1
|
De Bei O, Marchetti M, Guglielmo S, Gianquinto E, Spyrakis F, Campanini B, Bettati S, Levantino M, Ronda L. Time-resolved X-ray solution scattering unveils the events leading to hemoglobin heme capture by staphylococcal IsdB. Nat Commun 2025; 16:1361. [PMID: 39962089 PMCID: PMC11832919 DOI: 10.1038/s41467-024-54949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/25/2024] [Indexed: 02/20/2025] Open
Abstract
Infections caused by Staphylococcus aureus depend on its ability to acquire nutrients. One essential nutrient is iron, which is obtained from the heme of the human host hemoglobin (Hb) through a protein machinery called Iron-regulated surface determinant (Isd) system. IsdB is the protein in charge of heme extraction from Hb, which is the first step of the chain of events leading to iron transfer to the bacterium cell interior. In order to elucidate the molecular events leading from the formation of the initial IsdB:Hb complex to heme extraction, we use time-resolved X-ray solution scattering (TR-XSS) in combination with rapid mixing triggering. We succeed in defining the stoichiometry of IsdB:Hb binding and in describing the kinetics of the subsequent structural changes. The presented approach is potentially applicable to unveil the complex kinetic pathways generated by protein-protein interaction in different biological systems.
Collapse
Affiliation(s)
- Omar De Bei
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, Parma, Italy
| | - Marialaura Marchetti
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, Parma, Italy
| | - Stefano Guglielmo
- Department of Drug Science and Technology, University of Turin, Via Giuria, 9, Turin, Italy
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Via Giuria, 9, Turin, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via Giuria, 9, Turin, Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, Parma, Italy
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, Parma, Italy
- Institute of Biophysics, CNR, Via G. Moruzzi, 1, Pisa, Italy
| | - Matteo Levantino
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043, Grenoble, Cedex, France.
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, Parma, Italy.
- Institute of Biophysics, CNR, Via G. Moruzzi, 1, Pisa, Italy.
| |
Collapse
|
2
|
Cozzi M, Failla M, Gianquinto E, Kovachka S, Buoli Comani V, Compari C, De Bei O, Giaccari R, Marchesani F, Marchetti M, Ronda L, Rolando B, Baroni M, Cruciani G, Campanini B, Bettati S, Faggiano S, Lazzarato L, Spyrakis F. Identification of small molecules affecting the interaction between human hemoglobin and Staphylococcus aureus IsdB hemophore. Sci Rep 2024; 14:8272. [PMID: 38594253 PMCID: PMC11003968 DOI: 10.1038/s41598-024-55931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/29/2024] [Indexed: 04/11/2024] Open
Abstract
Human hemoglobin (Hb) is the preferred iron source of Staphylococcus aureus. This pathogenic bacterium exploits a sophisticated protein machinery called Iron-regulated surface determinant (Isd) system to bind Hb, extract and internalize heme, and finally degrade it to complete iron acquisition. IsdB, the surface exposed Hb receptor, is a proven virulence factor of S. aureus and the inhibition of its interaction with Hb can be pursued as a strategy to develop new classes of antimicrobials. To identify small molecules able to disrupt IsdB:Hb protein-protein interactions (PPIs), we carried out a structure-based virtual screening campaign and developed an ad hoc immunoassay to screen the retrieved set of commercially available compounds. Saturation-transfer difference (STD) NMR was applied to verify specific interactions of a sub-set of molecules, chosen based on their efficacy in reducing the amount of Hb bound to IsdB. Among molecules for which direct binding was verified, the best hit was submitted to ITC analysis to measure the binding affinity to Hb, which was found to be in the low micromolar range. The results demonstrate the viability of the proposed in silico/in vitro experimental pipeline to discover and test IsdB:Hb PPI inhibitors. The identified lead compound will be the starting point for future SAR and molecule optimization campaigns.
Collapse
Affiliation(s)
- Monica Cozzi
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sandra Kovachka
- Department of Drug Science and Technology, University of Turin, Turin, Italy
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | | | - Omar De Bei
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Institute of Biophysics, National Research Council, Pisa, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Massimo Baroni
- Molecular Discovery Ltd, Kisnetic Business Centre, Elstree, Borehamwood, Hertfordshire, UK
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | | | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Institute of Biophysics, National Research Council, Pisa, Italy
| | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy.
