1
|
Warin J, Vedrenne N, Tam V, Zhu M, Yin D, Lin X, Guidoux-D’halluin B, Humeau A, Roseiro L, Paillat L, Chédeville C, Chariau C, Riemers F, Templin M, Guicheux J, Tryfonidou MA, Ho JW, David L, Chan D, Camus A. In vitro and in vivo models define a molecular signature reference for human embryonic notochordal cells. iScience 2024; 27:109018. [PMID: 38357665 PMCID: PMC10865399 DOI: 10.1016/j.isci.2024.109018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding the emergence of human notochordal cells (NC) is essential for the development of regenerative approaches. We present a comprehensive investigation into the specification and generation of bona fide NC using a straightforward pluripotent stem cell (PSC)-based system benchmarked with human fetal notochord. By integrating in vitro and in vivo transcriptomic data at single-cell resolution, we establish an extended molecular signature and overcome the limitations associated with studying human notochordal lineage at early developmental stages. We show that TGF-β inhibition enhances the yield and homogeneity of notochordal lineage commitment in vitro. Furthermore, this study characterizes regulators of cell-fate decision and matrisome enriched in the notochordal niche. Importantly, we identify specific cell-surface markers opening avenues for differentiation refinement, NC purification, and functional studies. Altogether, this study provides a human notochord transcriptomic reference that will serve as a resource for notochord identification in human systems, diseased-tissues modeling, and facilitating future biomedical research.
Collapse
Affiliation(s)
- Julie Warin
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Nicolas Vedrenne
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
- Inserm, Univ. Limoges, Pharmacology & Transplantation, U1248, CHU Limoges, Service de Pharmacologie, toxicologie et pharmacovigilance, FHU SUPORT, 87000 Limoges, France
| | - Vivian Tam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Mengxia Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Danqing Yin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Xinyi Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Bluwen Guidoux-D’halluin
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Antoine Humeau
- Inserm, Univ. Limoges, Pharmacology & Transplantation, U1248, CHU Limoges, Service de Pharmacologie, toxicologie et pharmacovigilance, FHU SUPORT, 87000 Limoges, France
| | - Luce Roseiro
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Lily Paillat
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Claire Chédeville
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Caroline Chariau
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, 44000 Nantes, France
| | - Frank Riemers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Markus Templin
- NMI Natural and Medical Sciences Institute, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joshua W.K. Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Laurent David
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, 44000 Nantes, France
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Danny Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Anne Camus
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| |
Collapse
|
2
|
Xia KS, Li DD, Wang CG, Ying LW, Wang JK, Yang B, Shu JW, Huang XP, Zhang YA, Yu C, Zhou XP, Li FC, Slater NK, Tang JB, Chen QX, Liang CZ. An esterase-responsive ibuprofen nano-micelle pre-modified embryo derived nucleus pulposus progenitor cells promote the regeneration of intervertebral disc degeneration. Bioact Mater 2023; 21:69-85. [PMID: 36017070 PMCID: PMC9399388 DOI: 10.1016/j.bioactmat.2022.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 10/27/2022] Open
|
3
|
Zhang X, Hu Y, Hao D, Li T, Jia Y, Hu W, Xu Z. New strategies for the treatment of intervertebral disc degeneration: cell, exosome, gene, and tissue engineering. Am J Transl Res 2022; 14:8031-8048. [PMID: 36505274 PMCID: PMC9730054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
Abstract
Low back pain (LBP) caused by intervertebral disc (IVD) generation (IVDD) has always been an important problem that cannot be ignored. Traditional therapies have many deep-rooted and intractable complications that promote their treatment mode transfer to new therapies. This article mainly summarizes the shortcomings of traditional treatment methods and analyzes the research status and future development direction of IVDD treatment. We outlined the most promising IVDD therapies, including cell, exosome, gene, and tissue engineering therapy, especially tissue engineering therapy, which runs through the whole process of other therapies. In addition, the article focuses on the cellular, animal, and preclinical challenges faced by each therapeutic approach, as well as their respective advantages and disadvantages, to provide better ideas for relieving the IVDD patients' pain through new treatment methods.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong UniversityXi’an 710054, Shaanxi, China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong UniversityXi’an 710054, Shaanxi, China
| | - Tao Li
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong UniversityXi’an 710054, Shaanxi, China
| | - Yuhan Jia
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong UniversityXi’an 710054, Shaanxi, China
| | - Wei Hu
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong UniversityXi’an 710054, Shaanxi, China
| | - Zhengwei Xu
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong UniversityXi’an 710054, Shaanxi, China
| |
Collapse
|
4
|
Bach FC, Poramba-Liyanage DW, Riemers FM, Guicheux J, Camus A, Iatridis JC, Chan D, Ito K, Le Maitre CL, Tryfonidou MA. Notochordal Cell-Based Treatment Strategies and Their Potential in Intervertebral Disc Regeneration. Front Cell Dev Biol 2022; 9:780749. [PMID: 35359916 PMCID: PMC8963872 DOI: 10.3389/fcell.2021.780749] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic low back pain is the number one cause of years lived with disability. In about 40% of patients, chronic lower back pain is related to intervertebral disc (IVD) degeneration. The standard-of-care focuses on symptomatic relief, while surgery is the last resort. Emerging therapeutic strategies target the underlying cause of IVD degeneration and increasingly focus on the relatively overlooked notochordal cells (NCs). NCs are derived from the notochord and once the notochord regresses they remain in the core of the developing IVD, the nucleus pulposus. The large vacuolated NCs rapidly decline after birth and are replaced by the smaller nucleus pulposus cells with maturation, ageing, and degeneration. Here, we provide an update on the journey of NCs and discuss the cell markers and tools that can be used to study their fate and regenerative capacity. We review the therapeutic potential of NCs for the treatment of IVD-related lower back pain and outline important future directions in this area. Promising studies indicate that NCs and their secretome exerts regenerative effects, via increased proliferation, extracellular matrix production, and anti-inflammatory effects. Reports on NC-like cells derived from embryonic- or induced pluripotent-stem cells claim to have successfully generated NC-like cells but did not compare them with native NCs for phenotypic markers or in terms of their regenerative capacity. Altogether, this is an emerging and active field of research with exciting possibilities. NC-based studies demonstrate that cues from developmental biology can pave the path for future clinical therapies focused on regenerating the diseased IVD.
