1
|
Afsar S, Syed RU, Khojali WMA, Masood N, Osman ME, Jyothi JS, Hadi MA, Khalifa AAS, Aboshouk NAM, Alsaikhan HA, Alafnan AS, Alrashidi BA. Non-coding RNAs in BRAF-mutant melanoma: targets, indicators, and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:297-317. [PMID: 39167168 DOI: 10.1007/s00210-024-03366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Melanoma, a highly aggressive skin cancer, is often driven by BRAF mutations, such as the V600E mutation, which promotes cancer growth through the MAPK pathway and contributes to treatment resistance. Understanding the role of non-coding RNAs (ncRNAs) in these processes is crucial for developing new therapeutic strategies. This review aims to elucidate the relationship between ncRNAs and BRAF mutations in melanoma, focusing on their regulatory roles and impact on treatment resistance. We comprehensively reviewed current literature to synthesize evidence on ncRNA-mediated regulation of BRAF-mutant melanoma and their influence on therapeutic responses. Key ncRNAs, including microRNAs and long ncRNAs, were identified as significant regulators of melanoma development and therapy resistance. MicroRNAs such as miR-15/16 and miR-200 families modulate critical pathways like Wnt signaling and melanogenesis. Long ncRNAs like ANRIL and SAMMSON play roles in cell growth, invasion, and drug susceptibility. Specific ncRNAs, such as BANCR and RMEL3, intersect with the MAPK pathway, highlighting their potential as therapeutic targets or biomarkers in BRAF-mutant melanoma. Additionally, ncRNAs involved in drug resistance, such as miR-579-3p and miR-1246, target processes like autophagy and immune checkpoint regulation. This review highlights the pivotal roles of ncRNAs in regulating BRAF-mutant melanoma and their contribution to drug resistance. These findings underscore the potential of ncRNAs as biomarkers and therapeutic targets, paving the way for innovative treatments to improve outcomes for melanoma patients.
Collapse
Affiliation(s)
- S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh, 517502, India.
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, 81442, Hail, Saudi Arabia.
| | - Weam M A Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, 14415, Sudan
| | - Najat Masood
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, 81451, Ha'il,, Saudi Arabia
| | - Mhdia Elhadi Osman
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - J Siva Jyothi
- Department of Pharmaceutics, Hindu College of Pharmacy, Andhra Pradesh, India
| | - Mohd Abdul Hadi
- Department of Pharmaceutics, Bhaskar Pharmacy College, Moinabad, R.R.District, Hyderabad, 500075, Telangana, India
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 81442, Hail, Saudi Arabia
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 81442, Hail, Saudi Arabia
| | | | | | | |
Collapse
|
2
|
Yuan W, Shi Y, Dai S, Deng M, Zhu K, Xu Y, Chen Z, Xu Z, Zhang T, Liang S. The role of MAPK pathway in gastric cancer: unveiling molecular crosstalk and therapeutic prospects. J Transl Med 2024; 22:1142. [PMID: 39719645 PMCID: PMC11667996 DOI: 10.1186/s12967-024-05998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024] Open
Abstract
Gastric cancer remains a significant health burden globally, especially prevalent in Asian and European regions. Despite a notable decline in incidence in the United States and Western Europe over recent decades, the disease's persistence underscores the urgency for advanced research in its pathogenesis and treatment strategies. Central to this pursuit is the exploration of the mitogen-activated protein kinase (MAPK) pathway, a pivotal cellular mechanism implicated in the complex processes of gastric cancer development, including cellular proliferation, invasion, migration, and metastasis. The MAPK or extracellular signal-regulated kinase pathway serves as a crucial conduit for transmitting extracellular signals to elicit intracellular responses, with its signaling cascades subject to alterations due to genetic and epigenetic variations across various diseases, prominently cancer. This review delves into the intricate role of the MAPK signaling pathway in the pathogenesis of gastric cancer, drawing upon the most recent and critical studies that shed light on MAPK pathway alterations as a gateway to the disease. It highlights the pathway's involvement in Helicobacter pylori-mediated gastric carcinogenesis and the tumorigenic processes induced by the Epstein-Barr virus, showcasing the substantial influence of miRNAs and lncRNAs in modulating gastric cancer's biological properties through their interaction with the MAPK pathway. Furthermore, the review extends into the therapeutic arena, discussing the promising impacts of herbal medicines, MAPK pathway inhibitors, and immunosuppressants on mitigating gastric cancer's progression. Through an exhaustive examination of the MAPK pathway's multifaceted role in gastric cancer, from molecular crosstalks to therapeutic prospects, this review aspires to contribute to the ongoing efforts in understanding and combating this global health challenge, paving the way for novel therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Weiwei Yuan
- Department of Thyroid Surgery, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Yin Shi
- Department of Internal Medicine, Yiwu Maternity and Children Hospital, Yiwu, Zhejiang, China
| | - Shiping Dai
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Mao Deng
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Kai Zhu
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Yuanmin Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhangming Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhou Xu
- Department of Thyroid Surgery, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China.