- Institute of Biophysics, National Research Council, Pisa, Italy.
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Turin, Italy.
| |
Collapse
|
3
|
De Bei O, Marchetti M, Ronda L, Gianquinto E, Lazzarato L, Chirgadze DY, Hardwick SW, Cooper LR, Spyrakis F, Luisi BF, Campanini B, Bettati S. Cryo-EM structures of staphylococcal IsdB bound to human hemoglobin reveal the process of heme extraction. Proc Natl Acad Sci U S A 2022; 119:e2116708119. [PMID: 35357971 PMCID: PMC9168843 DOI: 10.1073/pnas.2116708119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Iron surface determinant B (IsdB) is a hemoglobin (Hb) receptor essential for hemic iron acquisition by Staphylococcus aureus. Heme transfer to IsdB is possible from oxidized Hb (metHb), but inefficient from Hb either bound to oxygen (oxyHb) or bound to carbon monoxide (HbCO), and encompasses a sequence of structural events that are currently poorly understood. By single-particle cryo-electron microscopy, we determined the structure of two IsdB:Hb complexes, representing key species along the heme extraction pathway. The IsdB:HbCO structure, at 2.9-Å resolution, provides a snapshot of the preextraction complex. In this early stage of IsdB:Hb interaction, the hemophore binds to the β-subunits of the Hb tetramer, exploiting a folding-upon-binding mechanism that is likely triggered by a cis/trans isomerization of Pro173. Binding of IsdB to α-subunits occurs upon dissociation of the Hb tetramer into α/β dimers. The structure of the IsdB:metHb complex reveals the final step of the extraction process, where heme transfer to IsdB is completed. The stability of the complex, both before and after heme transfer from Hb to IsdB, is influenced by isomerization of Pro173. These results greatly enhance current understanding of structural and dynamic aspects of the heme extraction mechanism by IsdB and provide insight into the interactions that stabilize the complex before the heme transfer event. This information will support future efforts to identify inhibitors of heme acquisition by S. aureus by interfering with IsdB:Hb complex formation.
Collapse
Affiliation(s)
- Omar De Bei
- Interdepartmental Center Biopharmanet-TEC, University of Parma, Parma 43124, Italy
| | - Marialaura Marchetti
- Interdepartmental Center Biopharmanet-TEC, University of Parma, Parma 43124, Italy
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
| | - Luca Ronda
- Interdepartmental Center Biopharmanet-TEC, University of Parma, Parma 43124, Italy
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
- Institute of Biophysics, National Research Council, Pisa 56124, Italy
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Dimitri Y. Chirgadze
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Steven W. Hardwick
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Lee R. Cooper
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Barbara Campanini
- Interdepartmental Center Biopharmanet-TEC, University of Parma, Parma 43124, Italy
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Stefano Bettati
- Interdepartmental Center Biopharmanet-TEC, University of Parma, Parma 43124, Italy
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
- Institute of Biophysics, National Research Council, Pisa 56124, Italy
| |
Collapse
|
4
|
Ellis-Guardiola K, Clayton J, Pham C, Mahoney BJ, Wereszczynski J, Clubb RT. The Staphylococcus aureus IsdH Receptor Forms a Dynamic Complex with Human Hemoglobin that Triggers Heme Release via Two Distinct Hot Spots. J Mol Biol 2020; 432:1064-1082. [PMID: 31881209 PMCID: PMC7309296 DOI: 10.1016/j.jmb.2019.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/22/2019] [Accepted: 12/12/2019] [Indexed: 02/02/2023]
Abstract
Iron is an essential nutrient that is actively acquired by bacterial pathogens during infections. Clinically important Staphylococcus aureus obtains iron by extracting heme from hemoglobin (Hb) using the closely related IsdB and IsdH surface receptors. In IsdH, extraction is mediated by a conserved tridomain unit that contains its second (N2) and third (N3) NEAT domains joined by a helical linker, called IsdHN2N3. Leveraging the crystal structure of the IsdHN2N3:Hb complex, we have probed the mechanism of heme capture using NMR, stopped-flow transfer kinetics measurements, and molecular dynamics (MD) simulations. NMR studies of the 220 kDa IsdHN2N3:Hb complex reveal that it is dynamic, with persistent interdomain motions enabling the linker and N3 domains in the receptor to transiently engage Hb to remove its heme. An alanine mutagenesis analysis reveals that two receptor subsites positioned ~20 Å apart trigger heme release by contacting Hb's F-helix. These subsites are located within the N3 and linker domains and appear to play distinct roles in stabilizing the heme transfer transition state. Linker domain contacts primarily function to destabilize Hb-heme interactions, thereby lowering ΔH‡, while contacts from the N3 subsite play a similar destabilizing role, but also form a bridge through which heme moves from Hb to the receptor. Interestingly, MD simulations suggest that within the transiently forming interface, both the F-helix and receptor bridge are in motion, dynamically sampling conformations that are suitable for heme transfer. Thus, IsdH triggers heme release from Hb via a flexible, low-affinity interface that forms fleetingly in solution.
Collapse
Affiliation(s)
- Ken Ellis-Guardiola
- UCLA Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Joseph Clayton
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Clarissa Pham
- UCLA Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Brendan J. Mahoney
- UCLA Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Robert T. Clubb
- UCLA Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Gianquinto E, Moscetti I, De Bei O, Campanini B, Marchetti M, Luque FJ, Cannistraro S, Ronda L, Bizzarri AR, Spyrakis F, Bettati S. Interaction of human hemoglobin and semi-hemoglobins with the Staphylococcus aureus hemophore IsdB: a kinetic and mechanistic insight. Sci Rep 2019; 9:18629. [PMID: 31819099 PMCID: PMC6901573 DOI: 10.1038/s41598-019-54970-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
Among multidrug-resistant bacteria, methicillin-resistant Staphylococcus aureus is emerging as one of the most threatening pathogens. S. aureus exploits different mechanisms for its iron supply, but the preferred one is acquisition of organic iron through the expression of hemoglobin (Hb) receptors. One of these, IsdB, belonging to the Isd (Iron-Regulated Surface Determinant) system, was shown to be essential for bacterial growth and virulence. Therefore, interaction of IsdB with Hb represents a promising target for the rational design of a new class of antibacterial molecules. However, despite recent investigations, many structural and mechanistic details of complex formation and heme extraction process are still elusive. By combining site-directed mutagenesis, absorption spectroscopy, surface plasmon resonance and molecular dynamics simulations, we tackled most of the so far unanswered questions: (i) the exact complex stoichiometry, (ii) the microscopic kinetic rates of complex formation, (iii) the IsdB selectivity for binding to, and extracting heme from, α and β subunits of Hb, iv) the role of specific amino acid residues and structural regions in driving complex formation and heme transfer, and (v) the structural/dynamic effect played by the hemophore on Hb.
Collapse
Affiliation(s)
- Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Turin, 10125, Italy
| | - Ilaria Moscetti
- Department of Environmental and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy
| | - Omar De Bei
- Department of Food and Drug, University of Parma, Parma, 43124, Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, Parma, 43124, Italy.,Interdepartment Center Biopharmanet-TEC, University of Parma, Parma, 43124, Italy
| | - Marialaura Marchetti
- Department of Drug Science and Technology, University of Turin, Turin, 10125, Italy.,Interdepartment Center Biopharmanet-TEC, University of Parma, Parma, 43124, Italy
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
| | - Salvatore Cannistraro
- Department of Environmental and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy
| | - Luca Ronda
- Interdepartment Center Biopharmanet-TEC, University of Parma, Parma, 43124, Italy.,Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy.,Institute of Biophysics, National Research Council, Pisa, 56124, Italy
| | - Anna Rita Bizzarri
- Department of Environmental and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Turin, 10125, Italy.
| | - Stefano Bettati
- Interdepartment Center Biopharmanet-TEC, University of Parma, Parma, 43124, Italy. .,Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy. .,Institute of Biophysics, National Research Council, Pisa, 56124, Italy.
| |
Collapse
|
6
|
Soltani S, Ojaghi A, Robles FE. Deep UV dispersion and absorption spectroscopy of biomolecules. BIOMEDICAL OPTICS EXPRESS 2019; 10:487-499. [PMID: 30800494 PMCID: PMC6377894 DOI: 10.1364/boe.10.000487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 05/03/2023]
Abstract
Owing to the high precision and sensitivity of optical systems, there is an increasing demand for optical methods that quantitatively characterize the physical and chemical properties of biological samples. Information extracted from such quantitative methods, through phase and/or amplitude variations of light, can be crucial in the diagnosis, treatment and study of disease. In this work we apply a recently developed quantitative method, called ultraviolet hyperspectral interferometry (UHI), to characterize the dispersion and absorbing properties of various important biomolecules. Our system consists of (1) a broadband light source that spans from the deep-UV to the visible region of the spectrum, and (2) a Mach-Zehnder interferometer to gain access to complex optical properties. We apply this method to characterize (and tabulate) the dispersive and absorptive properties of hemoglobin, beta nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD), elastin, collagen, cytochrome c, tryptophan and DNA. Our results shed new light on the complex properties of important biomolecules.
Collapse
|
7
|
Macdonald R, Cascio D, Collazo MJ, Phillips M, Clubb RT. The Streptococcus pyogenes Shr protein captures human hemoglobin using two structurally unique binding domains. J Biol Chem 2018; 293:18365-18377. [PMID: 30301765 DOI: 10.1074/jbc.ra118.005261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
In order to proliferate and mount an infection, many bacterial pathogens need to acquire iron from their host. The most abundant iron source in the body is the oxygen transporter hemoglobin (Hb). Streptococcus pyogenes, a potentially lethal human pathogen, uses the Shr protein to capture Hb on the cell surface. Shr is an important virulence factor, yet the mechanism by which it captures Hb and acquires its heme is not well-understood. Here, we show using NMR and biochemical methods that Shr binds Hb using two related modules that were previously defined as domains of unknown function (DUF1533). These hemoglobin-interacting domains (HIDs), called HID1 and HID2, are autonomously folded and independently bind Hb. The 1.5 Å resolution crystal structure of HID2 revealed that it is a structurally unique Hb-binding domain. Mutagenesis studies revealed a conserved tyrosine in both HIDs that is essential for Hb binding. Our biochemical studies indicate that HID2 binds Hb with higher affinity than HID1 and that the Hb tetramer is engaged by two Shr receptors. NMR studies reveal the presence of a third autonomously folded domain between HID2 and a heme-binding NEAT1 domain, suggesting that this linker domain may position NEAT1 near Hb for heme capture.
Collapse
Affiliation(s)
- Ramsay Macdonald
- From the Department of Chemistry and Biochemistry,; UCLA-DOE Institute of Genomics and Proteomics and
| | | | | | | | - Robert T Clubb
- From the Department of Chemistry and Biochemistry,; UCLA-DOE Institute of Genomics and Proteomics and; Molecular Biology Institute, UCLA, Los Angeles, California 90095.
| |
Collapse
|
8
|
Mozzi A, Forni D, Clerici M, Cagliani R, Sironi M. The Diversity of Mammalian Hemoproteins and Microbial Heme Scavengers Is Shaped by an Arms Race for Iron Piracy. Front Immunol 2018; 9:2086. [PMID: 30271410 PMCID: PMC6142043 DOI: 10.3389/fimmu.2018.02086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
Iron is an essential micronutrient for most living species. In mammals, hemoglobin (Hb) stores more than two thirds of the body's iron content. In the bloodstream, haptoglobin (Hp) and hemopexin (Hpx) sequester free Hb or heme. Pathogenic microorganisms usually acquire iron from their hosts and have evolved complex systems of iron piracy to circumvent nutritional immunity. Herein, we performed an evolutionary analysis of genes coding for mammalian heme-binding proteins and heme-scavengers in pathogen species. The underlying hypothesis is that these molecules are engaged in a molecular arms race. We show that positive selection drove the evolution of mammalian Hb and Hpx. Positively selected sites in Hb are located at the interaction surface with Neisseria meningitidis heme scavenger HpuA and with Staphylococcus aureus iron-regulated surface determinant B (IsdB). In turn, positively selected sites in HpuA and IsdB are located in the flexible protein regions that contact Hb. A residue in Hb (S45H) was also selected on the Caprinae branch. This site stabilizes the interaction with Trypanosoma brucei hemoglobin-haptoglobin (HbHp) receptor (TbHpHbR), a molecule that also mediates trypanosome lytic factor (TLF) entry. In TbHpHbR, positive selection drove the evolution of a variant (L210S) which allows evasion from TLF but reduces affinity for HbHp. Finally, selected sites in Hpx are located at the interaction surface with the Haemophilus influenzae hemophore HxuA, which in turn displays fast evolving sites at the Hpx-binding interface. These results shed light into host-pathogens conflicts and establish the importance of nutritional immunity as an evolutionary force.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Scientific Institute, IRCCS E. Medea, Bioinformatics, Lecco, Italy
| | - Diego Forni
- Scientific Institute, IRCCS E. Medea, Bioinformatics, Lecco, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Rachele Cagliani
- Scientific Institute, IRCCS E. Medea, Bioinformatics, Lecco, Italy
| | - Manuela Sironi
- Scientific Institute, IRCCS E. Medea, Bioinformatics, Lecco, Italy
| |
Collapse
|
9
|
Sjodt M, Macdonald R, Marshall JD, Clayton J, Olson JS, Phillips M, Gell DA, Wereszczynski J, Clubb RT. Energetics underlying hemin extraction from human hemoglobin by Staphylococcus aureus. J Biol Chem 2018. [PMID: 29540481 DOI: 10.1074/jbc.ra117.000803] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a leading cause of life-threatening infections in the United States. It actively acquires the essential nutrient iron from human hemoglobin (Hb) using the iron-regulated surface-determinant (Isd) system. This process is initiated when the closely related bacterial IsdB and IsdH receptors bind to Hb and extract its hemin through a conserved tri-domain unit that contains two NEAr iron Transporter (NEAT) domains that are connected by a helical linker domain. Previously, we demonstrated that the tri-domain unit within IsdH (IsdHN2N3) triggers hemin release by distorting Hb's F-helix. Here, we report that IsdHN2N3 promotes hemin release from both the α- and β-subunits. Using a receptor mutant that only binds to the α-subunit of Hb and a stopped-flow transfer assay, we determined the energetics and micro-rate constants of hemin extraction from tetrameric Hb. We found that at 37 °C, the receptor accelerates hemin release from Hb up to 13,400-fold, with an activation enthalpy of 19.5 ± 1.1 kcal/mol. We propose that hemin removal requires the rate-limiting hydrolytic cleavage of the axial HisF8 Nϵ-Fe3+ bond, which, based on molecular dynamics simulations, may be facilitated by receptor-induced bond hydration. Isothermal titration calorimetry experiments revealed that two distinct IsdHN2N3·Hb protein·protein interfaces promote hemin release. A high-affinity receptor·Hb(A-helix) interface contributed ∼95% of the total binding standard free energy, enabling much weaker receptor interactions with Hb's F-helix that distort its hemin pocket and cause unfavorable changes in the binding enthalpy. We present a model indicating that receptor-introduced structural distortions and increased solvation underlie the IsdH-mediated hemin extraction mechanism.
Collapse
Affiliation(s)
- Megan Sjodt
- From the Department of Chemistry and Biochemistry.,UCLA-DOE Institute of Genomics and Proteomics, and
| | - Ramsay Macdonald
- From the Department of Chemistry and Biochemistry.,UCLA-DOE Institute of Genomics and Proteomics, and
| | | | - Joseph Clayton
- the Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616
| | - John S Olson
- the Department of BioSciences, Rice University, Houston, Texas 77251, and
| | | | - David A Gell
- the School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Jeff Wereszczynski
- the Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Robert T Clubb
- From the Department of Chemistry and Biochemistry, .,UCLA-DOE Institute of Genomics and Proteomics, and.,Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
10
|
Abstract
Iron is an essential micronutrient for both microbes and humans alike. For well over half a century we have known that this element, in particular, plays a pivotal role in health and disease and, most especially, in shaping host-pathogen interactions. Intracellular iron concentrations serve as a critical signal in regulating the expression not only of high-affinity iron acquisition systems in bacteria, but also of toxins and other noted virulence factors produced by some major human pathogens. While we now are aware of many strategies that the host has devised to sequester iron from invading microbes, there are as many if not more sophisticated mechanisms by which successful pathogens overcome nutritional immunity imposed by the host. This review discusses some of the essential components of iron sequestration and scavenging mechanisms of the host, as well as representative Gram-negative and Gram-positive pathogens, and highlights recent advances in the field. Last, we address how the iron acquisition strategies of pathogenic bacteria may be exploited for the development of novel prophylactics or antimicrobials.
Collapse
|
11
|
Rapid Heme Transfer Reactions between NEAr Transporter Domains of Staphylococcus aureus: A Theoretical Study Using QM/MM and MD Simulations. PLoS One 2015; 10:e0145125. [PMID: 26658942 PMCID: PMC4684392 DOI: 10.1371/journal.pone.0145125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/29/2015] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, most iron is present as heme or is chelated by proteins. Thus, Gram-positive pathogens such as Staphylococcus aureus have evolved an iron-regulated surface determinant (Isd) system that transports heme across thick cell walls into the cytoplasm. Recent studies have demonstrated that heme is rapidly transferred between the NEAr Transporter (NEAT) domains of the Isd system, despite its high affinity toward each domain, suggesting the presence of an intermediate NEAT•heme•NEAT complex. In the present study, we performed short restrained molecular dynamics (MD) simulations to dock the acceptor NEAT domain to the donor NEAT•heme complex and obtained models where the two NEAT domains were arranged with two-fold pseudo symmetry around the heme molecule. After turning off the restraints, complex structures were stably maintained during subsequent unrestrained MD simulations, except for the hydrogen bond between the propionate group of the heme molecule and the donor NEAT domain, potentially facilitating the transition of heme from the donor to the acceptor. Subsequent structural optimization using the quantum mechanics/molecular mechanics (QM/MM) method showed that two tyrosine residues, one from each NEAT domain, were simultaneously coordinated to the ferric heme iron in the intermediate complex only if they were deprotonated. Based on these results, we propose a reaction scheme for heme transfer between NEAT domains.
Collapse
|
12
|
Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 2015; 39:592-630. [DOI: 10.1093/femsre/fuv009] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
|
13
|
Sjodt M, Macdonald R, Spirig T, Chan AH, Dickson CF, Fabian M, Olson JS, Gell DA, Clubb RT. The PRE-Derived NMR Model of the 38.8-kDa Tri-Domain IsdH Protein from Staphylococcus aureus Suggests That It Adaptively Recognizes Human Hemoglobin. J Mol Biol 2015; 428:1107-1129. [PMID: 25687963 DOI: 10.1016/j.jmb.2015.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/31/2015] [Accepted: 02/07/2015] [Indexed: 01/11/2023]
Abstract
Staphylococcus aureus is a medically important bacterial pathogen that, during infections, acquires iron from human hemoglobin (Hb). It uses two closely related iron-regulated surface determinant (Isd) proteins to capture and extract the oxidized form of heme (hemin) from Hb, IsdH and IsdB. Both receptors rapidly extract hemin using a conserved tri-domain unit consisting of two NEAT (near iron transporter) domains connected by a helical linker domain. To gain insight into the mechanism of extraction, we used NMR to investigate the structure and dynamics of the 38.8-kDa tri-domain IsdH protein (IsdH(N2N3), A326-D660 with a Y642A mutation that prevents hemin binding). The structure was modeled using long-range paramagnetic relaxation enhancement (PRE) distance restraints, dihedral angle, small-angle X-ray scattering, residual dipolar coupling and inter-domain NOE nuclear Overhauser effect data. The receptor adopts an extended conformation wherein the linker and N3 domains pack against each other via a hydrophobic interface. In contrast, the N2 domain contacts the linker domain via a hydrophilic interface and, based on NMR relaxation data, undergoes inter-domain motions enabling it to reorient with respect to the body of the protein. Ensemble calculations were used to estimate the range of N2 domain positions compatible with the PRE data. A comparison of the Hb-free and Hb-bound forms reveals that Hb binding alters the positioning of the N2 domain. We propose that binding occurs through a combination of conformational selection and induced-fit mechanisms that may promote hemin release from Hb by altering the position of its F helix.
Collapse
Affiliation(s)
- Megan Sjodt
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA; University of California, Los Angeles-Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Ramsay Macdonald
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA; University of California, Los Angeles-Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Thomas Spirig
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Albert H Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA; University of California, Los Angeles-Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Claire F Dickson
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Marian Fabian
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | - John S Olson
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | - David A Gell
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA; University of California, Los Angeles-Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA.
| |
Collapse
|