Collapse
Affiliation(s)
- Frances C. Bach
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Frank M. Riemers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jerome Guicheux
- UMR 1229-RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- UFR Odontologie, Université de Nantes, Nantes, France
- PHU4 OTONN, CHU Nantes, Nantes, France
| | - Anne Camus
- UMR 1229-RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Orthopedics, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Marianna A. Tryfonidou,
| |
Collapse
|
5
|
Hickman TT, Rathan-Kumar S, Peck SH. Development, Pathogenesis, and Regeneration of the Intervertebral Disc: Current and Future Insights Spanning Traditional to Omics Methods. Front Cell Dev Biol 2022; 10:841831. [PMID: 35359439 PMCID: PMC8963184 DOI: 10.3389/fcell.2022.841831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
The intervertebral disc (IVD) is the fibrocartilaginous joint located between each vertebral body that confers flexibility and weight bearing capabilities to the spine. The IVD plays an important role in absorbing shock and stress applied to the spine, which helps to protect not only the vertebral bones, but also the brain and the rest of the central nervous system. Degeneration of the IVD is correlated with back pain, which can be debilitating and severely affects quality of life. Indeed, back pain results in substantial socioeconomic losses and healthcare costs globally each year, with about 85% of the world population experiencing back pain at some point in their lifetimes. Currently, therapeutic strategies for treating IVD degeneration are limited, and as such, there is great interest in advancing treatments for back pain. Ideally, treatments for back pain would restore native structure and thereby function to the degenerated IVD. However, the complex developmental origin and tissue composition of the IVD along with the avascular nature of the mature disc makes regeneration of the IVD a uniquely challenging task. Investigators across the field of IVD research have been working to elucidate the mechanisms behind the formation of this multifaceted structure, which may identify new therapeutic targets and inform development of novel regenerative strategies. This review summarizes current knowledge base on IVD development, degeneration, and regenerative strategies taken from traditional genetic approaches and omics studies and discusses the future landscape of investigations in IVD research and advancement of clinical therapies.
Collapse
Affiliation(s)
- Tara T. Hickman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sudiksha Rathan-Kumar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sun H. Peck
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Sun H. Peck,
| |
Collapse
|
6
|
Lin H, Tian S, Peng Y, Wu L, Xiao Y, Qing X, Shao Z. IGF Signaling in Intervertebral Disc Health and Disease. Front Cell Dev Biol 2022; 9:817099. [PMID: 35178405 PMCID: PMC8843937 DOI: 10.3389/fcell.2021.817099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022] Open
Abstract
Low back pain (LBP) is a common musculoskeletal symptom, which brings a lot of pain and economic loss to patients. One of the most common causes of LBP is intervertebral disc degeneration (IVDD). However, pathogenesis is still debated, and therapeutic options are limited. Insulin-like growth factor (IGF) signaling pathways play an important role in regulating different cell processes, including proliferation, differentiation, migration, or cell death, which are critical to the homeostasis of tissues and organs. The IGF signaling is crucial in the occurrence and progression of IVDD. The activation of IGF signaling retards IVDD by increasing cell proliferation, promoting extracellular matrix (ECM) synthesis, inhibiting ECM decomposition, and preventing apoptosis and senescence of disc cells. However, abnormal activation of IGF signaling may promote the process of IVDD. IGF signaling is currently considered to have a promising treatment prospect for IVDD. An in-depth understanding of the role of IGF signaling in IVDD may help find a novel approach for IVDD treatment.
Collapse
Affiliation(s)
- Hui Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Tian
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xiao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangcheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Yamada K, Iwasaki N, Sudo H. Biomaterials and Cell-Based Regenerative Therapies for Intervertebral Disc Degeneration with a Focus on Biological and Biomechanical Functional Repair: Targeting Treatments for Disc Herniation. Cells 2022; 11:602. [PMID: 35203253 PMCID: PMC8870062 DOI: 10.3390/cells11040602] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a common cause of low back pain and most spinal disorders. As IVD degeneration is a major obstacle to the healthy life of so many individuals, it is a major issue that needs to be overcome. Currently, there is no clinical treatment for the regeneration of degenerated IVDs. However, recent advances in regenerative medicine and tissue engineering suggest the potential of cell-based and/or biomaterial-based IVD regeneration therapies. These treatments may be indicated for patients with IVDs in the intermediate degenerative stage, a point where the number of viable cells decreases, and the structural integrity of the disc begins to collapse. However, there are many biological, biomechanical, and clinical challenges that must be overcome before the clinical application of these IVD regeneration therapies can be realized. This review summarizes the basic research and clinical trials literature on cell-based and biomaterial-based IVD regenerative therapies and outlines the important role of these strategies in regenerative treatment for IVD degenerative diseases, especially disc herniation.
Collapse
Affiliation(s)
- Katsuhisa Yamada
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
8
|
Intervertebral Disc Stem/Progenitor Cells: A Promising "Seed" for Intervertebral Disc Regeneration. Stem Cells Int 2021; 2021:2130727. [PMID: 34367292 PMCID: PMC8342144 DOI: 10.1155/2021/2130727] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is considered to be the primary reason for low back pain (LBP), which has become more prevalent from 21 century, causing an enormous economic burden for society. However, in spite of remarkable improvements in the basic research of IVD degeneration (IVDD), the effects of clinical treatments of IVDD are still leaving much to be desired. Accumulating evidence has proposed the existence of endogenous stem/progenitor cells in the IVD that possess the ability of proliferation and differentiation. However, few studies have reported the biological properties and potential application of IVD progenitor cells in detail. Even so, these stem/progenitor cells have been consumed as a promising cell source for the regeneration of damaged IVD. In this review, we will first introduce IVD, describe its physiology and stem/progenitor cell niche, and characterize IVDSPCs between homeostasis and IVD degeneration. We will then summarize recent studies on endogenous IVDSPC-based IVD regeneration and exogenous cell-based therapy for IVDD. Finally, we will discuss the potential applications and future developments of IVDSPC-based repair of IVD degeneration.
Collapse
|
9
|
Li D, Zeng Q, Jiang Z, Ding L, Lu W, Bian M, Wu J. Induction of notochordal differentiation of bone marrow mesenchymal‑derived stem cells via the stimulation of notochordal cell‑rich nucleus pulposus tissue. Mol Med Rep 2020; 23:162. [PMID: 33355376 PMCID: PMC7789091 DOI: 10.3892/mmr.2020.11801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022] Open
Abstract
The degeneration of intervertebral disc (IVD) tissue, initiated following the disappearance of notochordal cells (NCs), is characterized by the decreased number of nucleus pulposus (NP) cells (NPCs) and extracellular matrix. Transplanting proper cells into the IVD may sustain cell numbers, resulting in the synthesis of new matrix; this represents a minimally invasive regenerative therapy. However, the lack of cells with a correct phenotype severely hampers the development of regenerative therapy. The present study aimed to investigate whether porcine NC‑rich NP tissue stimulates bone marrow‑derived mesenchymal stem cell (BM‑MSC) differentiation toward NC‑like cells, which possess promising regenerative ability, for the treatment of disc degeneration diseases. BM‑MSCs were successfully isolated from porcine femurs and tibiae, which expressed CD90 and CD105 markers and did not express CD45. Differentiation induction experiments revealed that the isolated cells had osteogenic and adipogenic differentiation potential. When co‑cultured with NC‑rich NP tissue, the BM‑MSCs successfully differentiated into NC‑like cells. Cell morphological analysis revealed that the cells exhibited an altered morphology, from a shuttle‑like to a circular one, and the expression of NC marker genes, including brachyury, keratin‑8, and keratin‑18, was enhanced, and the cells exhibited the ability to generate aggrecan and collagen II. Taken together, the findings of the present study demonstrated that the primarily isolated and cultured BM‑MSCs may be stimulated to differentiate into NC‑like cells by porcine NC‑rich NP explants, potentially providing an ideal cell source for regenerative therapies for disc degeneration diseases.
Collapse
Affiliation(s)
- Defang Li
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Qingmin Zeng
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Zengxin Jiang
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Lei Ding
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Wei Lu
- Department of Orthopedic Surgery, Shanghai TCM‑Integrated Hospital, Shanghai University of TCM, Shanghai 200080, P.R. China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Jingping Wu
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
10
|
Hu A, Xing R, Jiang L, Li Z, Liu P, Wang H, Li X, Dong J. Thermosensitive hydrogels loaded with human‐induced pluripotent stem cells overexpressing growth differentiation factor‐5 ameliorate intervertebral disc degeneration in rats. J Biomed Mater Res B Appl Biomater 2020; 108:2005-2016. [DOI: 10.1002/jbm.b.34541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 11/29/2019] [Indexed: 08/30/2023]
Abstract
AbstractTo evaluate the effects of thermosensitive hydrogels loaded with human‐induced pluripotent stem cells transfected with the growth differentiation factor‐5 (GDF5‐hiPSCs) on rat intervertebral disc regeneration. GDF5‐hiPSCs were cocultured with rat nucleus pulposus (NP) cells in vitro. Real‐time PCR and western blot were used to determine the differentiation of hiPSCs. Rat caudal intervertebral discs were punctured using a needle under X‐ray, and groups of coccygeal (Co) discs were subject to various treatments: Puncture group (Co6/7, punctured without treatment); Hydrogel group (Co7/8, 2 μl of hydrogel injected without cells); GDF5‐hiPSCs + Hydrogel group (Co8/9, 2 μl of GDF5‐hiPSCs‐loaded hydrogel injected); and Normal control (Co5/6). X‐ray, MRI, and histological evaluations were performed at 1, 2, and 3 months after cell transplantation and relative changes in the disc height index (DHI%) and voxel count were calculated and compared. GDF5‐hiPSCs were successfully differentiated to a chondrogenic linage after cocultured with rat NP cells. In terms of X‐ray, MRI, and HE staining scores, the GDF5‐hiPSCs + Hydrogel group was significantly superior to the Puncture and Hydrogel groups (p < .05). Compared with the Normal group, the MRI‐based voxel count of the GDF5‐hiPSCs + Hydrogel group was significantly lower at 1, 2, and 3 months after cell transplantation (p < .05). However, there were no significant differences in histological scores at 1 and 2 months after cell transplantation compared with the Normal group (p > .05). In conclusion, thermosensitive hydrogel‐encapsulated hiPSCs overexpressing the GDF5 gene ameliorated intervertebral disc degeneration.
Collapse
Affiliation(s)
- Annan Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Rong Xing
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Libo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Zefang Li
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Peng Liu
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Houlei Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Xilei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| |
Collapse
|
11
|
NOTO Transcription Factor Directs Human Induced Pluripotent Stem Cell-Derived Mesendoderm Progenitors to a Notochordal Fate. Cells 2020; 9:cells9020509. [PMID: 32102328 PMCID: PMC7072849 DOI: 10.3390/cells9020509] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
The founder cells of the Nucleus pulposus, the centre of the intervertebral disc, originate in the embryonic notochord. After birth, mature notochordal cells (NC) are identified as key regulators of disc homeostasis. Better understanding of their biology has great potential in delaying the onset of disc degeneration or as a regenerative-cell source for disc repair. Using human pluripotent stem cells, we developed a two-step method to generate a stable NC-like population with a distinct molecular signature. Time-course analysis of lineage-specific markers shows that WNT pathway activation and transfection of the notochord-related transcription factor NOTO are sufficient to induce high levels of mesendoderm progenitors and favour their commitment toward the notochordal lineage instead of paraxial and lateral mesodermal or endodermal lineages. This study results in the identification of NOTO-regulated genes including some that are found expressed in human healthy disc tissue and highlights NOTO function in coordinating the gene network to human notochord differentiation.
Collapse
|
12
|
Diaz-Hernandez ME, Khan NM, Trochez CM, Yoon T, Maye P, Presciutti SM, Gibson G, Drissi H. Derivation of notochordal cells from human embryonic stem cells reveals unique regulatory networks by single cell-transcriptomics. J Cell Physiol 2019; 235:5241-5255. [PMID: 31840817 DOI: 10.1002/jcp.29411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
Intervertebral disc degeneration (IDD) is a public health dilemma as it is associated with low back and neck pain, a frequent reason for patients to visit the physician. During IDD, nucleus pulposus (NP), the central compartment of intervertebral disc (IVD) undergo degeneration. Stem cells have been adopted as a promising biological source to regenerate the IVD and restore its function. Here, we describe a simple, two-step differentiation strategy using a cocktail of four factors (LDN, AGN, FGF, and CHIR) for efficient derivation of notochordal cells from human embryonic stem cells (hESCs). We employed a CRISPR/Cas9 based genome-editing approach to knock-in the mCherry reporter vector upstream of the 3' untranslated region of the Noto gene in H9-hESCs and monitored notochordal cell differentiation. Our data show that treatment of H9-hESCs with the above-mentioned four factors for 6 days successfully resulted in notochordal cells. These cells were characterized by morphology, immunostaining, and gene and protein expression analyses for established notochordal cell markers including FoxA2, SHH, and Brachyury. Additionally, pan-genomic high-throughput single cell RNA-sequencing revealed an efficient and robust notochordal differentiation. We further identified a key regulatory network consisting of eight candidate genes encoding transcription factors including PAX6, GDF3, FOXD3, TDGF1, and SOX5, which are considered as potential drivers of notochordal differentiation. This is the first single cell transcriptomic analysis of notochordal cells derived from hESCs. The ability to efficiently obtain notochordal cells from pluripotent stem cells provides an additional tool to develop new cell-based therapies for the treatment of IDD.
Collapse
Affiliation(s)
- Martha E Diaz-Hernandez
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| | - Nazir M Khan
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| | | | - Tim Yoon
- Department of Orthopaedics, Emory University, Atlanta, Georgia
| | - Peter Maye
- UConn Health Center, University of Connecticut, Farmington, Connecticut
| | - Steven M Presciutti
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| | - Greg Gibson
- Center for Integrative Genomics, Georgia Tech, Atlanta, Georgia
| | - Hicham Drissi
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| |
Collapse
|
13
|
Barakat AH, Elwell VA, Lam KS. Stem cell therapy in discogenic back pain. JOURNAL OF SPINE SURGERY (HONG KONG) 2019; 5:561-583. [PMID: 32043007 PMCID: PMC6989932 DOI: 10.21037/jss.2019.09.22] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/09/2019] [Indexed: 04/23/2023]
Abstract
Chronic low back pain has both substantial social and economic impacts on patients and healthcare budgets. Adding to the magnitude of the problem is the difficulty in identifying the exact causes of disc degeneration with modern day diagnostic and imaging techniques. With that said, current non-operative and surgical treatment modalities for discogenic low back pain fails to meet the expectations in many patients and hence the challenge. The objective for newly emerging stem cell regenerative therapy is to treat degenerative disc disease (DDD) by restoring the disc's cellularity and modulating the inflammatory response. Appropriate patient selection is crucial for the success of stem cell therapy. Regenerative modalities for discogenic pain currently focus on the use of either primary cells harvested from the intervertebral discs or stem cells from other sources whether autogenic or allogenic. The microenvironment in which stem cells are being cultured has been recognized to play a crucial role in directing or maintaining the production of the desired phenotypes and may enhance their regenerative potential. This has led to a more specific focus on innovating more effective culturing techniques, delivery vehicles and scaffolds for stem cell application. Although stem cell therapy might offer an attractive alternative treatment option, more clinical studies are still needed to establish on the safety and feasibility of such therapy. In this literature review, we aim to present the most recent in vivo and in vitro studies related to the use of stem cell therapy in the treatment of discogenic low back pain.
Collapse
Affiliation(s)
- Ahmed H. Barakat
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | - Vivian A. Elwell
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | | |
Collapse
|
14
|
Sheyn D, Ben-David S, Tawackoli W, Zhou Z, Salehi K, Bez M, De Mel S, Chan V, Roth J, Avalos P, Giaconi JC, Yameen H, Hazanov L, Seliktar D, Li D, Gazit D, Gazit Z. Human iPSCs can be differentiated into notochordal cells that reduce intervertebral disc degeneration in a porcine model. Theranostics 2019; 9:7506-7524. [PMID: 31695783 PMCID: PMC6831475 DOI: 10.7150/thno.34898] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: As many as 80% of the adult population experience back pain at some point in their lifetimes. Previous studies have indicated a link between back pain and intervertebral disc (IVD) degeneration. Despite decades of research, there is an urgent need for robust stem cell therapy targeting underlying causes rather than symptoms. It has been proposed that notochordal cells (NCs) appear to be the ideal cell type to regenerate the IVD: these cells disappear in humans as they mature, are replaced by nucleus pulposus (NP) cells, and their disappearance correlates with the initiation of degeneration of the disc. Human NCs are in short supply, thus here aimed for generation of notochordal-like cells from induced pluripotent cells (iPSCs). Methods: Human iPSCs were generated from normal dermal fibroblasts by transfecting plasmids encoding for six factors: OCT4, SOX2, KLF4, L-MYC, LIN28, and p53 shRNA. Then the iPSCs were treated with GSK3i to induce differentiation towards Primitive Streak Mesoderm (PSM). The differentiation was confirmed by qRT-PCR and immunofluorescence. PSM cells were transfected with Brachyury (Br)-encoding plasmid and the cells were encapsulated in Tetronic-tetraacrylate-fibrinogen (TF) hydrogel that mimics the NP environment (G'=1kPa), cultured in hypoxic conditions (2% O2) and with specifically defined growth media. The cells were also tested in vivo in a large animal model. IVD degeneration was induced after an annular puncture in pigs, 4 weeks later the cells were injected and IVDs were analyzed at 12 weeks after the injury using MRI, gene expression analysis and histology. Results: After short-term exposure of iPSCs to GSK3i there was a significant change in cell morphology, Primitive Streak Mesoderm (PSM) markers (Brachyury, MIXL1, FOXF1) were upregulated and markers of pluripotency (Nanog, Oct4, Sox2) were downregulated, both compared to the control group. PSM cells nucleofected with Br (PSM-Br) cultured in TF hydrogels retained the NC phenotype consistently for up to 8 weeks, as seen in the gene expression analysis. PSM-Br cells were co-cultured with bone marrow (BM)-derived mesenchymal stem cells (MSCs) which, with time, expressed the NC markers in higher levels, however the levels of expression in BM-MSCs alone did not change. Higher expression of NC and NP marker genes in human BM-MSCs was found to be induced by iNC-condition media (iNC-CM) than porcine NC-CM. The annular puncture induced IVD degeneration as early as 2 weeks after the procedure. The injected iNCs were detected in the degenerated discs after 8 weeks in vivo. The iNC-treated discs were found protected from degeneration. This was evident in histological analysis and changes in the pH levels, indicative of degeneration state of the discs, observed using qCEST MRI. Immunofluorescence stains show that their phenotype was consistent with the in vitro study, namely they still expressed the notochordal markers Keratin 18, Keratin 19, Noto and Brachyury. Conclusion: In the present study, we report a stepwise differentiation method to generate notochordal cells from human iPSCs. These cells not only demonstrate a sustainable notochordal cell phenotype in vitro and in vivo, but also show the functionality of notochordal cells and have protective effect in case of induced disc degeneration and prevent the change in the pH level of the injected IVDs. The mechanism of this effect could be suggested via the paracrine effect on resident cells, as it was shown in the in vitro studies with MSCs.
Collapse
Affiliation(s)
- Dmitriy Sheyn
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Shiran Ben-David
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Wafa Tawackoli
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Zhengwei Zhou
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Khosrawdad Salehi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Maxim Bez
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, 91120, Israel
| | - Sandra De Mel
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Virginia Chan
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Joseph Roth
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Joseph C Giaconi
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Haneen Yameen
- Faculty of Biomedical Engineering, Technion, Haifa, 32003, Israel
| | - Lena Hazanov
- Faculty of Biomedical Engineering, Technion, Haifa, 32003, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion, Haifa, 32003, Israel
| | - Debiao Li
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Dan Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, 91120, Israel
| | - Zulma Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, 91120, Israel
| |
Collapse
|
15
|
Intradiscal Injection of Induced Pluripotent Stem Cell-Derived Nucleus Pulposus-Like Cell-Seeded Polymeric Microspheres Promotes Rat Disc Regeneration. Stem Cells Int 2019; 2019:6806540. [PMID: 31191679 PMCID: PMC6525958 DOI: 10.1155/2019/6806540] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/13/2019] [Indexed: 12/21/2022] Open
Abstract
Background Cell replacement therapy is an attractive alternative for treating degenerated intervertebral discs (IVDs), which are related to the reduction of nucleus pulposus-like cells (NP-lCs) and the loss of the extracellular matrix. Induced pluripotent stem cells (iPSCs) which resemble embryonic stem cells are considered to be a potential resource for restoring NP-lCs and disc homeostasis. Here, we proposed an efficient two-step differentiation protocol of human iPSCs into NP-lCs and continuously tested their in vivo ability to regenerate IVDs. Methods A polymeric gelatin microsphere (GM) was generated for sustained release of growth and differentiation factor-5 (GDF-5) and as a cell delivery vehicle of NP-lCs. By injecting NP-lC-seeded GDF-5-loaded GMs into the rat coccygeal intervertebral discs, the disc height and water content were examined with the molybdenum target radiographic imaging test and magnetic resonance imaging examination. Histology and immunohistochemistry results were shown with H&E, S-O-Fast Green, and immunohistochemistry staining. Results We demonstrated that the injection of NP-lC-seeded GDF-5-loaded GMs could reverse IDD in a rat model. The imaging examination indicated that disc height recovered and water content increased. Histology and immunohistochemistry results indicated that the NP cells as well as their extracellular matrix were partially restored. Conclusions The results suggest that NP-lC-seeded GDF-5-loaded GMs could partially regenerate degenerated intervertebral discs after transplantation into rat coccygeal intervertebral discs. Our study will help develop a promising method of stem cell-based therapy for IDD.
Collapse
|
16
|
Xia K, Gong Z, Zhu J, Yu W, Wang Y, Wang J, Xu A, Zhou X, Tao H, Li F, Liang C. Differentiation of Pluripotent Stem Cells into Nucleus Pulposus Progenitor Cells for Intervertebral Disc Regeneration. Curr Stem Cell Res Ther 2019; 14:57-64. [PMID: 30227822 DOI: 10.2174/1574888x13666180918095121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/31/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023]
Abstract
Low back pain (LBP) is one of the world's most common musculoskeletal diseases and is frequently associated with intervertebral disc degeneration (IDD). While the main cause of IDD is commonly attributed to a reduced number of nucleus pulposus (NP) cells, current treatment strategies (both surgical and more conservative) fail to replenish NP cells or reverse the pathology. Cell replacement therapies are an attractive alternative for treating IDD. However, injecting intervertebral disc (IVD) cells, chondrocytes, or mesenchymal stem cells into various animal models of IDD indicate that transplanted cells generally fail to survive and engraft into the avascular IVD niche. Whereas pluripotent stem cells (PSCs), including induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), hold great potential for revolutionizing regenerative medicine, current protocols for differentiating these cells into NP-like cells are inadequate. Nucleus pulposus progenitor cells (NPPCs), which are derived from the embryonic notochord, can not only survive within the harsh hypoxic environment of the IVD, but they also efficiently differentiate into NP-like cells. Here we provide an overview of the latest progress in repairing degenerated IVDs using PSCs and NPPCs. We also discuss the molecular pathways by which PSCs differentiate into NPPCs in vitro and in vivo and propose a new, in vivo IDD therapy.
Collapse
Affiliation(s)
- Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Zhe Gong
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Junjie Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Ankai Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Xiaopeng Zhou
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| |
Collapse
|
17
|
Abstract
Development of the axial skeleton is a complex, stepwise process that relies on intricate signaling and coordinated cellular differentiation. Disruptions to this process can result in a myriad of skeletal malformations that range in severity. The notochord and the sclerotome are embryonic tissues that give rise to the major components of the intervertebral discs and the vertebral bodies of the spinal column. Through a number of mouse models and characterization of congenital abnormalities in human patients, various growth factors, transcription factors, and other signaling proteins have been demonstrated to have critical roles in the development of the axial skeleton. Balance between opposing growth factors as well as other environmental cues allows for cell fate specification and divergence of tissue types during development. Furthermore, characterization of progenitor cells for specific cell lineages has furthered the understanding of specific spatiotemporal cues that cells need in order to initiate and complete development of distinct tissues. Identifying specific marker genes that can distinguish between the various embryonic and mature cell types is also of importance. Clinically, understanding developmental clues can aid in the generation of therapeutics for musculoskeletal disease through the process of developmental engineering. Studies into potential stem cell therapies are based on knowledge of the normal processes that occur in the embryo, which can then be applied to stepwise tissue engineering strategies.
Collapse
Affiliation(s)
| | | | - Rosa Serra
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
18
|
Zhou X, Wang J, Huang X, Fang W, Tao Y, Zhao T, Liang C, Hua J, Chen Q, Li F. Injectable decellularized nucleus pulposus-based cell delivery system for differentiation of adipose-derived stem cells and nucleus pulposus regeneration. Acta Biomater 2018; 81:115-128. [PMID: 30267879 DOI: 10.1016/j.actbio.2018.09.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/11/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Stem cell-based tissue engineering is a promising treatment for intervertebral disc (IVD) degeneration. A bio-scaffold that can maintain the function of transplanted cells and possesses favorable mechanical properties is needed in tissue engineering. Decellularized nucleus pulposus (dNP) has the potential to be a suitable bio-scaffold because it mimics the native nucleus pulposus (NP) composition. However, matrix loss during decellularization and difficulty in transplantation limit the clinical application of dNP scaffolds. In this study, we fabricated an injectable dNP-based cell delivery system (NPCS) and evaluated its properties by assessing the microstructure, biochemical composition, water content, biosafety, biostability, and mechanical properties. We also investigated the stimulatory effects of the bio-scaffold on the NP-like differentiation of adipose-derived stem cells (ADSCs) in vitro and the regenerative effects of the NPCS on degenerated NP in an in vivo animal model. The results showed that approximately 68% and 43% of the collagen and sGAG, respectively, remained in the NPCS after 30 days. The NPCS also showed mechanical properties similar to those of fresh NP. In addition, the NPCS was biocompatible and able to induce NP-like differentiation and extracellular matrix (ECM) synthesis in ADSCs. The disc height index (almost 81%) and the MRI index (349.05 ± 38.48) of the NPCS-treated NP were significantly higher than those of the degenerated NP after 16 weeks. The NPCS also partly restored the ECM content and the structure of degenerated NP in vivo. Our NPCS has good biological and mechanical properties and has the ability to promote the regeneration of degenerated NP. STATEMENT OF SIGNIFICANCE: Nucleus pulposus (NP) degeneration is usually the origin of intervertebral disc degeneration. Stem cell-based tissue engineering is a promising treatment for NP regeneration. Bio-scaffolds which have favorable biological and mechanical properties are needed in tissue engineering. Decellularized NP (dNP) scaffold is a potential choice for tissue engineering, but the difficulty in balancing complete decellularization and retaining ECM limits its usage. Instead of choosing different decellularization protocols, we complementing the sGAG lost during decellularization by cross-linking via genipin and fabricating an injectable dNP-based cell delivery system (NPCS) which has similar components as the native NP. We also investigated the biological and mechanical properties of the NPCS in vitro and verified its regenerative effects on degenerated IVDs in an animal model.
Collapse
Affiliation(s)
- Xiaopeng Zhou
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jingkai Wang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Weijing Fang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yiqing Tao
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Tengfei Zhao
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianming Hua
- Department of Radiology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China
| | - Qixin Chen
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Fangcai Li
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
19
|
D'Este M, Eglin D, Alini M. Lessons to be learned and future directions for intervertebral disc biomaterials. Acta Biomater 2018; 78:13-22. [PMID: 30092378 DOI: 10.1016/j.actbio.2018.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/16/2018] [Accepted: 08/04/2018] [Indexed: 02/07/2023]
Abstract
Biomaterials science has achieved significant advancements for the replacement, repair and regeneration of intervertebral disc tissues. However, the translation of this research to the clinic presents hurdles. The goal of this paper is to identify strategies to recapitulate the intrinsic complexities of the intervertebral disc, to highlight the unresolved issues in basic knowledge hindering the clinical translation, and finally to report on the emerging technologies in the biomaterials field. On this basis, we identify promising research directions, with the hope of stimulating further debate and advances for resolving clinical problems such as cervical and low back pain using biomaterial-based approaches. STATEMENT OF SIGNIFICANCE Although not life-threatening, intervertebral disc disorders have enormous impact on life quality and disability. Disc function within the human body is mainly mechanical, and therefore the use of biomaterials to rescue disc function and alleviate pain is logical. Despite intensive research, the clinical translation of biomaterial-based therapies is hampered by the intrinsic complexity of this organ. After decades of development, artificial discs or tissue replacements are still niche applications given their issues of integration and displacement with detrimental consequences. The struggles of biological therapies and tissue engineering are therefore understandable. However, recent advances in biomaterial science give new hope. In this paper we identify the most promising new directions for intervertebral disc biomaterials.
Collapse
|
20
|
Buckley CT, Hoyland JA, Fujii K, Pandit A, Iatridis JC, Grad S. Critical aspects and challenges for intervertebral disc repair and regeneration-Harnessing advances in tissue engineering. JOR Spine 2018; 1:e1029. [PMID: 30895276 PMCID: PMC6400108 DOI: 10.1002/jsp2.1029] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Low back pain represents the highest burden of musculoskeletal diseases worldwide and intervertebral disc degeneration is frequently associated with this painful condition. Even though it remains challenging to clearly recognize generators of discogenic pain, tissue regeneration has been accepted as an effective treatment option with significant potential. Tissue engineering and regenerative medicine offer a plethora of exploratory pathways for functional repair or prevention of tissue breakdown. However, the intervertebral disc has extraordinary biological and mechanical demands that must be met to assure sustained success. This concise perspective review highlights the role of the disc microenvironment, mechanical and clinical design considerations, function vs mimicry in biomaterial‐based and cell engineering strategies, and potential constraints for clinical translation of regenerative therapies for the intervertebral disc.
Collapse
Affiliation(s)
- Conor T Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute Trinity College Dublin, The University of Dublin Dublin Ireland.,School of Engineering, Trinity College Dublin The University of Dublin Dublin Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre Royal College of Surgeons in Ireland & Trinity College Dublin, The University of Dublin Dublin Ireland
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine University of Manchester Manchester UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester Foundation Trust Manchester Academic Health Science Centre Manchester UK
| | - Kengo Fujii
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York New York USA.,Department of Orthopaedic Surgery University of Tsukuba Tsukuba Japan
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM) National University of Ireland Galway Ireland
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York New York USA
| | | |
Collapse
|
21
|
de Vries S, Doeselaar MV, Meij B, Tryfonidou M, Ito K. Notochordal Cell Matrix As a Therapeutic Agent for Intervertebral Disc Regeneration. Tissue Eng Part A 2018; 25:830-841. [PMID: 29739272 DOI: 10.1089/ten.tea.2018.0026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Notochordal cells (NCs) reside in the core of the healthy disc and produce soluble factors that can stimulate nucleus pulposus cells (NPCs). These NC-derived factors may be applied in intervertebral disc regeneration for treatment of low-back pain. However, identification of the active soluble factors is challenging. Therefore a novel approach to directly use porcine NC-rich NP matrix (NCM) is introduced. We explored porcine NCM's anabolic effects on bovine NPCs harvested from caudal discs of adolescent and adult (2-2.5 vs. 4-6 year old) cows. NC-conditioned medium (NCCM) and NCM were produced from porcine NC-rich NP tissue. Bovine NPCs were cultured in alginate beads for 4 weeks in base medium (BM), NCCM, and NCM to investigate NCM's regenerative potential. Porcine NCM increased glycosaminoglycan (GAG) content of both adolescent and adult bovine NPCs. This was through increased proliferation of adolescent bovine NPCs, whereas in adult bovine NPCs, it was mostly through increased GAG production per NPC. Furthermore, adolescent bovine NPCs were cultured in BM and porcine NCM treated with interleukin (IL)-1β to investigate NCM's potential in an inflammatory environment. Addition of IL-1β enhanced IL1β and CXCL8 (IL8) gene expression, while NCM diminished IL1β gene expression. IL-1β reduced GAG and DNA content, but the addition of NCM relative to BM improved GAG and DNA content. Altogether, porcine NCM exerts bovine NPC-age dependent effects, and NCM's anabolic effect on adult NPCs is stronger compared with NCCM. Furthermore, porcine NCM induced an anabolic response of bovine NPCs in an inflammatory environment and may have anti-inflammatory properties. Therefore, NCM has potential in a regenerative therapy for disc degeneration, and warrants additional in vivo studies.
Collapse
Affiliation(s)
- Stefan de Vries
- 1 Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marina van Doeselaar
- 1 Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Björn Meij
- 2 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marianna Tryfonidou
- 2 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Keita Ito
- 1 Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,3 Department of Orthopaedics, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
22
|
Tang R, Jing L, Willard VP, Wu CL, Guilak F, Chen J, Setton LA. Differentiation of human induced pluripotent stem cells into nucleus pulposus-like cells. Stem Cell Res Ther 2018. [PMID: 29523190 PMCID: PMC5845143 DOI: 10.1186/s13287-018-0797-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Intervertebral disc (IVD) degeneration is characterized by an early decrease in cellularity of the nucleus pulposus (NP) region, and associated extracellular matrix changes, reduced hydration, and progressive degeneration. Cell-based IVD therapy has emerged as an area of great interest, with studies reporting regenerative potential for many cell sources, including autologous or allogeneic chondrocytes, primary IVD cells, and stem cells. Few approaches, however, have clear strategies to promote the NP phenotype, in part due to a limited knowledge of the defined markers and differentiation protocols for this lineage. Here, we developed a new protocol for the efficient differentiation of human induced pluripotent stem cells (hiPSCs) into NP-like cells in vitro. This differentiation strategy derives from our knowledge of the embryonic notochordal lineage of NP cells as well as strategies used to support healthy NP cell phenotypes for primary cells in vitro. Methods An NP-genic phenotype of hiPSCs was promoted in undifferentiated hiPSCs using a stepwise, directed differentiation toward mesodermal, and subsequently notochordal, lineages via chemically defined medium and growth factor supplementation. Fluorescent cell imaging was used to test for pluripotency markers in undifferentiated cells. RT-PCR was used to test for potential cell lineages at the early stage of differentiation. Cells were checked for NP differentiation using immunohistochemistry and histological staining at the end of differentiation. To enrich notochordal progenitor cells, hiPSCs were transduced using lentivirus containing reporter constructs for transcription factor brachyury (T) promoter and green fluorescent protein (GFP) fluorescence, and then sorted on T expression based on GFP intensity by flow cytometry. Results Periods of pellet culture following initial induction were shown to promote the vacuolated NP cell morphology and NP surface marker expression, including CD24, LMα5, and Basp1. Enrichment of brachyury (T) positive cells using fluorescence-activated cell sorting was shown to further enhance the differentiation efficiency of NP-like cells. Conclusions The ability to efficiently differentiate human iPSCs toward NP-like cells may provide insights into the processes of NP cell differentiation and provide a cell source for the development of new therapies for IVD diseases. Electronic supplementary material The online version of this article (10.1186/s13287-018-0797-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruhang Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
| | - Liufang Jing
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USA
| | | | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USA.,Cytex Therapeutics, Inc., Durham, NC, USA
| | - Jun Chen
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Lori A Setton
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA. .,Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USA.
| |
Collapse
|
23
|
Wachs RA, Hoogenboezem EN, Huda HI, Xin S, Porvasnik SL, Schmidt CE. Creation of an injectable in situ gelling native extracellular matrix for nucleus pulposus tissue engineering. Spine J 2017; 17:435-444. [PMID: 27989725 DOI: 10.1016/j.spinee.2016.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/25/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Disc degeneration is the leading cause of low back pain and is often characterized by a loss of disc height, resulting from cleavage of chondroitin sulfate proteoglycans (CSPGs) present in the nucleus pulposus. Intact CSPGs are critical to water retention and maintenance of the nucleus osmotic pressure. Decellularization of healthy nucleus pulposus tissue has the potential to serve as an ideal matrix for tissue engineering of the disc because of the presence of native disc proteins and CSPGs. Injectable in situ gelling matrices are the most viable therapeutic option to prevent damage to the anulus fibrosus and future disc degeneration. PURPOSE The purpose of this research was to create a gentle decellularization method for use on healthy nucleus pulposus tissue explants and to develop an injectable formulation of this matrix to enable therapeutic use without substantial tissue disruption. STUDY DESIGN Porcine nuclei pulposi were isolated, decellularized, and solubilized. Samples were assessed to determine the degree of cell removal, matrix maintenance, gelation ability, cytotoxic residuals, and native cell viability. METHODS Nuclei pulposi were decellularized using serial detergent, buffer, and enzyme treatments. Decellularized nuclei pulposi were solubilized, neutralized, and buffered. The efficacy of decellularization was assessed by quantifying DNA removal and matrix preservation. An elution study was performed to confirm removal of cytotoxic residuals. Gelation kinetics and injectability were quantified. Long-term in vitro experiments were performed with nucleus pulposus cells to ensure cell viability and native matrix production within the injectable decellularized nucleus pulposus matrices. RESULTS This work resulted in the creation of a robust acellular matrix (>96% DNA removal) with highly preserved sulfated glycosaminoglycans (>47%), and collagen content and microstructure similar to native nucleus pulposus, indicating preservation of disc components. Furthermore, it was possible to create an injectable formulation that gelled in situ within 45 minutes and formed fibrillar collagen with similar diameters to native nucleus pulposus. The processing did not result in any remaining cytotoxic residuals. Solubilized decellularized nucleus pulposus samples seeded with nucleus pulposus cells maintained robust viability (>89%) up to 21 days of culture in vitro, with morphology similar to native nucleus pulposus cells, and exhibited significantly enhanced sulfated glycosaminoglycans production over 21 days. CONCLUSIONS A gentle decellularization of porcine nucleus pulposus followed by solubilization enabled the creation of an injectable tissue-specific matrix that is well tolerated in vitro by nucleus pulposus cells. These matrices have the potential to be used as a minimally invasive nucleus pulposus therapeutic to restore disc height.
Collapse
Affiliation(s)
- Rebecca A Wachs
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, PO Box 116131 1275 Center Drive, JG56, Gainesville, FL 32611-6131, USA.
| | - Ella N Hoogenboezem
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, PO Box 116131 1275 Center Drive, JG56, Gainesville, FL 32611-6131, USA
| | - Hammad I Huda
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, PO Box 116131 1275 Center Drive, JG56, Gainesville, FL 32611-6131, USA
| | - Shangjing Xin
- Department of Materials Science and Engineering, University of Florida, 100 Rhines Hall, Gainesville, FL 32611-6131, USA
| | - Stacy L Porvasnik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, PO Box 116131 1275 Center Drive, JG56, Gainesville, FL 32611-6131, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, PO Box 116131 1275 Center Drive, JG56, Gainesville, FL 32611-6131, USA
| |
Collapse
|
24
|
Tong W, Lu Z, Qin L, Mauck RL, Smith HE, Smith LJ, Malhotra NR, Heyworth MF, Caldera F, Enomoto-Iwamoto M, Zhang Y. Cell therapy for the degenerating intervertebral disc. Transl Res 2017; 181:49-58. [PMID: 27986604 PMCID: PMC5776755 DOI: 10.1016/j.trsl.2016.11.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 01/03/2023]
Abstract
Spinal conditions related to intervertebral disc (IVD) degeneration cost billions of dollars in the US annually. Despite the prevalence and soaring cost, there is no specific treatment that restores the physiological function of the diseased IVD. Thus, it is vital to develop new treatment strategies to repair the degenerating IVD. Persons with IVD degeneration without back pain or radicular leg pain often do not require any intervention. Only patients with severe back pain related to the IVD degeneration or biomechanical instability are likely candidates for cell therapy. The IVD progressively degenerates with age in humans, and strategies to repair the IVD depend on the stage of degeneration. Cell therapy and cell-based gene therapy aim to address moderate disc degeneration; advanced stage disease may require surgery. Studies involving autologous, allogeneic, and xenogeneic cells have all shown good survival of these cells in the IVD, confirming that the disc niche is an immunologically privileged site, permitting long-term survival of transplanted cells. All of the animal studies reviewed here reported some improvement in disc structure, and 2 studies showed attenuation of local inflammation. Among the 50 studies reviewed, 25 used some type of scaffold, and cell leakage is a consistently noted problem, though some studies showed reduced cell leakage. Hydrogel scaffolds may prevent cell leakage and provide biomechanical support until cells can become established matrix producers. However, these gels need to be optimized to prevent this leakage. Many animal models have been leveraged in this research space. Rabbit is the most frequently used model (28 of 50), followed by rat, pig, and dog. Sheep and goat IVDs resemble those of humans in size and in the absence of notochordal cells. Despite this advantage, there were only 2 sheep and 1 goat studies of 50 studies in this cohort. It is also unclear if a study in large animals is needed before clinical trials since some of the clinical trials proceeded without a study in large animals. No animal studies or clinical trials completely restored IVD structure. However, results suggest cause for optimism. In light of the fact that patients primarily seek medical care for back pain, attenuating local inflammation should be a priority in benchmarks for success. Clinicians generally agree that short-term back pain should be treated conservatively. When interventions are considered, the ideal therapy should also be minimally invasive and concurrent with other procedures such as discography or discectomy. Restoration of tissue structure and preservation of spinal motion are desirable.
Collapse
Affiliation(s)
- Wei Tong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Zhouyu Lu
- Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Robert L Mauck
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pa
| | - Harvey E Smith
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pa
| | - Lachlan J Smith
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Neil R Malhotra
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Martin F Heyworth
- Research Service, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pa; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Franklin Caldera
- Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Motomi Enomoto-Iwamoto
- Department of Surgery, Division of Orthopedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Yejia Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pa.
| |
Collapse
|
25
|
Vedicherla S, Buckley CT. Cell-based therapies for intervertebral disc and cartilage regeneration- Current concepts, parallels, and perspectives. J Orthop Res 2017; 35:8-22. [PMID: 27104885 DOI: 10.1002/jor.23268] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/08/2016] [Indexed: 02/04/2023]
Abstract
Lower back pain from degenerative disc disease represents a global health burden, and presents a prominent opportunity for regenerative therapeutics. While current regenerative therapies such as autologous disc chondrocyte transplantation (ADCT), allogeneic juvenile chondrocyte implantation (NuQu®), and immunoselected allogeneic adipose derived precursor cells (Mesoblast) show exciting clinical potential, limitations remain. The heterogeneity of preclinical approaches and the paucity of clinical guidance have limited translational outcomes in disc repair, lagging almost a decade behind cartilage repair. Advances in cartilage repair have evolved to single step approaches with improved orthopedic repair and regeneration. Elements from cartilage regeneration endeavors could be adopted and applied to harness translatable approaches and deliver a clinically and economically feasible regenerative surgery for back pain. In this article, we trace the developments behind the translational success of cartilage repair, examine elements to consider in achieving disc regeneration, and the need for surgical redesign. We further discuss clinical parameters, objectives, and coordination required to deliver improved regenerative surgery. Cell source, processing, and delivery modalities are key issues to be addressed in considering surgical redesign. Advances in biomanufacturing, tissue cryobanking, and point of care cell processing technology may enable intraoperative solutions for single step procedures. To maximize translational success a triad partnership between clinicians, industry, and researchers will be critical in providing instructive clinical guidelines for design as well as practical and economic considerations. This will allow a consensus in research ventures and add regenerative surgery into the algorithm in managing and treating a debilitating condition such as back pain. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:8-22, 2017.
Collapse
Affiliation(s)
- Srujana Vedicherla
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.,School of Medicine, Trinity College Dublin, Ireland
| | - Conor T Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| |
Collapse
|
26
|
Fernandez C, Marionneaux A, Gill S, Mercuri J. Biomimetic nucleus pulposus scaffold created from bovine caudal intervertebral disc tissue utilizing an optimal decellularization procedure. J Biomed Mater Res A 2016; 104:3093-3106. [PMID: 27507100 PMCID: PMC5832047 DOI: 10.1002/jbm.a.35858] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/14/2016] [Accepted: 08/05/2016] [Indexed: 11/07/2022]
Abstract
Intervertebral disc (IVD) degeneration (IDD) and herniation (IDH) can result in low back pain and impart significant socioeconomic burden. These pathologies involve detrimental alteration to the nucleus pulposus (NP) either via biochemical degradation or extrusion from the IVD, respectively. Thus, engineering living NP tissue utilizing biomaterial scaffolds that recapitulate native NP microarchitecture, biochemistry, mechanical properties, and which support cell viability represents an approach to aiding patients with IDD and IDH. To date, an ideal biomaterial to support NP regeneration has yet to be developed; however, one promising approach to generating biomimetic materials is to employ the decellularization (decell) of xenogeneic NP tissue to remove host DNA while maintaining critical native extracellular matrix (ECM) components. Herein, 13 different procedures were evaluated in an attempt to decell bovine caudal IVD NP tissue. An optimal method was identified which was confirmed to effectively remove bovine DNA, while maintaining physiologically relevant amounts of glycosaminoglycan (GAG) and type II collagen. Unconfined static and dynamic compressive mechanical properties of scaffolds approached values reported for human NP and viability of human amniotic stem cells (hAMSCs) was maintained on noncrosslinked and EDC/NHS treated scaffolds for up to 14 days in culture. Taken together, NP tissue obtained from bovine caudal IVDs can be successfully decelled in order to generate a biomimetic scaffold for NP tissue regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3093-3106, 2016.
Collapse
Affiliation(s)
- Christopher Fernandez
- Department of Bioengineering, The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina
| | - Alan Marionneaux
- Department of Bioengineering, The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina
| | - Sanjitpal Gill
- Department of Bioengineering, The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina
- Department of Orthopaedic Surgery, Spartanburg Regional Healthcare System, Greer, South Carolina
| | - Jeremy Mercuri
- Department of Bioengineering, The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina.
| |
Collapse
|
27
|
Vadalà G, Russo F, Ambrosio L, Loppini M, Denaro V. Stem cells sources for intervertebral disc regeneration. World J Stem Cells 2016; 8:185-201. [PMID: 27247704 PMCID: PMC4877563 DOI: 10.4252/wjsc.v8.i5.185] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/18/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration.
Collapse
|
28
|
Zhou X, Tao Y, Wang J, Liu D, Liang C, Li H, Chen Q. Three-dimensional scaffold of type II collagen promote the differentiation of adipose-derived stem cells into a nucleus pulposus-like phenotype. J Biomed Mater Res A 2016; 104:1687-93. [PMID: 26940048 DOI: 10.1002/jbm.a.35701] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/07/2016] [Accepted: 02/26/2016] [Indexed: 12/28/2022]
Abstract
Type II collagen is reported to have the capability of guiding adipose-derived stem cells (ADSCs) to differentiate towards a nucleus pulposus (NP)-like phenotype. So this study aimed to establish a three-dimensional (3D) collagen scaffold using N,N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide and N-hydroxysuccinimide (EDAC/NHS) to increase the efficiency of ADSC differentiation into NP-like cells. Physical properties, such as porosity, biodegradation, and microstructure, and biological characteristics such as cytotoxicity, cell proliferation, and expression of relevant genes and proteins were measured to evaluate the efficacy of different scaffolds. Collagen scaffolds cross-linked with EDAC/NHS exhibited higher biological stability, better spatial structure, and higher gene and protein expression of functional markers such as aggrecan, SOX9 and COL2 than those of other groups. Based on the results, freeze-dried type II collagen cross-linked with EDAC/NHS formed the best 3D scaffold, for inducing ADSC proliferation and differentiation toward a NP-like phenotype. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1687-1693, 2016.
Collapse
Affiliation(s)
- Xiaopeng Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People's Republic of China
| | - Yiqing Tao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People's Republic of China
| | - Jingkai Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People's Republic of China
| | - Dongyu Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People's Republic of China
| | - Chengzhen Liang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People's Republic of China
| | - Hao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People's Republic of China
| | - Qixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People's Republic of China
| |
Collapse
|
29
|
Han I, Ropper AE, Konya D, Kabatas S, Toktas Z, Aljuboori Z, Zeng X, Chi JH, Zafonte R, Teng YD. Biological approaches to treating intervertebral disk degeneration: devising stem cell therapies. Cell Transplant 2015. [PMID: 26223943 DOI: 10.3727/096368915x688650] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disk (IVD) degeneration is a common, chronic, and complex degeneration process that frequently leads to back pain and disability, resulting in a major public health issue. In this review we describe biological therapies under preclinical or clinical development with an emphasis on stem cell-based multimodal approaches that target prevention and treatment of IVD degeneration. Systematical review of the basic science and clinical literature was performed to summarize the current status of devising biological approaches to treating IVD degeneration. Since the exact mechanisms underlying IVD degeneration have not yet been fully elucidated and conservative managements appear to be mostly ineffective, current surgical treatment focuses on removal of the pathological disk tissues combined with spinal fusion. The treatment options, however, often produce insufficient efficacy and even serious complications. Therefore, there have been growing demands and endeavors for developing novel regenerative biology-guided strategies for repairing the IVD via delivery of exogenous growth factors, introduction of therapeutic genes, and transplantation of stem cells, or combinatorial therapies. Overall, the data suggest that when applied under a recovery neurobiology principle, multimodal regimens comprising ex vivo engineered stem cell-based disks hold a high potential promise for efficacious clinical translations.
Collapse
Affiliation(s)
- Inbo Han
- Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Developments in intervertebral disc disease research: pathophysiology, mechanobiology, and therapeutics. Curr Rev Musculoskelet Med 2015; 8:18-31. [PMID: 25694233 DOI: 10.1007/s12178-014-9253-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Low back pain is a leading cause of disability worldwide and the second most common cause of physician visits. There are many causes of back pain, and among them, disc herniation and intervertebral disc degeneration are the most common diagnoses and targets for intervention. Currently, clinical treatment outcomes are not strongly correlated with diagnoses, emphasizing the importance for characterizing more completely the mechanisms of degeneration and their relationships with symptoms. This review covers recent studies elucidating cellular and molecular changes associated with disc mechanobiology, as it relates to degeneration and regeneration. Specifically, we review findings on the biochemical changes in disc diseases, including cytokines, chemokines, and proteases; advancements in disc disease diagnostics using imaging modalities; updates on studies examining the response of the intervertebral disc to injury; and recent developments in repair strategies, including cell-based repair, biomaterials, and tissue engineering. Findings on the effects of the omega-6 fatty acid, linoleic acid, on nucleus pulposus tissue engineering are presented. Studies described in this review provide greater insights into the pathogenesis of disc degeneration and may define new paradigms for early or differential diagnostics of degeneration using new techniques such as systemic biomarkers. In addition, research on the mechanobiology of disease enriches the development of therapeutics for disc repair, with potential to diminish pain and disability associated with disc degeneration.
Collapse
|