| | - Tianlong Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Song Liang
- Department of General Surgery, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an People's Hospital, Lu'an, 237000, China.
| |
Collapse
|
3
|
Song Y, Wen H, Zhai X, Jia L, Li L. Functional Bidirectionality of ERV-Derived Long Non-Coding RNAs in Humans. Int J Mol Sci 2024; 25:10481. [PMID: 39408810 PMCID: PMC11476766 DOI: 10.3390/ijms251910481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are widely recognized as the result of exogenous retroviruses infecting the ancestral germline, stabilizing integration and vertical transmission during human genetic evolution. To date, endogenous retroviruses (ERVs) appear to have been selected for human physiological functions with the loss of retrotransposable capabilities. ERV elements were previously regarded as junk DNA for a long time. Since then, the aberrant activation and expression of ERVs have been observed in the development of many kinds of human diseases, and their role has been explored in a variety of human disorders such as cancer. The results show that specific ERV elements play respective crucial roles. Among them, long non-coding RNAs (lncRNAs) transcribed from specific long-terminal repeat regions of ERVs are often key factors. lncRNAs are over 200 nucleotides in size and typically bind to DNA, RNA, and proteins to perform biological functions. Dysregulated lncRNAs have been implicated in a variety of diseases. In particular, studies have shown that the aberrant expression of some ERV-derived lncRNAs has a tumor-suppressive or oncogenic effect, displaying significant functional bidirectionality. Therefore, theses lncRNAs have a promising future as novel biomarkers and therapeutic targets to explore the concise relationship between ERVs and cancers. In this review, we first summarize the role of ERV-derived lncRNAs in physiological regulation, mainly including immunomodulation, the maintenance of pluripotency, and erythropoiesis. In addition, pathological regulation examples of their aberrant activation and expression leading to carcinogenesis are highlighted, and specific mechanisms of occurrence are discussed.
Collapse
Affiliation(s)
- Yanmei Song
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
| | - Xiuli Zhai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230000, China
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| |
Collapse
|
4
|
Beatriz Cristina Biz T, Carolina de Sousa CS, Frank John S, Miriam Galvonas J. LncRNAs in melanoma phenotypic plasticity: emerging targets for promising therapies. RNA Biol 2024; 21:81-93. [PMID: 39498940 PMCID: PMC11540095 DOI: 10.1080/15476286.2024.2421672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have received growing attention due to their diverse regulatory roles in cancer, including in melanoma, an aggressive type of skin cancer. The plasticity and phenotypic adaptability of melanoma cells are crucial factors contributing to therapeutic resistance. The identification of molecules playing key roles in melanoma cell plasticity could unravel novel and more effective therapeutic targets. This review presents current concepts of melanoma cell plasticity, illustrating its fluidity and dismissing the outdated notion of epithelial-mesenchymal-like transition as a simplistic binary process. Emphasis is placed on the pivotal role of lncRNAs in orchestrating cell plasticity, employing various mechanisms recently elucidated and unveiling their potential as promising targets for novel therapeutic strategies. Insights into the molecular mechanisms coordinated by lncRNAs in melanoma pave the way for the development of RNA-based therapies, holding great promise for enhancing treatment outcomes and offering a glimpse into a more effective approach to melanoma treatment.
Collapse
Affiliation(s)
- Tonin Beatriz Cristina Biz
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Slack Frank John
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Jasiulionis Miriam Galvonas
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Liu J, Hu X, Xin W, Wang X. Exosomal Non-coding RNAs: A New Approach to Melanoma Diagnosis and Therapeutic Strategy. Curr Med Chem 2024; 31:6084-6109. [PMID: 37877505 DOI: 10.2174/0109298673267553231017053329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Malignant melanoma (MM) is a highly aggressive cancer with a poor prognosis. Currently, although a variety of therapies are available for treating melanoma, MM is still a serious threat to the patient's life due to numerous factors, such as the recurrence of tumors, the emergence of drug resistance, and the lack of effective therapeutic agents. Exosomes are biologically active lipid-bilayer extracellular vesicles secreted by diverse cell types that mediate intercellular signal communication. Studies found that exosomes are involved in cancer by carrying multiple bioactive molecules, including non-- coding RNAs (ncRNAs). The ncRNAs have been reported to play an important role in regulating proliferation, angiogenesis, immune regulation, invasion, metastasis, and treatment resistance of tumors. However, the functional role of exosomal ncRNAs in MM remains unknown. Therefore, this review summarizes the current state of melanoma diagnosis, treatment, and the application of exosomal ncRNAs in MM patients, which may provide new insights into the mechanisms involved in melanoma progression and serve as biomarkers for diagnosis and therapeutic targets.
Collapse
Affiliation(s)
- Jie Liu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Xiaoping Hu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China, 300052
| | - Xianbin Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Baotou Medical College, Baotou 014030, China
| |
Collapse
|
6
|
Wozniak M, Czyz M. lncRNAs-EZH2 interaction as promising therapeutic target in cutaneous melanoma. Front Mol Biosci 2023; 10:1170026. [PMID: 37325482 PMCID: PMC10265524 DOI: 10.3389/fmolb.2023.1170026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Melanoma is the most lethal skin cancer with increasing incidence worldwide. Despite a great improvement of diagnostics and treatment of melanoma patients, this disease is still a serious clinical problem. Therefore, novel druggable targets are in focus of research. EZH2 is a component of the PRC2 protein complex that mediates epigenetic silencing of target genes. Several mutations activating EZH2 have been identified in melanoma, which contributes to aberrant gene silencing during tumor progression. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are molecular "address codes" for EZH2 silencing specificity, and targeting lncRNAs-EZH2 interaction may slow down the progression of many solid cancers, including melanoma. This review summarizes current knowledge regarding the involvement of lncRNAs in EZH2-mediated gene silencing in melanoma. The possibility of blocking lncRNAs-EZH2 interaction in melanoma as a novel therapeutic option and plausible controversies and drawbacks of this approach are also briefly discussed.
Collapse
Affiliation(s)
- Michal Wozniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Dashti F, Mirazimi SMA, Kazemioula G, Mohammadi M, Hosseini M, Razaghi Bahabadi Z, Mirazimi MS, Abadi MHJN, Shahini A, Afshari M, Mirzaei H. Long non-coding RNAs and melanoma: From diagnosis to therapy. Pathol Res Pract 2023; 241:154232. [PMID: 36528985 DOI: 10.1016/j.prp.2022.154232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
Although extremely rare, malignant melanoma is the deadliest type of skin malignancy with the inherent capability to invade other organs and metastasize to distant tissues. In 2021, it was estimated that approximately 106,110 patients may have received the diagnosis of melanoma, with a mortality rate of 7180. Surgery remains the common choice for treatment in patients with melanoma. Despite many advances in the treatment of melanoma, some patients, such as those who have received cytotoxic chemotherapeutic and immunotherapic agents, a significant number of patients may show inadequate treatment response following initiating these treatments. Non-coding RNAs, including lncRNAs, have become recently popular and attracted the attention of many researchers to make new insights into the pathogenesis of many diseases, particularly malignancies. LncRNAs have been thoroughly investigated in multiple cancers such as melanoma and have been shown to play a major role in regulating various physiological and pathological cellular processes. Considering their core regulatory function, these non-coding RNAs may be appropriate candidates for melanoma patients' diagnosis, prognosis, and treatment. In this review, we will cover all the current literature available for lncRNAs in melanoma and will discuss their potential benefits as diagnostic and/or prognostic markers or potent therapeutic targets in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Golnesa Kazemioula
- Department of Medical Genetics, School of Medicine,Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohammadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marjan Hosseini
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Mirazimi
- Department of Obstetrics & Gynocology,Isfahan School of Medicine,Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Afshari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Xie Z, Wang C, Li L, Chen X, Wei G, Chi Y, Liang Y, Lan L, Hong J, Li L. lncRNA-AC130710/miR-129-5p/mGluR1 axis promote migration and invasion by activating PKCα-MAPK signal pathway in melanoma. Open Med (Wars) 2022; 17:1612-1622. [PMID: 36329788 PMCID: PMC9579860 DOI: 10.1515/med-2022-0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/22/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Invasion and metastasis of melanoma are a series of complicated biological events regulated by multiple factors. The coregulation of many molecules involved in the development and progression of melanoma contributes to invasion and migration. mGluR1 is a metabotropic glutamate receptor that is overexpressed in melanocytes and is sufficient to induce melanoma. In our study, we found that mGluR1 was obviously increased in melanoma. Furthermore, we found that miR-129-5p could directly target and regulate mGluR1 mRNA, which was significantly reduced in A375 cells. Overexpression of miR-129-5p inhibited cell migration, invasion and clonal formation. lncRNA-AC130710 directly targeted and suppressed miR-129-5p in A375 cells. Downregulation of lncRNA-AC130710 suppressed the levels of mGluR1 mRNA by promoting miR-129-5p expression and further inhibiting migration, invasion and colony formation in A375 cells, which was associated with the activation of the PKCα-MAPK signaling pathway. Taken together, our study showed that the lncRNA-AC130710/miR-129-5p/mGluR1 axis plays an important role in the invasion and metastasis of melanoma.
Collapse
Affiliation(s)
- Zhi Xie
- Department of Dermatology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, PR China
| | - Chen Wang
- Department of Dermatology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, PR China
| | - Li Li
- Department of Dermatology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, PR China
| | - Xianfeng Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Guanjing Wei
- Department of Dermatology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, PR China
| | - Yan Chi
- Department of Dermatology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, PR China
| | - Yanping Liang
- Department of Dermatology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, PR China
| | - Lizhen Lan
- Department of Dermatology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, PR China
| | - Jiqiong Hong
- Department of Dermatology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, PR China
| | - Lili Li
- Department of Dermatology, People’s Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning 530021, PR China
| |
Collapse
|
9
|
Ding L, Gosh A, Lee DJ, Emri G, Huss WJ, Bogner PN, Paragh G. Prognostic biomarkers of cutaneous melanoma. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:418-434. [PMID: 34981569 DOI: 10.1111/phpp.12770] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/02/2021] [Accepted: 12/30/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND/PURPOSE Melanomas account for only approximately 4% of diagnosed skin cancers in the United States but are responsible for the majority of deaths caused by skin cancer. Both genetic factors and ultraviolet (UV) radiation exposure play a role in the development of melanoma. Although melanomas have a strong propensity to metastasize when diagnosed late, melanomas that are diagnosed and treated early pose a low mortality risk. In particular, the identification of patients with increased metastatic risk, who may benefit from early adjuvant therapies, is crucial, especially given the advent of new melanoma treatments. However, the accuracy of classic clinical and histological variables, including the Breslow thickness, presence of ulceration, and lymph node status, might not be sufficient to identify such individuals. Thus, there is a need for the development of additional prognostic melanoma biomarkers that can improve early attempts to stratify melanoma patients and reliably identify high-risk subgroups with the aim of providing effective personalized therapies. METHODS In our current work, we discuss and assess emerging primary melanoma tumor biomarkers and prognostic circulating biomarkers. RESULTS Several promising biomarkers show prognostic value (eg, exosomal MIA (ie, melanoma inhibitory activity), serum S100B, AMLo signatures, and mRNA signatures); however, the scarcity of reliable data precludes the use of these biomarkers in current clinical applications. CONCLUSION Further research is needed on several promising biomarkers for melanoma. Large-scale studies are warranted to facilitate the clinical translation of prognostic biomarker applications for melanoma in personalized medicine.
Collapse
Affiliation(s)
- Liang Ding
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Buffalo General Medical Center, State University of New York, Buffalo, New York, USA
| | - Alexandra Gosh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Delphine J Lee
- Division of Dermatology, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Dermatology, Department of Medicine, The Lundquist Institute, Torrance, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Wendy J Huss
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Paul N Bogner
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Gyorgy Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
10
|
Liu F, Ma X, Bian X, Zhang C, Liu X, Liu Q. LINC00586 Represses ASXL1 Expression Thus Inducing Epithelial-To-Mesenchymal Transition of Colorectal Cancer Cells Through LSD1-Mediated H3K4me2 Demethylation. Front Pharmacol 2022; 13:887822. [PMID: 35586041 PMCID: PMC9108668 DOI: 10.3389/fphar.2022.887822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Colorectal cancer (CRC) is a major public health problem on a global scale by virtue of its relatively high incidence. The transition of tumor cells from an epithelial to a mesenchymal-like phenotype, so-called epithelial-to-mesenchymal transition (EMT), is a key hallmark of human cancer metastasis, including CRC. Understanding the signaling events that initiate this phenotypic switch may provide opportunities to limit the metastasis of CRC. In this study, we aim to identify long non-coding RNA (lncRNA) mediated epigenetic regulation under the context of CRC. 54 paired samples of tumor tissues and surrounding non-tumor tissues were collected from CRC patients. Cultured human CRC cells HCT116 and LoVo were assayed for their viability and migration using CCK-8 tests and transwell migration assays. The expression of EMT-specific markers (E-cadherin, N-cadherin and vimentin) was analyzed biochemically by RT-qPCR and immunoblot analyses. Interaction among LINC00586, LSD1, and ASXL1 was determined by RNA immunoprecipitation and chromatin immunoprecipitation. In vivo analysis of LINC00586 was performed in nude mice xenografted with HCT116 cells. LINC00586 was overexpressed in CRC tissues and associated with patient survival. LINC00586 knockdown repressed HCT116 and LoVo cell viability, migration, their phenotypic switch from epithelial to a mesenchymal, and tumorigenesis in vivo. We demonstrated LINC00586 recruited the LSD1 into the ASXL1 promoter region and epigenetically silenced the ASXL1 expression. An ASXL1 gene resisting to LINC00586 attack was demonstrated in cultured HCT116 and LoVo cells and mouse xenograft models of human CRC. Overall, discovery of the LINC00586/LSD1/ASXL1 axis partially explains epigenetic mechanism regulating EMT in CRC, providing a therapeutic target to limit CRC metastasis.
Collapse
Affiliation(s)
- Fengting Liu
- Tianjin Key Laboratory of RadiationMedicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaofang Ma
- Medical Research Center, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Xiyun Bian
- Medical Research Center, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Chunyan Zhang
- Medical Research Center, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Xiaozhi Liu
- Medical Research Center, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
- *Correspondence: Xiaozhi Liu, ; Qiang Liu,
| | - Qiang Liu
- Tianjin Key Laboratory of RadiationMedicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- *Correspondence: Xiaozhi Liu, ; Qiang Liu,
| |
Collapse
|
11
|
Melixetian M, Pelicci PG, Lanfrancone L. Regulation of LncRNAs in Melanoma and Their Functional Roles in the Metastatic Process. Cells 2022; 11:577. [PMID: 35159386 PMCID: PMC8834033 DOI: 10.3390/cells11030577] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of numerous intracellular processes leading to tumorigenesis. They are frequently deregulated in cancer, functioning as oncogenes or tumor suppressors. As they act through multiple mechanisms, it is not surprising that they may exert dual functions in the same tumor. In melanoma, a highly invasive and metastatic tumor with the propensity to rapidly develop drug resistance, lncRNAs play different roles in: (i) guiding the phenotype switch and leading to metastasis formation; (ii) predicting the response of melanoma patients to immunotherapy; (iii) triggering adaptive responses to therapy and acquisition of drug resistance phenotypes. In this review we summarize the most recent findings on the lncRNAs involved in melanoma growth and spreading to distant sites, focusing on their role as biomarkers for disease diagnosis and patient prognosis, or targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Marine Melixetian
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| |
Collapse
|
12
|
Montico B, Giurato G, Pecoraro G, Salvati A, Covre A, Colizzi F, Steffan A, Weisz A, Maio M, Sigalotti L, Fratta E. The pleiotropic roles of circular and long noncoding RNAs in cutaneous melanoma. Mol Oncol 2022; 16:565-593. [PMID: 34080276 PMCID: PMC8807361 DOI: 10.1002/1878-0261.13034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma (CM) is a very aggressive disease, often characterized by unresponsiveness to conventional therapies and high mortality rates worldwide. The identification of the activating BRAFV600 mutations in approximately 50% of CM patients has recently fueled the development of novel small-molecule inhibitors that specifically target BRAFV600 -mutant CM. In addition, a major progress in CM treatment has been made by monoclonal antibodies that regulate the immune checkpoint inhibitors. However, although target-based therapies and immunotherapeutic strategies have yielded promising results, CM treatment remains a major challenge. In the last decade, accumulating evidence points to the aberrant expression of different types of noncoding RNAs (ncRNAs) in CM. While studies on microRNAs have grown exponentially leading to significant insights on CM biology, the role of circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) in this tumor is less understood, and much remains to be discovered. Here, we summarize and critically review the available evidence on the molecular functions of circRNAs and lncRNAs in BRAFV600 -mutant CM and CM immunogenicity, providing recent updates on their functional role in targeted therapy and immunotherapy resistance. In addition, we also include an evaluation of several algorithms and databases for prediction and validation of circRNA and lncRNA functional interactions.
Collapse
Affiliation(s)
- Barbara Montico
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
| | - Alessia Covre
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
| | - Francesca Colizzi
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Agostino Steffan
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Michele Maio
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
- NIBIT Foundation OnlusSienaItaly
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Elisabetta Fratta
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| |
Collapse
|
13
|
Klapproth C, Sen R, Stadler PF, Findeiß S, Fallmann J. Common Features in lncRNA Annotation and Classification: A Survey. Noncoding RNA 2021; 7:77. [PMID: 34940758 PMCID: PMC8708962 DOI: 10.3390/ncrna7040077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are widely recognized as important regulators of gene expression. Their molecular functions range from miRNA sponging to chromatin-associated mechanisms, leading to effects in disease progression and establishing them as diagnostic and therapeutic targets. Still, only a few representatives of this diverse class of RNAs are well studied, while the vast majority is poorly described beyond the existence of their transcripts. In this review we survey common in silico approaches for lncRNA annotation. We focus on the well-established sets of features used for classification and discuss their specific advantages and weaknesses. While the available tools perform very well for the task of distinguishing coding sequence from other RNAs, we find that current methods are not well suited to distinguish lncRNAs or parts thereof from other non-protein-coding input sequences. We conclude that the distinction of lncRNAs from intronic sequences and untranslated regions of coding mRNAs remains a pressing research gap.
Collapse
Affiliation(s)
- Christopher Klapproth
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; (C.K.); (P.F.S.); (S.F.)
| | - Rituparno Sen
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), D-97080 Würzburg, Germany;
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; (C.K.); (P.F.S.); (S.F.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, University Leipzig, D-04103 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
- