (10 mg/d, p.o.), and DON + LF. The results showed that DON induced vacuolization of the spermatogenic epithelium, broke the adhesion junction between Sertoli cells and spermatids established by N-cadherin and induced testicular oxidative stress. LF administration restored sperm production, attenuated the DON-induced oxidative stress and reduced the breakages in adhesion junction. DON exposure enhanced the protein expression of occludin. Transcriptional profiling of the testis observed a disturbance in the expression profiles of cell adhesion and inflammatory response genes, and LF administration reversed these gene expressions. Furthermore, down-regulated signaling pathways, including the apical junction, TNFα signaling via NF-κB, and TGF-β in the DON group were observed. These were restored by LF. Enrichment analysis between DON + LF group and vehicle also confirmed the absence of these pathways. These findings indicated that LF eliminated the DON-induced detriment to spermatogenesis and cell connections between Sertoli cells and spermatids via improving antioxidant capacity and modifying the inflammatory response and cell adhesion genes.
Collapse
|
5
|
Xia D, Mo Q, Yang L, Wang W. Crosstalk between Mycotoxins and Intestinal Microbiota and the Alleviation Approach via Microorganisms. Toxins (Basel) 2022; 14:859. [PMID: 36548756 PMCID: PMC9784275 DOI: 10.3390/toxins14120859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungus. Due to their widespread distribution, difficulty in removal, and complicated subsequent harmful by-products, mycotoxins pose a threat to the health of humans and animals worldwide. Increasing studies in recent years have highlighted the impact of mycotoxins on the gut microbiota. Numerous researchers have sought to illustrate novel toxicological mechanisms of mycotoxins by examining alterations in the gut microbiota caused by mycotoxins. However, few efficient techniques have been found to ameliorate the toxicity of mycotoxins via microbial pathways in terms of animal husbandry, human health management, and the prognosis of mycotoxin poisoning. This review seeks to examine the crosstalk between five typical mycotoxins and gut microbes, summarize the functions of mycotoxins-induced alterations in gut microbes in toxicological processes and investigate the application prospects of microbes in mycotoxins prevention and therapy from a variety of perspectives. The work is intended to provide support for future research on the interaction between mycotoxins and gut microbes, and to advance the technology for preventing and controlling mycotoxins.
Collapse
Affiliation(s)
- Daiyang Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qianyuan Mo
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
6
|
Wang L, Li WQ, Liu F, Li YJ, Du J. Decreased xCT activity in patients associated with Helicobacter pylori infection. Front Pharmacol 2022; 13:1021655. [PMID: 36545313 PMCID: PMC9760671 DOI: 10.3389/fphar.2022.1021655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/21/2022] [Indexed: 12/09/2022] Open
Abstract
Objective: In animals, Helicobacter pylori (Hp)-induced gastric injury is accompanied by a decrease in the activity of the cysteine/glutamate transporter (xCT), which regulates extracellular glutamate levels. However, the impact of xCT activity in patients with Hp infection remains unclear. This study aims to investigate variations of xCT activity in the gastric mucosa of patients with Hp infection and to provide a clinical basis for identifying targets related to Hp infection. Methods: Our study included a total of 67 patients with gastritis, which consisted of 44 Hp-negative and 23 Hp-positive peptic ulcer cases. The inclusion criteria used to select patients were as follows: gastric histology was determined with a gastroscope, antral biopsies were taken for urease tests, and pathology and culture were performed for analysis of Hp-colonization. The clinical characteristics of the patients were obtained, the expressions of microRNAs and xCT protein were detected using immune histochemical analysis, and the concentration of glutamate in their gastric secretion was determined. Results: The findings revealed that xCT expression was significantly lower in Hp-positive patients as compared to Hp-negative individuals, which was accompanied by a decrease in glutamate concentration in gastric juice. We also discovered a high expression of microRNAs that have been shown to negatively regulate xCT expression, in Hp-positive patients. Conclusion: Reduced xCT activity in patients may play an important role in gastric ulcers caused by Hp infection. Our findings suggest that the microRNA/xCT pathway could be a potential treatment target for Hp-infection-related ulcers.
Collapse
Affiliation(s)
- Ling Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Qun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fen Liu
- Department of Digestion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuan-Jian Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Jie Du,
| |
Collapse
|
7
|
Morphological Assessment and Biomarkers of Low-Grade, Chronic Intestinal Inflammation in Production Animals. Animals (Basel) 2022; 12:ani12213036. [PMID: 36359160 PMCID: PMC9654368 DOI: 10.3390/ani12213036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Production animals are continuously exposed to environmental and dietary factors that might induce a state of low-grade, chronic intestinal inflammation. This condition compromises the productive performance and well-fare of these animals, requiring studies to understand what causes it and to develop control strategies. An intestinal inflammatory process is generally associated with alterations in the structure and functionality of its wall, resulting in the release of cellular components into the blood and/or feces. These components can act as biomarkers, i.e., they are measured to identify and quantify an inflammatory process without requiring invasive methods. In this review we discuss the mechanisms of low-grade inflammation, its effects on animal production and sustainability, and the identification of biomarkers that could provide early diagnosis of this process and support studies of useful interventional strategies. Abstract The complex interaction between the intestinal mucosa, the gut microbiota, and the diet balances the host physiological homeostasis and is fundamental for the maximal genetic potential of production animals. However, factors such as chemical and physical characteristics of the diet and/or environmental stressors can continuously affect this balance, potentially inducing a state of chronic low-grade inflammation in the gut, where inflammatory parameters are present and demanding energy, but not in enough intensity to provoke clinical manifestations. It’s vital to expand the understanding of inflammation dynamics and of how they compromise the function activity and microscopic morphology of the intestinal mucosa. These morphometric alterations are associated with the release of structural and functional cellular components into the feces and the blood stream creating measurable biomarkers to track this condition. Moreover, the identification of novel, immunometabolic biomarkers can provide dynamic and predictors of low-grade chronic inflammation, but also provide indicators of successful nutritional or feed additive intervention strategies. The objective of this paper is to review the mechanisms of low-grade inflammation, its effects on animal production and sustainability, and the biomarkers that could provide early diagnosis of this process and support studies of useful interventional strategies.
Collapse
|
8
|
Hu P, Zong Q, Zhao Y, Gu H, Liu Y, Gu F, Liu HY, Ahmed AA, Bao W, Cai D. Lactoferrin Attenuates Intestinal Barrier Dysfunction and Inflammation by Modulating the MAPK Pathway and Gut Microbes in Mice. J Nutr 2022; 152:2451-2460. [PMID: 36774111 DOI: 10.1093/jn/nxac200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/16/2022] [Accepted: 08/27/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Deoxynivalenol (DON) is a major mycotoxin present in staple foods (particularly in cereal products) that induces intestinal inflammation and disrupts intestinal integrity. Lactoferrin (LF) is a multifunctional protein that contributes to maintaining intestinal homeostasis and improving host health. However, the protective effects of LF on DON-induced intestinal dysfunction remain unclear. OBJECTIVES This study aimed to investigate the effects of LF on DON-induced intestinal dysfunction in mice, and its underlying protective mechanism. METHODS Male BALB/c mice (5 wk old) with similar body weights were divided into 4 groups (n = 6/group) and treated as follows for 5 wk: Veh [peroral vehicle daily, commercial (C) diet]; LF (peroral 10 mg LF/d, C diet); DON (Veh, C diet containing 12 mg DON/kg); and LF + DON (peroral 10 mg LF/d, DON diet). Intestinal morphology, tight junction proteins, cytokines, and microbial community were determined. Data were analyzed by 2-factor ANOVA or Kruskal-Wallis test. RESULTS The DON group exhibited lower final body weight (-12%), jejunal villus height (VH; -41%), and jejunal occludin expression (-36%), and higher plasma IL-1β concentration (+85%) and jejunal Il1b mRNA expression (+98%) compared with the Veh group (P < 0.05). In contrast, final body weight (+19%), jejunal VH (+49%), jejunal occludin (+53%), and intelectin 1 protein expression (+159%) were greater in LF + DON compared with DON (P < 0.05). Additionally, jejunal Il1b mRNA expression (-31%) and phosphorylation of p38 and extracellular signal regulated kinase 1/2 (-40% and - 38%) were lower in LF + DON compared with DON (P < 0.05). Furthermore, the relative abundance of Clostridium XIVa (+181%) and colonic butyrate concentration (+53%) were greater in LF + DON compared with DON (P < 0.05). CONCLUSIONS Our study highlights a promising antimycotoxin approach using LF to alleviate DON-induced intestinal dysfunction by modulating the mitogen-activated protein kinase pathway and gut microbial community in mice.
Collapse
Affiliation(s)
- Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Qiufang Zong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Yahui Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Haotian Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - YaYa Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Fang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Abdelkareem A Ahmed
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Agriculture and Natural Resources, Ebele, Gaborone, Botswana; Biomedical Research Institute, Darfur University College, Nyala, Sudan
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
9
|
Wang C, Yang J, Li E, Luo S, Sun C, Liao Y, Li M, Ge J, Lei J, Zhou F, Wu L, Liao W. Metabolic signatures of hepatolithiasis using ultra-high performance liquid chromatography-tandem mass spectrometry. Metabolomics 2022; 18:69. [PMID: 35976530 DOI: 10.1007/s11306-022-01927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS A metabolomic study of hepatolithiasis has yet to be performed. The purpose of the present study was to characterize the metabolite profile and identify potential biomarkers of hepatolithiasis using a metabolomic approach. METHODS We comprehensively analyzed the serum metabolites from 30 patients with hepatolithiasis and 20 healthy individuals using ultra-high performance liquid chromatography-tandem mass spectrometry operated in negative and positive ionization modes. Statistical analyses were performed using univariate (Student's t-test) and multivariate (orthogonal partial least-squares discriminant analysis) statistics and R language. Receiver operator characteristic (ROC) curve analysis was performed to identify potential predictors of hepatolithiasis. RESULTS We identified 277 metabolites that were significantly different between hepatolithiasis serum group and healthy control serum group. These metabolites were principally lipids and lipid-like molecules and amino acid metabolites. The steroid hormone biosynthesis pathway was enriched in hepatolithiasis serum group. In all specific metabolites, 75 metabolites were over-expressed in hepatolithiasis serum group. The AUC values for 60 metabolites exceeded 0.70, 4 metabolites including 18-β-Glycyrrhetinic acid, FMH, Rifampicin and PC (4:0/16:2) exceeded 0.90. CONCLUSIONS We have identified serum metabolites that are associated with hepatolithiasis for the first time. 60 potential metabolic biomarkers were identified, 18-β-Glycyrrhetinic acid, FMH, Rifampicin and PC (4:0/16:2) may have the potential clinical utility in hepatolithiasis.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Jun Yang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Enliang Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Shuaiwu Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Chi Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Yuting Liao
- Department of Nursing, Gannan Medical College, No. 1, Medical Road, Ganzhou, 341000, China
| | - Min Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Jin Ge
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Jun Lei
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Fan Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| | - Linquan Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| | - Wenjun Liao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| |
Collapse
|
10
|
Song M, Zhang F, Fu Y, Yi X, Feng S, Liu Z, Deng D, Yang Q, Yu M, Zhu C, Zhu X, Wang L, Gao P, Shu G, Ma X, Jiang Q, Wang S. Tauroursodeoxycholic acid (TUDCA) improves intestinal barrier function associated with TGR5-MLCK pathway and the alteration of serum metabolites and gut bacteria in weaned piglets. J Anim Sci Biotechnol 2022; 13:73. [PMID: 35672805 PMCID: PMC9175448 DOI: 10.1186/s40104-022-00713-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022] Open
Abstract
Background Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid, is the main medicinal component of bear bile and is commonly used to treat a variety of hepatobiliary diseases. Meanwhile, TUDCA has been shown to modulate the intestinal barrier function and alleviate DSS-induced colitis in mice. However, the effect of TUDCA on the intestinal barrier of weaned piglets remains largely unclear. Methods The weaned piglets and porcine IPEC-J2 intestinal epithelial cells were used to investigate the effects of TUDCA on intestinal barrier function in weaned piglets and explore the possible underlying mechanisms. In vivo, 72 healthy weaned piglets were randomly allocated into 2 groups according to their gender and body weight, and piglets were fed the basal diet with 0 (control, CON) and 200 mg/kg TUDCA for 30 d, respectively. Three female and three male piglets reflecting the average bodyweight were slaughtered in each group and samples were collected. In vitro, IPEC-J2 cells were subjected to 100 μmol/L TUDCA to explore the possible underlying mechanisms. Results Our results demonstrated that dietary TUDCA supplementation significantly reduced the diarrhea incidence of weaned piglets, possibly attributing to the TUDCA-enhanced intestinal barrier function and immunity. In addition, TUDCA supplementation altered serum metabolites and the relative abundance of certain gut bacteria, which might contribute to the improved intestinal barrier function. Furthermore, the in-vitro results showed that TUDCA improved the E. coli-induced epithelial barrier impairment of IPEC-J2 cells and increased Takeda G-coupled protein receptor 5 (TGR5) protein expression. However, knockdown of TGR5 and inhibition of myosin light chain kinase (MLCK) pathway abolished the TUDCA-improved epithelial barrier impairment in E. coli-treated IPEC-J2 cells, indicating the involvement of TGR5-MLCK in this process. Conclusions These findings showed that TUDCA improved intestinal barrier function associated with TGR5-MLCK pathway and the alteration of serum metabolites and gut bacteria in weaned piglets, suggesting the potential application of TUDCA in improving gut health in piglet production.
Collapse
|
11
|
Ma K, Bai Y, Li J, Ren Z, Li J, Zhang J, Shan A. Lactobacillus rhamnosus GG ameliorates deoxynivalenol-induced kidney oxidative damage and mitochondrial injury in weaned piglets. Food Funct 2022; 13:3905-3916. [PMID: 35285834 DOI: 10.1039/d2fo00185c] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deoxynivalenol (DON) is a common mycotoxin that pollutes food crops and adversely affects the health of animals, even humans. Lactobacillus rhamnosus GG (LGG) can alleviate intestinal injury, and anti-inflammatory and antioxidant effects. However, the potential of LGG in alleviating kidney injury induced by DON in piglets remains to be studied. The objective of this study was to investigate the adverse effect of DON on kidney injury and the protective ability of LGG. A total of twenty-seven weaned piglets were divided into three groups: CON group, DON group (3.11 mg kg-1 feed) and LGG + DON group (LGG powder 1 g kg-1 + DON 3.15 mg kg-1 feed). DON increased the MDA content, and decreased antioxidant enzyme activity (GSH-Px) and total antioxidant capacity (P < 0.05). Meanwhile, DON activated the Nrf2 antioxidant pathway. However, LGG supplementation alleviated the damage of DON to the kidney antioxidant system of piglets. Notably, DON significantly reduced the Sirt3 expression (P < 0.05), which was alleviated by LGG addition. The expression of mitochondrial biogenesis related factors such as VDAC1 and Cyt C was up-regulated by DON (P < 0.05), and LGG could improve mitochondrial ultrastructural abnormalities and mitochondrial dysfunction. In addition, LGG mitigated DON-induced mitochondrial fusion inhibition, and prevented DON-mediated mitochondrial autophagy. In conclusion, LGG play a protective role in DON-induced kidney toxicity, and dietary intervention may be a strategy to reduce mycotoxins.
Collapse
Affiliation(s)
- Kaidi Ma
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, P. R. China.
| | - Yongsong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, P. R. China.
| | - Jibo Li
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, P. R. China.
| | - Zhongshuai Ren
- College of Animal Science, Jilin University, Changchun 130062, P. R. China.
| | - Jianping Li
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, P. R. China.
| | - Jing Zhang
- College of Animal Science, Jilin University, Changchun 130062, P. R. China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, P. R. China.
| |
Collapse
|
12
|
Zhang L, Zhang Y, Liu J, Li Y, Quan J. Association of Lipopolysaccharide-Toll-Like Receptor 4 Signaling and Microalbuminuria in Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:3143-3152. [PMID: 36262806 PMCID: PMC9575588 DOI: 10.2147/dmso.s377776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/05/2022] [Indexed: 04/20/2023] Open
Abstract
PURPOSE Intestinal flora imbalance has been implicated in the activation of innate immunity in the kidneys. However, little is known about the potential links between lipopolysaccharide (LPS)-toll-like. receptor 4 (TLR4) signaling activated by intestinal barrier dysfunction and microalbuminuria in type 2 diabetes mellitus (T2DM). PATIENTS AND METHODS 61 patients with T2DM were stratified based on the absence (n=32) or presence (n=29) of microalbuminuria. There were also 28 control subjects. Urinary albumin excretion rate (UAER), serum levels of LPS, D-lactic acid (DLA), diamine oxidase (DAO), fasting blood glucose (FBG), interleukin-6 (IL-6), glycosylated hemoglobin A1 (HbA1c), and high-sensitivity C-reactive protein (hs-CRP), and TLR4 expression in peripheral blood mononuclear cells (PBMCs) were measured. RESULTS hs-CRP, IL-6, LPS, DLA, DAO, and TLR4 were markedly increased in subjects with T2DM compared to the controls (P < 0.05 for all). Moreover, LPS was positively correlated with FBG, HbA1c, hs-CRP, IL-6, UAER, DLA, DAO, and TLR4 (P < 0.05 for all). In addition, TLR4 was positively correlated with UAER, hs-CRP, FBG, DLA, HbA1c, and LPS (P < 0.05 for all). In regression analyses, TLR4, LPS, HbA1c, and hs-CRP were independently associated with UAER (P < 0.05 for all), while FBG, LPS, TLR4, and hs-CRP (P < 0.05 for all) were found to be risk factors for microalbuminuria in T2DM. CONCLUSION Intestinal integrity is compromised in subjects with T2DM, and the activation of LPS-TLR4 signaling might play an important role in the development of microalbuminuria in T2DM.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Blood Transfusion, Gansu Provincial Hospital, Lanzhou, People’s Republic of China
| | - Yuanjun Zhang
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, People’s Republic of China
| | - Juxiang Liu
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, People’s Republic of China
| | - Yonghong Li
- Institute of Clinical and Translational Medicine, Gansu Provincial Hospital, Lanzhou, People’s Republic of China
| | - Jinxing Quan
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, People’s Republic of China
- Correspondence: Jinxing Quan, Tel +18109440427, Email
| |
Collapse
|
13
|
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. The toxicity mechanisms of DON to humans and animals and potential biological treatment strategies. Crit Rev Food Sci Nutr 2021; 63:790-812. [PMID: 34520302 DOI: 10.1080/10408398.2021.1954598] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deoxynivalenol, also known as vomitotoxin, is produced by Fusarium, belonging to the group B of the trichothecene family. DON is widely polluted, mainly polluting cereal crops such as wheat, barley, oats, corn and related cereal products, which are closely related to lives of people and animals. At present, there have been articles summarizing DON induced toxicity, biological detoxification and the protective effect of natural products, but there is no systematic summary of this information. In addition to ribosome and endoplasmic reticulum, recent investigations support that mitochondrion is also organelles that DON can damage. DON can't directly act on mitochondria, but can indirectly cause mitochondrial damage and changes through other means. DON can indirectly inhibit mitochondrial biogenesis and mitochondrial electron transport chain activity, ATP production, and mitochondrial transcription and translation. This review will provide the latest progress on mitochondria as the research object, and systematically summarizes all the toxic mechanisms of DON. Here, we discuss DON induced mitochondrial-mediated apoptosis and various mitochondrial toxicity. For the toxicity of DON, many methods have been derived to prevent or reduce the toxicity. Biological detoxification and the antioxidant effect of natural products are potentially effective treatments for DON toxicity.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Zha A, Cui Z, Qi M, Liao S, Chen L, Liao P, Tan B. Dietary Baicalin Zinc Supplementation Alleviates Oxidative Stress and Enhances Nutrition Absorption in Deoxynivalenol Challenged Pigs. Curr Drug Metab 2021; 21:614-625. [PMID: 32116187 DOI: 10.2174/1389200221666200302124102] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/19/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Deoxynivalenol contamination is increasing worldwide, presenting great challenges to food security and causing great economic losses in the livestock industry. OBJECTIVE This study was conducted to determine the protective effect of baicalin zinc as a dietary supplement on pigs fed with a deoxynivalenol contaminated diet. METHODS A total of 40 weaned pigs (21 d of age; 6.13 ± 0.42 kg average BW) were randomly assigned (10 pigs/group) to 4 dietary treatments: basal diet (Con group), basal diet + 4 mg/kg DON (DON group), basal diet + 5 g/kg BZN (BZN group), and basal diet + 5 g/kg BZN + 4 mg/kg DON (DBZN group) for a 14-d period. Seven randomly-selected pigs from each treatment were killed for blood and tissue sampling. RESULTS The results showed that piglets challenged with DON exhibited significantly reduced levels of ADG, ADFI, and F/G (p < 0.05). BZN supplemented diets significantly suppressed the protein expression of p-Nrf2, p-NF-kB, and HO-1 in the jejunum of DON challenged piglets (p < 0.05). In liver, DON markedly increased the mRNA expression of P70S6K and HSP70 in piglets fed the basal diet, but significantly reduced that of HO-1, NQO-1, NF-kB, AMPKα2 and HSP70 in piglets fed the BZN supplemented diet (p < 0.05). Dietary supplementation with BZN markedly increased the T-AOC level of serum in weaned piglets (p < 0.05). In jejunum, dietary supplementation with BZN activated the mRNA expression of ZIP4 in piglets (p < 0.05), BZN supplementation significantly suppressed the activity of sucrose and increased the protein concentration in chyme (p < 0.05). CONCLUSION BZN can play a protective role by reducing oxidative stress and enhancing nutrient absorption in pigs fed DON-contaminated diets.
Collapse
Affiliation(s)
- Andong Zha
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhijuan Cui
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Ming Qi
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Simeng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lixin Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China,Shaodong Animal Husbandry and Fisheries Bureau, Hunan, 422800, China
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Bie Tan
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| |
Collapse
|
15
|
Qiu Y, Yang J, Wang L, Yang X, Gao K, Zhu C, Jiang Z. Dietary resveratrol attenuation of intestinal inflammation and oxidative damage is linked to the alteration of gut microbiota and butyrate in piglets challenged with deoxynivalenol. J Anim Sci Biotechnol 2021; 12:71. [PMID: 34130737 PMCID: PMC8207658 DOI: 10.1186/s40104-021-00596-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/11/2021] [Indexed: 12/17/2022] Open
Abstract
Background Deoxynivalenol (DON) is a widespread mycotoxin that induces intestinal inflammation and oxidative stress in humans and animals. Resveratrol (RES) effectively exerts anti-inflammatory and antioxidant effects. However, the protective effects of RES on alleviating DON toxicity in piglets and the underlying mechanism remain unclear. Therefore, this study aimed to investigate the effect of RES on growth performance, gut health and the gut microbiota in DON-challenged piglets. A total of 64 weaned piglets [Duroc × (Landrace × Yorkshire), 21-d-old, 6.97 ± 0.10 kg body weight (BW)] were randomly allocated to 4 treatment groups (8 replicate pens per treatment, each pen containing 2 males; n = 16 per treatment) for 28 d. The piglets were fed a control diet (CON) or the CON diet supplemented with 300 mg RES/kg diet (RES group), 3.8 mg DON/kg diet (DON) or both (DON+RES) in a 2 × 2 factorial design. Results DON-challenged piglets fed the RES-supplemented diet had significantly decreased D-lactate concentrations and tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) mRNA and protein expression, and increased zonula occludens-1 (ZO-1) mRNA and protein expression compared with those of DON-challenged piglets fed the unsupplemented diet (P < 0.05). Compared with unsupplemented DON-challenged piglets, infected piglets fed a diet with RES showed significantly decreased malondialdehyde (MDA) levelsand increased mRNA expression of antioxidant enzymes and antioxidant genes (i.e., GCLC, GCLM, HO-1, SOD1 and NQO-1) and glutamate-cysteine-ligase modulatory subunit (GCLM) protein expression (P < 0.05). Moreover, RES supplementation significantly abrogated the increase in the proportion of TUNEL-positive cells and the protein expression of caspase3 in DON-challenged piglets (P < 0.05). Finally, RES supplementation significantly increased the abundance of Roseburia and butyrate concentrations, while decreasing the abundances of Bacteroides and unidentified-Enterobacteriaceae in DON-challenged piglets compared with DON-challenged piglets alone (P < 0.05). Conclusions RES supplementation improved gut health in DON-challenged piglets by strengthening intestinal barrier function, alleviating intestinal inflammation and oxidative damage, and positively modulating the gut microbiota. The protective effects of RES on gut health may be linked to increased Roseburia and butyrate concentrations, and decreased levels of Bacteroides and unidentified-Enterobacteriaceae.
Collapse
Affiliation(s)
- Yueqin Qiu
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Yang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xuefen Yang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Kaiguo Gao
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Cui Zhu
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. .,School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
16
|
Chalvon-Demersay T, Luise D, Le Floc'h N, Tesseraud S, Lambert W, Bosi P, Trevisi P, Beaumont M, Corrent E. Functional Amino Acids in Pigs and Chickens: Implication for Gut Health. Front Vet Sci 2021; 8:663727. [PMID: 34113671 PMCID: PMC8185281 DOI: 10.3389/fvets.2021.663727] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
In pigs and broiler chickens, the gastrointestinal tract or gut is subjected to many challenges which alter performance, animal health, welfare and livability. Preventive strategies are needed to mitigate the impacts of these challenges on gut health while reducing the need to use antimicrobials. In the first part of the review, we propose a common definition of gut health for pig and chickens relying on four pillars, which correspond to the main functions of the digestive tract: (i) epithelial barrier and digestion, (ii) immune fitness, (iii) microbiota balance and (iv) oxidative stress homeostasis. For each pillar, we describe the most commonly associated indicators. In the second part of the review, we present the potential of functional amino acid supplementation to preserve and improve gut health in piglets and chickens. We highlight that amino acid supplementation strategies, based on their roles as precursors of energy and functional molecules, as signaling molecules and as microbiota modulators can positively contribute to gut health by supporting or restoring its four intertwined pillars. Additional work is still needed in order to determine the effective dose of supplementation and mode of administration that ensure the full benefits of amino acids. For this purpose, synergy between amino acids, effects of amino acid-derived metabolites and differences in the metabolic fate between free and protein-bound amino acids are research topics that need to be furtherly investigated.
Collapse
Affiliation(s)
| | - Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | | | | | | - Paolo Bosi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Martin Beaumont
- GenPhySE, Université De Toulouse, INRAE, ENVT, Toulouse, France
| | | |
Collapse
|
17
|
Role of the Outer Inflammatory Protein A/Cystine-Glutamate Transporter Pathway in Gastric Mucosal Injury Induced by Helicobacter pylori. Clin Transl Gastroenterol 2021; 11:e00178. [PMID: 32677810 PMCID: PMC7263648 DOI: 10.14309/ctg.0000000000000178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori infection is a major cause of gastrointestinal diseases. However, the pathogenesis of gastric mucosal injury by H. pylori remains unclear. Exogenous glutamate supplementation protects against gastric mucosal injury caused by H. pylori. Previously, we showed that aspirin-induced gastric injury is associated with reduction in glutamate release by inhibition of cystine–glutamate transporter (xCT) activity. We hypothesized that the xCT pathway is involved in H. pylori-induced gastric mucosal injury. In this study, we tested the activity of xCT and evaluated the regulatory effect of outer inflammatory protein (Oip) A on xCT in H. pylori-induced gastric mucosal injury.
Collapse
|
18
|
Hao Y, Xing M, Gu X. Research Progress on Oxidative Stress and Its Nutritional Regulation Strategies in Pigs. Animals (Basel) 2021; 11:1384. [PMID: 34068057 PMCID: PMC8152462 DOI: 10.3390/ani11051384] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress refers to the dramatic increase in the production of free radicals in human and animal bodies or the decrease in the ability to scavenging free radicals, thus breaking the antioxidation-oxidation balance. Various factors can induce oxidative stress in pig production. Oxidative stress has an important effect on pig performance and healthy growth, and has become one of the important factors restricting pig production. Based on the overview of the generation of oxidative stress, its effects on pigs, and signal transduction pathways, this paper discussed the nutritional measures to alleviate oxidative stress in pigs, in order to provide ideas for the nutritional research of anti-oxidative stress in pigs.
Collapse
Affiliation(s)
| | | | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (M.X.)
| |
Collapse
|
19
|
Wang S, Wu K, Xue D, Zhang C, Rajput SA, Qi D. Mechanism of deoxynivalenol mediated gastrointestinal toxicity: Insights from mitochondrial dysfunction. Food Chem Toxicol 2021; 153:112214. [PMID: 33930483 DOI: 10.1016/j.fct.2021.112214] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/21/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022]
Abstract
Deoxynivalenol (DON) is a mycotoxin predominantly produced by Fusarium genus, and widely contaminates cereals and associated products all over the world. The intestinal toxicity of DON is well established. However, intestinal homeostasis involves mitochondria, which has rarely been considered in the context of DON exposure. We summarize the recent knowledge on mitochondria as a key player in maintaining intestinal homeostasis based on their functions in cellular energy metabolism, redox homeostasis, apoptosis, intestinal immune responses, and orchestrated bidirectional cross-talk with gut microbe. In addition, we discuss the pivotal roles of mitochondrial dysfunction in the intestinal toxicity of DON and highlight promising mitochondrial-targeted therapeutics for DON-induced intestinal injury. Recent studies support that the intestinal toxicity of DON is attributed to mitochondrial dysfunction as a critical factor. Mitochondrial dysfunction characterized by failure in respiratory capacities and ROS overproduction has been demonstrated in intestinal cells exposed to DON. Perturbation of mitochondrial respiration leading to ROS accumulation is implicated in the early initiation of apoptosis. DON-induced intestinal inflammatory response is tightly linked to the mitochondrial ROS, whereas immunosuppression is intimately associated with mitophagy inhibition. DON perturbs the orchestrated bidirectional cross-talk between gut microbe and host mitochondria, which may be involved in DON-induced intestinal toxicity.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Kuntan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Dongfang Xue
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Cong Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
20
|
Chen S, Wu X, Duan J, Huang P, Li T, Yin Y, Yin J. Low-protein diets supplemented with glutamic acid or aspartic acid ameliorate intestinal damage in weaned piglets challenged with hydrogen peroxide. ACTA ACUST UNITED AC 2021; 7:356-364. [PMID: 34258423 PMCID: PMC8245806 DOI: 10.1016/j.aninu.2020.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 12/25/2022]
Abstract
Glutamic acid (Glu) and aspartic acid (Asp) are acidic amino acids with regulatory roles in nutrition, energy metabolism, and oxidative stress. This study aimed to evaluate the effects of low-protein diets supplemented with Glu and Asp on the intestinal barrier function and energy metabolism in weaned piglets challenged with hydrogen peroxide (H2O2). Forty piglets were randomly divided into 5 groups: NC, PC, PGA, PG, and PA (n = 8 for each group). Pigs in the NC and PC groups were fed a low-protein diet, while pigs in the PGA, PG, or PA groups were fed the low-protein diet supplemented with 2.0% Glu +1.0% Asp, 2.0% Glu, or 1.0% Asp, respectively. On day 8 and 11, pigs in the NC group were intraperitoneally injected with saline (1 mL/kg BW), while pigs in the other groups were intraperitoneally administered 10% H2O2 (1 mL/kg BW). On day 14, all pigs were sacrificed to collect jejunum and ileum following the blood sample collection in the morning. Notably, low-protein diets supplemented with Glu or Asp ameliorated the intestinal oxidative stress response in H2O2-challenged piglets by decreasing intestinal expression of genes (P < 0.05) (e.g., manganese superoxide dismutase [MnSOD], glutathione peroxidase [Gpx]-1, and Gpx-4) encoding oxidative stress-associated proteins, reducing the serum concentration of diamine oxidase (P < 0.05), and inhibiting apoptosis of the intestinal epithelium. Glu and Asp supplementation attenuated the upregulated expression of energy metabolism-associated genes (such as hexokinase and carnitine palmitoyltransferase-1) and the H2O2-induced activation of acetyl-coenzyme A carboxylase (ACC) in the jejunum and adenosine monophosphate-activated protein kinase–acetyl-ACC signaling in the ileum. Dietary Glu and Asp also ameliorated intestinal barrier damage as indicated by restored intestinal histology and morphology. In conclusion, low-protein diets supplemented with Glu and Asp protected against oxidative stress-induced intestinal dysfunction in piglets, suggesting that this approach could be used as a nutritional regulatory protectant against oxidative stress.
Collapse
Affiliation(s)
- Shuai Chen
- College of Animal Science and Technology, Hunan Agriculture University; Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wu
- College of Animal Science and Technology, Hunan Agriculture University; Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, China
| | - Jielin Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Pan Huang
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agriculture University; Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agriculture University; Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| |
Collapse
|
21
|
The Landscape of Interactions between Hypoxia-Inducible Factors and Reactive Oxygen Species in the Gastrointestinal Tract. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8893663. [PMID: 33542787 PMCID: PMC7843172 DOI: 10.1155/2021/8893663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022]
Abstract
The gastrointestinal tract (GT) is the major organ involved in digestion, absorption, and immunity, which is prone to oxidative destruction by high levels of reactive oxygen species (ROS) from luminal oxidants, such as food, drugs, and pathogens. Excessive ROS will lead to oxidative stresses and disrupt essential biomolecules, which also act as cellular signaling molecules in response to growth factors, hormones, and oxygen tension changes. Hypoxia-inducible factors (HIFs) are critical regulators mediating responses to cellular oxygen tension changes, which are also involved in energy metabolism, immunity, renewal, and microbial homeostasis in the GT. This review discusses interactions between HIF (mainly HIF-1α) and ROS and relevant diseases in the GT combined with our lab's work. It might help to develop new therapies for gastrointestinal diseases associated with ROS and HIF-1α.
Collapse
|
22
|
Jia R, Sadiq FA, Liu W, Cao L, Shen Z. Protective effects of Bacillus subtilis ASAG 216 on growth performance, antioxidant capacity, gut microbiota and tissues residues of weaned piglets fed deoxynivalenol contaminated diets. Food Chem Toxicol 2021; 148:111962. [PMID: 33412236 DOI: 10.1016/j.fct.2020.111962] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022]
Abstract
Deoxynivalenol (DON) poses a serious health threat to animals and humans consuming DON-contaminated food and feed. Biological means of detoxification of DON are considered as one of the effective strategies. The aim of the work was to study ameliorative effects of Bacillus subtilis ASAG 216 on DON-induced toxicosis in piglets. A decrease in average daily gain and average daily feed intake was observed in piglets fed DON-contaminated feed. In addition, DON exposure increased the serum concentrations of aspartate aminotransferase, immunoglobulin A, diamine oxidase, endotoxin, and peptide YY. Moreover, DON exposure caused oxidative stress in the serum, liver and jejunum, induced intestinal inflammation, impaired the intestinal barrier, and disturbed the gut microbiota homeostasis. Supplementation of B. subtilis ASAG 216 effectively attenuated the aforementioned effects of DON on piglets. Moreover, DON and de-epoxy-DON (DOM-1) in the serum, liver and kidney were significantly decreased when B. subtilis ASAG 216 was added to DON-contaminated diet. Our results imply that B. subtilis ASAG 216 can protect against DON-induced toxicosis in piglets, and thus this strain has a potential to be used as an animal feed ingredient to counteract harmful effects of DON in animals.
Collapse
Affiliation(s)
- Ru Jia
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi, China.
| | - Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wenbin Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lirong Cao
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Zhuoyu Shen
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi, China
| |
Collapse
|
23
|
Wang XS, Sun Z, Liu LW, Du QZ, Liu ZS, Yang YJ, Xue P, Zhao HY. Potential Metabolic Biomarkers for Early Detection of Oral Lichen Planus, a Precancerous Lesion. Front Pharmacol 2020; 11:603899. [PMID: 33240093 PMCID: PMC7677577 DOI: 10.3389/fphar.2020.603899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Oral lichen planus (OLP) is a T-cell-mediated chronic inflammatory disorder and precancerous oral lesion with high incidence. The current diagnostic method of OLP is very limited and metabolomics may provide a new approach for quantitative evaluation. Methods: The Ultra-Performance Liquid Chromatography-Quadrupole/Orbitrap High Resolution Mass Spectrometry (UHPLC-Q-Orbitrap HRMS) was applied to analyze the change of metabolites in serum of patients with OLP. A total of 115 OLP patients and 124 healthy controls were assigned to either a training set (n = 160) or a test set (n = 79). The potential biomarkers and the change of serum metabolites were profiled and evaluated by multivariate analysis. Results: Totally, 23 differential metabolites were identified in the training set between OLP group and healthy group. Three prominent metabolites in receiver operating characteristic (ROC) were selected as a panel to distinguish OLP or healthy individuals in the test set, and the diagnostic accuracy was 86.1%. Conclusions: This study established a new method for the early detection of OLP by analyzing serum metabolomics using UHPLC-Q-Orbitrap HRMS, which will help in understanding the pathological processes of OLP and identifying precancerous lesions in oral cavity.
Collapse
Affiliation(s)
- Xiao-Shuang Wang
- Stomatological Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School and Hospital of Stomatology of Zhengzhou University, Zhengzhou, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Li-Wei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Qiu-Zheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Zhang-Suo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan-Jie Yang
- Stomatological Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School and Hospital of Stomatology of Zhengzhou University, Zhengzhou, China
| | - Peng Xue
- Health Management Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Yu Zhao
- Stomatological Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School and Hospital of Stomatology of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Gallic acid affects intestinal-epithelial-cell integrity and selected amino-acid uptake in porcine in vitro and ex vivo permeability models. Br J Nutr 2020; 126:492-500. [DOI: 10.1017/s0007114520004328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractGallic acid (GA) is widely used as a dietary supplement due to several health-promoting effects, although its effects on intestinal-epithelial-cell integrity and transport remain mostly unknown. The present study aims to clarify the effects of GA on tight junctions and intestinal nutrient uptake through in vitro and ex vivo models. Both intestinal porcine enterocyte cell line-J2 cells and porcine middle-jejunum segments were treated with 5 (T5), 25 (T25) and 50 (T50) µm GA and mounted in Ussing chambers to determine transepithelial resistance (TEER), claudin-1 (CLDN1), occludin (OCLN), zonula occludens-1 (ZO-1) protein (in tissues and cells) and mRNA (in cells) expression. In addition, uptake of l-glutamate (l-Glut), l-arginine (l-Arg), l-lysine (l-Lys) and l-methionine (l-Meth) together with cationic-amino-acid transporter-1 (CAT-1) and excitatory-amino-acid transporter-3 (EAAT3) expression was evaluated. No apoptosis was observed in GA-treated cells, but TEER and CLDN1 protein abundance was lower with T50 compared with untreated cells. l-Arg and l-Lys uptake was greater with T5 than with T25 and T50. Ex vivo, T50 decreased the TEER values and the protein levels of CLDN1, OCLN and ZO-1, whereas T5 and T25 only decreased CLDN1 protein expression compared with untreated tissues. Moreover, T25 increased l-Glut and l-Arg uptake, the latter confirmed by an increased protein expression of CAT-1. GA influences intestinal uptake of the tested cationic amino acids at low concentrations and decreases the intestinal-cell barrier function at high concentrations. Similarities were observed between in vitro and ex vivo, but different treatment times and structures must be considered.
Collapse
|
25
|
The cytoprotective effects of dihydromyricetin and associated metabolic pathway changes on deoxynivalenol treated IPEC-J2 cells. Food Chem 2020; 338:128116. [PMID: 33092008 DOI: 10.1016/j.foodchem.2020.128116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/03/2020] [Accepted: 09/13/2020] [Indexed: 02/02/2023]
Abstract
In this study, we investigated the cytoprotective effects of dihydromyricetin (DHM) against deoxynivalenol (DON)-induced toxicity and accompanied metabolic pathway changes in porcine jejunum epithelial cells (IPEC-J2). The cells were incubated in 250 ng/ml DON cotreated with 40 µM DHM, followed by toxicity analysis, oxidative stress reaction analysis, inflammatory response analysis and metabolomic analysis. The results showed that DHM significantly increased the cell viability (P < 0.01), the intracellular GSH level (P < 0.01) and decreased the intracellular ROS level (P < 0.01), the secretion of TNF-α, IL-8 (P < 0.01) and the apoptotic cell percentages (P < 0.01) in IPEC-J2 cells compared to that in the DON group. Metabolomic analysis revealed that DHM recovered the disorder of metabolic pathways such as glutamate metabolism, arachidonic metabolism and histidine metabolism caused by DON. In summary, DHM alleviated cell injury induced by DON and it is possibly through its antioxidant activity, anti-inflammatory activity or ability to regulate metabolic pathways.
Collapse
|
26
|
Coleman DN, Lopreiato V, Alharthi A, Loor JJ. Amino acids and the regulation of oxidative stress and immune function in dairy cattle. J Anim Sci 2020; 98:S175-S193. [PMID: 32810243 PMCID: PMC7433927 DOI: 10.1093/jas/skaa138] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Vincenzo Lopreiato
- Department of Health Science, Interdepartmental Services Centre of Veterinary for Human and Animal Health, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Abdulrahman Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL.,Division of Nutritional Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
27
|
Liao P, Li Y, Li M, Chen X, Yuan D, Tang M, Xu K. Baicalin alleviates deoxynivalenol-induced intestinal inflammation and oxidative stress damage by inhibiting NF-κB and increasing mTOR signaling pathways in piglets. Food Chem Toxicol 2020; 140:111326. [DOI: 10.1016/j.fct.2020.111326] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 01/24/2023]
|
28
|
Rissato DF, de Santi Rampazzo AP, Borges SC, Sousa FC, Busso C, Buttow NC, Natali MRM. Chronic ingestion of deoxynivalenol-contaminated diet dose-dependently decreases the area of myenteric neurons and gliocytes of rats. Neurogastroenterol Motil 2020; 32:e13770. [PMID: 31793155 DOI: 10.1111/nmo.13770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/18/2019] [Accepted: 11/10/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Deoxynivalenol (DON), a mycotoxin produced by Fusarium spp., is commonly found in cereals ingested by humans and animals. Its ingestion is correlated with hepatic, hematologic, renal, splenic, cardiac, gastrointestinal, and neural damages, according to dose, duration of exposure and species. In this work, the effects of the ingestion of DON-contaminated diet at concentrations considered tolerable for human and animal intake were assessed. METHODS Male Wistar rats aging 21 days were allotted to five groups that were given, for 42 days, diets contaminated with different concentrations of DON (0, 0.2, 0.75, 1.75, and 2 mg kg-1 of chow). Food ingestion, bodyweight, oxidative status and morphometric analyses of gliocytes, and neurons of jejunal myenteric ganglia were recorded. KEY RESULTS At these concentrations, there was no food rejection, decrease in bodyweight gain, changes in oxidative status, or loss of either neurons or gliocytes. However, DON decreased gliocyte area, general neuronal population, nitrergic, cholinergic and NADH-diaphorase positive subpopulations and, as a result, ganglion area. CONCLUSIONS & INFERENCES It was concluded that, even in the absence of visible effect, DON exposure reduces cell body area of gliocytes and neurons of the myenteric plexus of the rat jejunum.
Collapse
Affiliation(s)
- Débora Furlan Rissato
- Ingá University Center, Maringá, Paraná, Brazil.,Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | - Fernando Carlos Sousa
- Coordination of Biological Sciences, Federal University of Technology - Paraná, Dois Vizinhos Campus, Dois Vizinhos, Paraná, Brazil
| | - Cleverson Busso
- Coordination of Biological Sciences, Federal University of Technology - Paraná, Dois Vizinhos Campus, Dois Vizinhos, Paraná, Brazil
| | - Nilza Cristina Buttow
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | |
Collapse
|
29
|
Wang T, Yao W, Li J, Shao Y, He Q, Xia J, Huang F. Dietary garcinol supplementation improves diarrhea and intestinal barrier function associated with its modulation of gut microbiota in weaned piglets. J Anim Sci Biotechnol 2020; 11:12. [PMID: 32140225 PMCID: PMC7050124 DOI: 10.1186/s40104-020-0426-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The effects of dietary garcinol on diarrhea and intestinal barrier function associated with its modulation of gut microbiota in weaned piglets were investigated. METHOD One hundred forty four weaned piglets (Duroc × Yorkshire × Landrace) from 16 pens (9 piglets per pen) were randomly divided into four treatment groups: controls (CON) or those supplemented with 200 mg/kg (LOW), 400 mg/kg (MID), or 600 mg/kg (HIGH) diet garcinol. After 14-day trial, three piglets per pen were chosen to collect plasma, intestinal tissue and colonic digesta samples. RESULTS We demonstrated for the first time that garcinol promoted growth performance, as increased average daily feed intake (ADFI) and decreased feed/gain ratio (F/G); and reduced diarrhea incidence (P < 0.05); and strengthened antioxidant capacity, as an increased antioxidative index (P < 0.05). Additionally, garcinol ameliorated intestinal barrier dysfunction, as an increased villus height to crypt depth ratio, increased zonula occludens protein 1 (ZO-1), occludin and claudin-1 expression in the jejunum and ileum (P < 0.05), and decreased intestinal permeability (P < 0.05); and reduced inflammation, as decreased cytokine interleukin (IL)-6, IL-10, IL-1β and tumor necrosis factor-α (TNF-α) levels in the mucosa of the jejunum and ileum, and NF-κB p65 translocation (P < 0.05). Moreover, garcinol inhibited the growth of most harmful bacteria in the gut, especially Escherichia coli, and increased the growth of the beneficial bacteria Lactobacillus. CONCLUSION This work provides a fundamental basis for the future development of garcinol-functional food use for improving diarrhea and intestinal barrier function in weaned piglets and for understanding the biological effects of garcinol and its potential as a functional feed additive.
Collapse
Affiliation(s)
- Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Juan Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yafei Shao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Qiongyu He
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jun Xia
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
30
|
Qin L, Ji W, Wang J, Li B, Hu J, Wu X. Effects of dietary supplementation with yeast glycoprotein on growth performance, intestinal mucosal morphology, immune response and colonic microbiota in weaned piglets. Food Funct 2019; 10:2359-2371. [PMID: 30972390 DOI: 10.1039/c8fo02327a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antibiotics are commonly provided to weaned piglets; however, this practice has become controversial due to the increased occurrences of microbial resistance, and alternatives are needed. This study aimed to investigate the effects of dietary supplementation with yeast glycoprotein (YG) on growth performance, intestinal mucosal morphology, immune response and colonic microbiota in weaned piglets. A total of 240 weaned piglets (d 23 ± 2) from 16 pens (15 piglets per pen) were randomly allocated to an antibiotics group (25% quinocetone 200 mg kg-1 and 4% enduracidin 800 mg kg-1 of the basal diet) or a YG group (800 mg kg-1 YG of the basal diet), respectively. The trial lasted 14 days, and at the end of the trial, one piglet per pen was chosen to collect plasma, intestinal tissue and colonic digesta samples. The results indicate that piglets fed diets containing YG tended to show increased final body weight (0.05 < P < 0.1), increased average daily gain (P < 0.05) and decreased F/G (P < 0.05) when compared with the antibiotics group. Moreover, intestinal permeability showed that YG led to an improvement in the intestinal development via decreasing serum content of DAO (P < 0.01). Histological evaluations showed that YG contributed to the improvement of the intestinal development via increasing villous height (P < 0.05) and the villous height to crypt depth ratio (P < 0.01), and decreasing crypt depth (P < 0.01) and villous width (P < 0.05) in the ileum. Intestinal integrity also showed that YG was conducive to improvement of the intestinal development via upregulating the m-RNA expression of occludin (P < 0.05) in the duodenal and jejunal mucosa. Interestingly, YG supplementation downregulated the m-RNA expression of IL-12 (P < 0.05), upregulated the m-RNA expression of Hsp-70 (P < 0.05) in the duodenal mucosa, downregulated the m-RNA expression of Hsp-70 (P < 0.05) and IFN-γ (P < 0.05), upregulated the m-RNA expression of Hsp-90 (P < 0.05) in the jejunal mucosa, and upregulated the m-RNA expression of Hsp-70 (P < 0.05) in the ileal mucosa. On the other hand, colonic microbiota results showed that YG supplementation increased the relative abundance of Lactobacillus (P < 0.05) in the genus level. Colonic metabolite results showed that YG supplementation decreased the content of acetate (P < 0.05). Taken together, it is speculated that YG would be a potent alternative to prophylactic antibiotics in improving the gut health in weaned piglets.
Collapse
Affiliation(s)
- Longshan Qin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China.
| | | | | | | | | | | |
Collapse
|
31
|
Biolley C, Tretola M, Bee G, Jud C, Silacci P. Punicalagin increases glutamate absorption in differentiated Caco-2 cells by a mechanism involving gene expression regulation of an EAAT3 transporter. Food Funct 2019; 10:5333-5338. [PMID: 31389458 DOI: 10.1039/c9fo00191c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study investigates, for the first time, the ability of punicalagin to modulate intestinal glutamate uptake by upregulation of the expression of one of its transporters present on the enterocyte membrane. The use of an Ussing chamber revealed an increase in glutamate transport in differentiated Caco-2 cells after punicalagin treatment for 24 h. This cell line constitutively expresses two glutamate transporters: EAAT1 and EAAT3. In response to punicalagin, the expression of EAAT3 was increased, at both mRNA and protein levels, but not that of EAAT1. Transfection with EAAT3-targeting siRNA specifically altered basal and induced EAAT3 gene expression, decreasing the positive effect of punicalagin on glutamate uptake. These data confirmed the involvement of EAAT3 in increasing glutamate uptake by enterocytes after punicalagin treatment.
Collapse
|
32
|
Li J, Cheng Y, Chen Y, Qu H, Zhao Y, Wen C, Zhou Y. Dietary Chitooligosaccharide Inclusion as an Alternative to Antibiotics Improves Intestinal Morphology, Barrier Function, Antioxidant Capacity, and Immunity of Broilers at Early Age. Animals (Basel) 2019; 9:ani9080493. [PMID: 31357589 PMCID: PMC6719223 DOI: 10.3390/ani9080493] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023] Open
Abstract
Simple Summary At early an age, broilers are susceptible to exterior stressors and therefore have a higher disease incidence rate. Antibiotic growth promoters have been forbidden in animal production by the European Union and other countries since their usage has caused potentially adverse effects such as antibiotic residues in livestock, environmental pollution, and the generation of drug-resistant bacteria. The search for safe and environmentally friendly alternatives to antibiotics to prevent disease and promote growth has become necessary in poultry production. Chitooligosaccharide (COS), a natural alkaline polymer of glucosamine with a number of bioactive groups, is easily obtained by chemical and enzymatic hydrolysis of chitosan, which is the second most abundant carbohydrate polymer in nature. Our results indicated that dietary supplementation with chitooligosaccharide, at a dosage of 30 mg/kg, enhanced the feed conversion ratio, benefited the intestinal morphology and barrier function, and improved antioxidant capacity and immunity in broilers at 21 days of age. These effects were similar with those observed as a result of chlortetracycline inclusion. Therefore, dietary COS supplementation can be used as a potential alternative to antibiotics in broilers. Abstract This study aimed to investigate the effects of chitooligosaccharide (COS) inclusion as an alternative to antibiotics on growth performance, intestinal morphology, barrier function, antioxidant capacity, and immunity in broilers. In total, 144 one-day-old Arbor Acres broiler chicks were randomly assigned into 3 groups and fed a basal diet free from antibiotics (control group) or the same basal diet further supplemented with either chlortetracycline (antibiotic group) or COS, for 21 days. Compared with the control group, inclusion of COS reduced the feed to gain ratio, the jejunal crypt depth, the plasma diamine oxidase activity, and the endotoxin concentration, as well as jejunal and ileal malondialdehyde contents, whereas increased duodenal villus height, duodenal and jejunal ratio of villus height to crypt depth, intestinal immunoglobulin G, and jejunal immunoglobulin M (IgM) contents were observed, with the values of these parameters being similar or better to that of the antibiotic group. Additionally, supplementation with COS enhanced the superoxide dismutase activity and IgM content of the duodenum and up-regulated the mRNA level of claudin three in the jejunum and ileum, when compared with the control and antibiotic groups. In conclusion, dietary COS inclusion (30 mg/kg), as an alternative to antibiotics, exerts beneficial effects on growth performance, intestinal morphology, barrier function, antioxidant capacity, and immunity in broilers.
Collapse
Affiliation(s)
- Jun Li
- College of Animal Science and Technology, Nanjing Agricultural University, No. 6, Tongwei Road, Xuanwu District, Nanjing 210095, China
| | - Yefei Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, No. 6, Tongwei Road, Xuanwu District, Nanjing 210095, China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, No. 6, Tongwei Road, Xuanwu District, Nanjing 210095, China
| | - Hengman Qu
- College of Animal Science and Technology, Nanjing Agricultural University, No. 6, Tongwei Road, Xuanwu District, Nanjing 210095, China
| | - Yurui Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, No. 6, Tongwei Road, Xuanwu District, Nanjing 210095, China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, No. 6, Tongwei Road, Xuanwu District, Nanjing 210095, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, No. 6, Tongwei Road, Xuanwu District, Nanjing 210095, China.
| |
Collapse
|
33
|
Modified Palygorskite Improves Immunity, Antioxidant Ability, Intestinal Morphology, and Barrier Function in Broiler Chickens Fed Naturally Contaminated Diet with Permitted Feed Concentrations of Fusarium Mycotoxins. Toxins (Basel) 2018; 10:toxins10110482. [PMID: 30463306 PMCID: PMC6267430 DOI: 10.3390/toxins10110482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/24/2022] Open
Abstract
This study investigated effects of modified palygorskite (MPal) on immunity, antioxidant capacity, and intestinal barrier integrity in broiler chickens challenged with permitted feed Fusarium mycotoxin concentrations. One-day-old chicks were allocated into three treatments with eight replicates. Chickens in three groups were fed a basal diet with normal corn (control), contaminated diet containing moldy corn, with Fusarium mycotoxins contents in the diets lower than permitted feed mycotoxin concentrations, and the contaminated diet supplemented with 1 g/kg MPal for 42 days, respectively. Compared with control, moldy corn decreased bursa of Fabricius weight, jejunal secreted immunoglobulin A concentration, ileal superoxide dismutase (SOD) activity, jejunal and ileal villus height (VH) and VH/crypt depth (CD) ratio, and jejunal zonula occludens-1 and mucin 2 mRNA abundances at 42 days as well as ileal VH/CD ratio at 21 days; while they increased jejunal malondialdehyde accumulation at 21 and 42 days, jejunal SOD activity at 21 days, and serum diamine oxidase activity at 42 days, which were almost recovered by MPal. Moreover, dietary MPal upregulated ileal claudin-2 mRNA abundance compared with other two groups. The results indicated that MPal addition exerted protective effects on immunity, oxidative status, and intestinal barrier integrity in chickens challenged with permitted feed Fusarium mycotoxins levels.
Collapse
|
34
|
Wang W, Li Z, Gan L, Fan H, Guo Y. Dietary supplemental Kluyveromyces marxianus alters the serum metabolite profile in broiler chickens. Food Funct 2018; 9:3776-3787. [PMID: 29912245 DOI: 10.1039/c8fo00268a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolomics is used to evaluate the bioavailability of food components, as well as to validate the metabolic changes associated with food consumption. This study was conducted to investigate the effects of the dietary supplement Kluyveromyces marxianus on the serum metabolite profile in broiler chickens. A total of 240 1-d-old broilers were divided into 2 groups with 8 replicates. Birds were fed basal diets without or with K. marxianus supplementation (5 × 1010 CFU kg-1 of diet). Serum samples were collected on d 21 and were analyzed by high-performance liquid chromatography with quadrupole time-of flight/mass spectrometry. The results showed that supplemental K. marxianus altered the concentrations of a variety of metabolites in the serum. Thereinto, a total of 39 metabolites were identified at higher (P < 0.05) concentrations while 21 metabolites were identified at lower (P < 0.05) concentrations in the treatment group as compared with the control. These metabolites were primarily involved with the regulation of amino acids and carbohydrate metabolism. Further metabolic pathway analysis revealed that glutamine and glutamate metabolism was the most relevant and critical pathway identified from these two groups. The activated pathway may partially interpret the beneficial effects of K. marxianus. Overall, the present research could promote our understanding of the probiotic action of K. marxianus and provide new insight into the design and application of K. marxianus-containing functional foods.
Collapse
Affiliation(s)
- Weiwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | | | | | | | | |
Collapse
|
35
|
Sobral MMC, Faria MA, Cunha SC, Ferreira IMPLVO. Toxicological interactions between mycotoxins from ubiquitous fungi: Impact on hepatic and intestinal human epithelial cells. CHEMOSPHERE 2018; 202:538-548. [PMID: 29587235 DOI: 10.1016/j.chemosphere.2018.03.122] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 05/27/2023]
Abstract
Aflatoxin B1 (AFB1), deoxynivalenol (DON), fumonisin B1 (FB1) and ochratoxin A (OTA) are toxic fungal metabolites co-occurring naturally in the environment. This study aimed to evaluate the toxicological interactions of these mycotoxins concerning additive, antagonistic and synergistic toxicity towards human cells. The theoretical biology-based Combination index-isobologram method was used to evaluate the individual and binary effect of these toxins and determine the type of the interaction using as models Caco-2 (intestinal) and HepG2 (hepatic) cells. Cytotoxicity was assessed using the MTT test at the concentrations of 0.625-20 μM for all the compounds. DON exerted the highest toxicity toward both cells, OTA and AFB1 also showed a dose-effect response, whereas no toxicity was verified for FB1. Synergism or antagonism effects occurred when exposing AFB1-DON and AFB1-OTA on Caco-2 cells at higher or lower concentrations, respectively; while DON-OTA showed synergism throughout all inhibition levels. Concerning HepG2, AFB1-DON exerted a strong synergism, regardless of the level; whereas AFB1-OTA had slight synergism/nearly additive effect; and, OTA-DON had a moderate antagonism/nearly additive effect. Synergistic strengths as high as a dose reduction index of 10 for AFB1-DON were observed in hepatic cells. Taken together our findings indicate that the toxicological effects differ regarding the type of mycotoxins used for combinations and the stronger synergistic effect was observed for mixtures containing DON in both cells. Therefore, even though DON has not been classified as to its carcinogenicity to humans, this mycotoxin may present a serious threat to health, mainly when co-occurring in the environment.
Collapse
Affiliation(s)
- M Madalena C Sobral
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal
| | - Miguel A Faria
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal.
| | - Sara C Cunha
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal
| |
Collapse
|
36
|
Functions and Signaling Pathways of Amino Acids in Intestinal Inflammation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9171905. [PMID: 29682569 PMCID: PMC5846438 DOI: 10.1155/2018/9171905] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Intestine is always exposed to external environment and intestinal microorganism; thus it is more sensitive to dysfunction and dysbiosis, leading to intestinal inflammation, such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and diarrhea. An increasing number of studies indicate that dietary amino acids play significant roles in preventing and treating intestinal inflammation. The review aims to summarize the functions and signaling mechanisms of amino acids in intestinal inflammation. Amino acids, including essential amino acids (EAAs), conditionally essential amino acids (CEAAs), and nonessential amino acids (NEAAs), improve the functions of intestinal barrier and expressions of anti-inflammatory cytokines and tight junction proteins but decrease oxidative stress and the apoptosis of enterocytes as well as the expressions of proinflammatory cytokines in the intestinal inflammation. The functions of amino acids are associated with various signaling pathways, including mechanistic target of rapamycin (mTOR), inducible nitric oxide synthase (iNOS), calcium-sensing receptor (CaSR), nuclear factor-kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), nuclear erythroid-related factor 2 (Nrf2), general controlled nonrepressed kinase 2 (GCN2), and angiotensin-converting enzyme 2 (ACE2).
Collapse
|
37
|
Wu Q, Wang X, Nepovimova E, Wang Y, Yang H, Li L, Zhang X, Kuca K. Antioxidant agents against trichothecenes: new hints for oxidative stress treatment. Oncotarget 2017; 8:110708-110726. [PMID: 29299181 PMCID: PMC5746416 DOI: 10.18632/oncotarget.22800] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022] Open
Abstract
Trichothecenes are a group of mycotoxins mainly produced by fungi of genus Fusarium. Due to high toxicity and widespread dissemination, T-2 toxin and deoxynivalenol (DON) are considered to be the most important compounds of this class. Trichothecenes generate free radicals, including reactive oxygen species (ROS), which induce lipid peroxidation, decrease levels of antioxidant enzymes, and ultimately lead to apoptosis. Consequently, oxidative stress is an active area of research on the toxic mechanisms of trichothecenes, and identification of antioxidant agents that could be used against trichothecenes is crucial for human health. Numerous natural compounds have been analyzed and have shown to function very effectively as antioxidants against trichothecenes. In this review, we summarize the molecular mechanisms underlying oxidative stress induced by these compounds, and discuss current knowledge regarding such antioxidant agents as vitamins, quercetin, selenium, glucomannan, nucleotides, antimicrobial peptides, bacteria, polyunsaturated fatty acids, oligosaccharides, and plant extracts. These products inhibit trichothecene-induced oxidative stress by (1) inhibiting ROS generation and induced DNA damage and lipid peroxidation; (2) increasing antioxidant enzyme activity; (3) blocking the MAPK and NF-κB signaling pathways; (4) inhibiting caspase activity and apoptosis; (5) protecting mitochondria; and (6) regulating anti-inflammatory actions. Finally, we summarize some decontamination methods, including bacterial and yeast biotransformation and degradation, as well as mycotoxin-binding agents. This review provides a comprehensive overview of antioxidant agents against trichothecenes and casts new light on the attenuation of oxidative stress.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Yun Wang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Hualin Yang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Li Li
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Xiujuan Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| |
Collapse
|
38
|
Liu Y, Wang X, Hu CAA. Therapeutic Potential of Amino Acids in Inflammatory Bowel Disease. Nutrients 2017; 9:nu9090920. [PMID: 28832517 PMCID: PMC5622680 DOI: 10.3390/nu9090920] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/06/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD), which includes both ulcerative colitis and Crohn’s disease, is a chronic relapsing inflammation of the gastrointestinal tract, and is difficult to treat. The pathophysiology of IBD is multifactorial and not completely understood, but genetic components, dysregulated immune responses, oxidative stress, and inflammatory mediators are known to be involved. Animal models of IBD can be chemically induced, and are used to study etiology and to evaluate potential treatments of IBD. Currently available IBD treatments can decrease the duration of active disease but because of their adverse effects, the search for novel therapeutic strategies that can restore intestinal homeostasis continues. This review summarizes and discusses what is currently known of the effects of amino acids on the reduction of inflammation, oxidative stress, and cell death in the gut when IBD is present. Recent studies in animal models have identified dietary amino acids that improve IBD, but amino acid supplementation may not be adequate to replace conventional therapy. The animal models used in dietary amino acid research in IBD are described.
Collapse
Affiliation(s)
- Yulan Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Xiuying Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Chien-An Andy Hu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
39
|
Liao P, Liao M, Li L, Tan B, Yin Y. Effect of deoxynivalenol on apoptosis, barrier function, and expression levels of genes involved in nutrient transport, mitochondrial biogenesis and function in IPEC-J2 cells. Toxicol Res (Camb) 2017; 6:866-877. [PMID: 30090549 DOI: 10.1039/c7tx00202e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022] Open
Abstract
This study was conducted to determine the effect of 200 ng mL-1 and 2000 ng mL-1 deoxynivalenol (DON) on apoptosis, barrier function, nutrient transporter gene expression, and free amino acid variation as well as on mitochondrial biogenesis and function-related gene expression in the intestinal porcine epithelial cell line J2 (IPEC-J2) for 6 h, 12 h, and 24 h. Exposure to 200 ng mL-1 DON inhibited the cell viability and promoted cell cycle progression from the G2/M phase to the S phase (P < 0.05). The data showed that the IPEC-J2 cell content of free amino acids, such as valine, methionine, leucine, and phenylalanine, was increased (P < 0.05) after treatment for 6 h; the aspartate, threonine, and lysine contents increased (P < 0.05) after treatment for 12 h; and the aspartate, serine, glycine, alanine, isoleucine, leucine, and lysine contents decreased (P < 0.05) after treatment for 24 h. The expression levels of barrier function genes, including zonula occludens 1 (ZO-1), occludin (OCLN), and claudin 1 (CLDN1), showed a significant reduction (P < 0.05). Moreover, the expression levels of differently regulated nutrient transporter genes, including B0,+ amino acid transporter (B0,+AT) and sodium-glucose transporter 1 (SGLT1) genes, showed a significant decrease (P < 0.05), while the Na+-dependent neutral amino acid transporter 2 (ASCT2) and glucose transporter type 2 (GLUT2) showed a significant increase (P < 0.01). The expression levels of cytokine genes, including IL-8, and IL-1β genes, showed a significant increase (P < 0.05). Furthermore, the expression levels of mitochondrial biogenesis and function-related genes, including mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF), mitochondrial single-strand DNA-binding protein (mt SSB) and mitochondrial polymerase r (mt polr), NADH dehydrogenase subunit 4 (ND4) and cytochrome c oxidase (CcOX) IV, CcOX V and cytochrome c (Cyt c), mammalian silencing information regulator-2α (SIRT-1), glucokinase and citrate synthase (CS), showed a significant increase (P < 0.05). Taken together, the present study indicated that 200 and 2000 ng mL-1 DON could affect proliferation and cell cycle progression from the G2/M phase to the S phase and could mediate the expression levels of differently regulated barrier function, nutrient transport, and mitochondrial biogenesis and function-related genes.
Collapse
Affiliation(s)
- Peng Liao
- Key Laboratory of Agro-ecological Processes in Subtropical Region , Institute of Subtropical Agriculture , Chinese Academy of Sciences , 644# Yuandaer Road , Changsha 410125 , Hunan Province , China . ; ; Tel: +86-731-8461-9703
| | - Meifang Liao
- College of Traditional Chinese Medicine , Hunan University of Chinese Medicine , 300# Xueshi Road , Changsha 410208 , Hunan Province , China
| | - Ling Li
- College of Traditional Chinese Medicine , Hunan University of Chinese Medicine , 300# Xueshi Road , Changsha 410208 , Hunan Province , China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region , Institute of Subtropical Agriculture , Chinese Academy of Sciences , 644# Yuandaer Road , Changsha 410125 , Hunan Province , China . ; ; Tel: +86-731-8461-9703
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region , Institute of Subtropical Agriculture , Chinese Academy of Sciences , 644# Yuandaer Road , Changsha 410125 , Hunan Province , China . ; ; Tel: +86-731-8461-9703
| |
Collapse
|
40
|
Wu L, Li J, Li Y, Li T, He Q, Tang Y, Liu H, Su Y, Yin Y, Liao P. Aflatoxin B 1, zearalenone and deoxynivalenol in feed ingredients and complete feed from different Province in China. J Anim Sci Biotechnol 2016; 7:63. [PMID: 27790372 PMCID: PMC5075205 DOI: 10.1186/s40104-016-0122-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The current study was carried out to provide a reference for monitory of aflatoxin B1 (AFB1), zearalenone (ZEN) and deoxynivalenol (DON) contamination in feed ingredients and complete feeds were collected from different Province in China from 2013 to 2015. METHODS A total of 443 feed ingredients, including 220 corn, 24 wheat, 24 domestic distillers dried grains with soluble (DDGS), 55 bran, 20 wheat shorts and red dog, 37 imported DDGS, 34 corn germ meal and 29 soybean meal as well as 127 complete feeds including 25 pig complete feed (powder), 90 pig complete feed (pellet), six duck complete feed and six cattle complete feed were randomly collected from different Province in China, respectively, by high-performance chromatography in combined with UV or fluorescence analysis. RESULTS The incidence rates of AFB1, ZEN and DON contamination of feed ingredients and complete feeds were 80.8, 92.3 and 93.9 %, respectively. The percentage of positive samples for DON ranged from 66.7 to 100 %. Domestic DDGS and imported DDGS presented the most serious contamination AFB1, ZEN and DON contamination levels of feeds ranged from 61.5 to 100 %, indicated that serious contamination over the studied 3-year period. CONCLUSION The current data provide clear evidence that AFB1, ZEN and DON contamination of feed ingredients and complete feeds in different Province in China is serious and differs over past 3-year. The use of corn, domestic DDGS, imported DDGS and corn germ meal, which may be contaminated with these three mycotoxins, as animal feed may triggered a health risk for animal. Feeds are most contaminated with DON followed by ZEN and AFB1. Mycotoxins contamination in feed ingredients and complete feeds should be monitored routinely in China.
Collapse
Affiliation(s)
- Li Wu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644# Yuandaer Road, Changsha, 410125 China
| | - Jianjun Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644# Yuandaer Road, Changsha, 410125 China
| | - Yunhu Li
- Hunan Biological and Electromechanical Polytechnic, The Party and Government Office, Donghu Road, Changsha, 410123 China
| | - Tiejun Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644# Yuandaer Road, Changsha, 410125 China
| | - Qinghua He
- ShenZhen University, Shenzhen, 518061 China
| | - Yulong Tang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644# Yuandaer Road, Changsha, 410125 China
| | - Hongnan Liu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644# Yuandaer Road, Changsha, 410125 China
| | - Yongteng Su
- NanJing Agriculture University, Nanjing, 210095 China.,JiangSu Aomai Bio-Technology Co., Ltd, Nanjing, 211226 China
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644# Yuandaer Road, Changsha, 410125 China
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, 644# Yuandaer Road, Changsha, 410125 China
| |
Collapse
|
41
|
Payros D, Alassane-Kpembi I, Pierron A, Loiseau N, Pinton P, Oswald IP. Toxicology of deoxynivalenol and its acetylated and modified forms. Arch Toxicol 2016; 90:2931-2957. [PMID: 27663890 DOI: 10.1007/s00204-016-1826-4] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
Abstract
Mycotoxins are the most frequently occurring natural contaminants in human and animal diet. Among them, deoxynivalenol (DON), produced by Fusarium, is one of the most prevalent and thus represents an important health risk. Recent detection methods revealed new mycotoxins and new molecules derivated from the "native" mycotoxins. The main derivates of DON are the acetylated forms produced by the fungi (3- and 15-acetyl-DON), the biologically "modified" forms produced by the plant (deoxynivalenol-3-β-D-glucopyranoside), or after bacteria transformation (de-epoxy DON, 3-epi-DON and 3-keto-DON) as well as the chemically "modified" forms (norDON A-C and DON-sulfonates). High proportions of acetylated and modified forms of DON co-occur with DON, increasing the exposure and the health risk. DON and its acetylated and modified forms are rapidly absorbed following ingestion. At the molecular level, DON binds to the ribosome, induces a ribotoxic stress leading to the activation of MAP kinases, cellular cell-cycle arrest and apoptosis. The toxic effects of DON include emesis and anorexia, alteration of intestinal and immune functions, reduced absorption of the nutrients as well as increased susceptibility to infection and chronic diseases. In contrast to DON, very little information exists concerning the acetylated and modified forms; some can be converted back to DON, their ability to bind to the ribosome and to induce cellular effects varies according to the toxin. Except for the acetylated forms, their toxicity and impact on human and animal health are poorly documented.
Collapse
Affiliation(s)
- Delphine Payros
- Toxalim (Research center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Imourana Alassane-Kpembi
- Toxalim (Research center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Alix Pierron
- Toxalim (Research center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.,BIOMIN Research Center, Technopark 1, 3430, Tulln, Austria
| | - Nicolas Loiseau
- Toxalim (Research center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Philippe Pinton
- Toxalim (Research center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Isabelle P Oswald
- Toxalim (Research center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
42
|
Ren ZH, Deng HD, Deng YT, Deng JL, Zuo ZC, Yu SM, Shen LH, Cui HM, Xu ZW, Hu YC. Effect of the Fusarium toxins, zearalenone and deoxynivalenol, on the mouse brain. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:62-70. [PMID: 27438895 DOI: 10.1016/j.etap.2016.06.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 05/20/2023]
Abstract
The aim of this study was to find effects of Fusarium toxins on brain injury in mice. We evaluated the individual and combined effect of the Fusarium toxins zearalenone and deoxynivalenol on the mouse brain. We examined brain weight, protein, antioxidant indicators, and apoptosis. After 3 and 5days of treatment, increased levels of nitric oxide, total nitric oxide synthase, hydroxyl radical scavenging, and malondialdehyde were observed in the treatment groups. This was accompanied by reduced levels of brain protein, superoxide dismutase (apart from the low-dose zearalenone groups), glutathione, glutathione peroxidase activity, and percentage of apoptotic cells. By day 12, most of these indicators had returned to control group levels. The effects of zearalenone and deoxynivalenol were dose-dependent, and were synergistic in combination. Our results suggest that brain function is affected by zearalenone and deoxynivalenol.
Collapse
Affiliation(s)
- Z H Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - H D Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Y T Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - J L Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China.
| | - Z C Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - S M Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - L H Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - H M Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Z W Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Y C Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| |
Collapse
|
43
|
Low Dosage of Chitosan Supplementation Improves Intestinal Permeability and Impairs Barrier Function in Mice. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4847296. [PMID: 27610376 PMCID: PMC5005541 DOI: 10.1155/2016/4847296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/28/2016] [Indexed: 12/03/2022]
Abstract
The purpose of this study was to explore relationships between low dose dietary supplementation with chitosan (COS) and body weight, feed intake, intestinal barrier function, and permeability in mice. Twenty mice were randomly assigned to receive an unadulterated control diet (control group) or a dietary supplementation with 30 mg/kg dose of chitosan (COS group) for two weeks. Whilst no significant differences were found between the conditions for body weight or food and water intake, mice in the COS group had an increased serum D-lactate content (P < 0.05) and a decreased jejunal diamine oxidase (DAO) activity (P < 0.05). Furthermore, mice in COS group displayed a reduced expression of occludin and ZO-1 (P < 0.05) and a reduced expression of occludin in the ileum (P < 0.05). The conclusion drawn from these findings showed that although 30 mg/kg COS-supplemented diet had no effect on body weight or feed intake in mice, this dosage may compromise intestinal barrier function and permeability. This research will contribute to the guidance on COS supplements.
Collapse
|
44
|
Zhou K, Xie G, Wen J, Wang J, Pan W, Zhou Y, Xiao Y, Wang Y, Jia W, Cai W. Histamine is correlated with liver fibrosis in biliary atresia. Dig Liver Dis 2016; 48:921-926. [PMID: 27257052 DOI: 10.1016/j.dld.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/29/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Biliary atresia (BA) is a severe neonatal cholestasis disease that is caused by obstruction of extra bile ducts. Liver fibrosis progresses dramatically in BA, and the underlying molecular mechanism is largely unknown. METHODS Amino acids and biogenic amines were quantified by targeted metabolomic methods in livers of 52 infants with BA and 16 infants with neonatal hepatitis syndrome (NHS). Normal adjacent nontumor liver tissues from 5 hepatoblastoma infants were used as controls. Orthogonal partial least-squares discriminant analysis was used to identify the differences between BA, NHS, and control tissues. Histamine metabolism enzymes and receptors were analyzed by immunohistochemistry and Western blot. RESULTS The orthogonal partial least-squares discriminant analysis clearly separated BA from NHS and the controls using amino acid and biogenic amine profiles. Histamine was significantly increased in the livers of BA infants and was positively correlated with the severity of fibrosis. This finding was supported by the elevated l-histidine decarboxylase and reduced monoamine oxidase type B expressions in the BA infants with severe fibrosis. Furthermore, histamine receptor H1 was observed in the cholangiocytes of BA livers. CONCLUSIONS Histamine was positively correlated with fibrosis and may be a potential target to prevent liver fibrosis in BA.
Collapse
Affiliation(s)
- Kejun Zhou
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University (SJTU), Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Guoxiang Xie
- University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Jie Wen
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Jun Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Weihua Pan
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Ying Zhou
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Yongtao Xiao
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yang Wang
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, HI, United States.
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University (SJTU), Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China.
| |
Collapse
|
45
|
Du J, Li XH, Li YJ. Glutamate in peripheral organs: Biology and pharmacology. Eur J Pharmacol 2016; 784:42-8. [PMID: 27164423 DOI: 10.1016/j.ejphar.2016.05.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 01/28/2023]
Abstract
Glutamate is a versatile molecule existing in both the central nervous system and peripheral organs. Previous studies have mainly focussed on the biological effect of glutamate in the brain. Recently, abundant evidence has demonstrated that glutamate also participates in the regulation of physiopathological functions in peripheral tissues, including the lung, kidney, liver, heart, stomach and immune system, where the glutamate/glutamate receptor/glutamate transporter system plays an important role in the pathogenesis of certain diseases, such as myocardial ischaemia/reperfusion injury and acute gastric mucosa injury. All these findings provide new insight into the biology and pharmacology of glutamate and suggest a potential therapeutic role of glutamate in non-neurological diseases.
Collapse
Affiliation(s)
- Jie Du
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiao-Hui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
46
|
Physiological Concentration of Exogenous Lactate Reduces Antimycin A Triggered Oxidative Stress in Intestinal Epithelial Cell Line IPEC-1 and IPEC-J2 In Vitro. PLoS One 2016; 11:e0153135. [PMID: 27054581 PMCID: PMC4824430 DOI: 10.1371/journal.pone.0153135] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/07/2016] [Indexed: 12/02/2022] Open
Abstract
Weaning triggers an adaptation of the gut function including luminal lactate generation by lactobacilli, depending on gastrointestinal site. We hypothesized that both lactobacilli and lactate influence porcine intestinal epithelial cells. In vivo experiments showed that concentration of lactate was significantly higher in gastric, duodenal and jejunal chyme of suckling piglets compared to their weaned counterparts. In an in vitro study we investigated the impact of physiological lactate concentration as derived from the in vivo study on the porcine intestinal epithelial cells IPEC-1 and IPEC-J2. We detected direct adherence of lactobacilli on the apical epithelial surface and a modulated F-actin structure. Application of lactobacilli culture supernatant alone or lactate (25 mM) at low pH (pH 4) changed the F-actin structure in a similar manner. Treatment of IPEC cultures with lactate at near neutral pH resulted in a significantly reduced superoxide-generation in Antimycin A-challenged cells. This protective effect was nearly completely reversed by inhibition of cellular lactate uptake via monocarboxylate transporter. Lactate treatment enhanced NADH autofluorescence ratio (Fcytosol/Fnucleus) in non-challenged cells, indicating an increased availability of reduced nucleotides, but did not change the overall ATP content of the cells. Lactobacilli-derived physiological lactate concentration in intestine is relevant for alleviation of redox stress in intestinal epithelial cells.
Collapse
|
47
|
Alterations of amino acid metabolism in osteoarthritis: its implications for nutrition and health. Amino Acids 2016; 48:907-914. [DOI: 10.1007/s00726-015-2168-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/30/2015] [Indexed: 01/15/2023]
|
48
|
Abdel-Wahhab MA, El-Kady AA, Hassan AM, Abd El-Moneim OM, Abdel-Aziem SH. Effectiveness of activated carbon and Egyptian montmorillonite in the protection against deoxynivalenol-induced cytotoxicity and genotoxicity in rats. Food Chem Toxicol 2015; 83:174-182. [PMID: 26115597 DOI: 10.1016/j.fct.2015.06.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 12/28/2022]
Abstract
This study was conducted to prepare and characterize activated carbon (AC) and to evaluate its protective effect against deoxynivalenol (DON) toxicity in rats compared to Egyptian montmorillonite (EM). AC was prepared using a single-step chemical activation with phosphoric acid (H3PO4). The resulted AC has a high surface area and a high total pore volume. Male Sprague-Dawley rats were divided into 6 groups (n = 10) and treated for 3 weeks as follow: the control group, the groups fed AC or EM-supplemented diet (0.5% w/w), the group treated orally with DON (5 mg/kg b.w.) and the groups fed AC or EM-supplemented diet and treated with DON. Blood and liver samples were collected for different analyses. Treatment with DON increased liver function enzymes, lipid peroxidation, tumor necrosis factor α, DNA fragmentation, decreased hepatic glutathione content, up regulating mRNA Fas and TNF-α genes expression and increased micronucleated polychromatic erythrocytes and normochromatic erythrocytes in bone marrow. Co-treatment of DON plus AC or EM succeeded to normalize the levels of the biochemical parameters, reduced the cytotoxicity of bone marrow and ameliorated the hepatic genotoxicity. Moreover, AC was more effective than EM and has a high affinity to adsorb DON and to reduce its cytotoxicity and genotoxicity.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| | - Ahmed A El-Kady
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Aziza M Hassan
- Cell Biology Department, National Research Center, Dokki, Cairo, Egypt; Biotechnology Department, College of Science, Taif University, Saudi Arabia
| | | | | |
Collapse
|
49
|
Duan J, Yin J, Ren W, Liu T, Cui Z, Huang X, Wu L, Kim SW, Liu G, Wu X, Wu G, Li T, Yin Y. Dietary supplementation with L-glutamate and L-aspartate alleviates oxidative stress in weaned piglets challenged with hydrogen peroxide. Amino Acids 2015; 48:53-64. [PMID: 26255283 DOI: 10.1007/s00726-015-2065-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/29/2015] [Indexed: 11/29/2022]
Abstract
This study was to evaluate the protective roles of L-glutamate (Glu) and L-aspartate (Asp) in weaned piglets challenged with H2O2. Forty weaned piglets were assigned randomly into one of five groups (8 piglets/group): (1) control group (NC) in which pigs were fed a corn- and soybean meal-based diet and received intraperitoneal administration of saline; (2) H2O2 group (PC) in which pigs were fed the basal diet and received intraperitoneal administration of 10 % H2O2 (1 ml/kg body weight once on days 8 and repeated on day 11); (3) PC + Glu group (PG) in which pigs were fed the basal diet supplemented with 2.0 % Glu before intraperitoneal administration of 10 % H2O2; (4) PC + Asp group (PA) in which pigs were fed the basal diet supplemented with 1.0 % Asp before intraperitoneal administration of 10 % H2O2; (5) PC + Glu + Asp group (PGA) in which pigs were fed the basal diet supplemented with 2.0 % Glu plus 1.0 % Asp before intraperitoneal administration of 10 % H2O2. Measured parameters included daily feed intake (DFI), average daily gain (ADG), feed conversion rate (FCR), and serum anti-oxidative enzyme activities (catalase, superoxide dismutase, glutathione peroxidase-1), serum malondialdehyde and H2O2 concentrations, serum amino acid (AA) profiles, and intestinal expression of AA transporters. Dietary supplementation with Glu, Asp or their combination attenuated the decreases in DFI, ADG and feed efficiency, the increase in oxidative stress, the alterations of serum AA concentrations, and the changed expression of intestinal AA transporters in H2O2-challenged piglets. Thus, dietary supplementation with Glu or Asp alleviates growth suppression and oxidative stress, while restoring serum the amino acid pool in H2O2-challenged piglets.
Collapse
Affiliation(s)
- Jielin Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Jie Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Wenkai Ren
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Ting Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zhijie Cui
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Li Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, 27695, USA
| | - Gang Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Xi Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China. .,Changsha Lvye Biotechnology Limited Company Academician Expert Workstation, Changsha, 410128, Hunan, China. .,Guangdong Wangda Group Academician Workstation for Clean Feed Technology Research and Development in Swine, Guangzhou, 510663, Guangdong, China. .,Guangdong Hinapharm Group Academician Workstation for Biological Feed and Feed Additives and Animal Intestinal Health, Guangzhou, 511400, Guangdong, China.
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China. .,School of Biology, Hunan Normal Univesity, Changsha, 410018, Hunan, China.
| |
Collapse
|
50
|
Sun LH, Lei MY, Zhang NY, Zhao L, Krumm CS, Qi DS. Hepatotoxic effects of mycotoxin combinations in mice. Food Chem Toxicol 2015; 74:289-93. [PMID: 25445755 DOI: 10.1016/j.fct.2014.10.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 02/06/2023]
Abstract
This study was performed to assess the individual and combined toxic effects of aflatoxin B1 (AFB1), zearalenone (ZEA) and deoxynivalenol (DON) within the liver of mice. A total of 56 4-week-old weanling female mice were divided into seven groups (n = 8). For 2 weeks, each group received an oral administration of either solvent (control), AFB1, ZEA, DON, AFB1 + ZEA, AFB1 + DON or ZEA + DON per day. The results showed that AFB1, ZEA and DON induced liver injury, indicated by elevated relative liver weight, activities of alanine aminotransferase (ALT) and/or aspartate aminotransferase (AST), as well as decreased albumin (ALB) and/or total protein (TP) concentration in the serum. These mycotoxins also decreased hepatic total antioxidant capacity (T-AOC), and/or increased the concentration of malondialdehyde (MDA). Moreover, AFB1 + DON displayed synergistic effects, while AFB1 + ZEA displayed antagonistic effects on those parameters previously described. Furthermore, the apoptotic potential was demonstrated associated with an upregulation of the apoptotic genes Caspase-3 and Bax, along with a downregulation of the antiapoptotic gene Bcl-2 in liver. In conclusion, this study provides a better understanding of the toxic effects of AFB1, ZEA, DON, alone or in combinations on the liver of mice, which could contribute to the risk assessment of these mycotoxins in food and feed.
Collapse
Affiliation(s)
- Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | | | | | | | | | |
Collapse
|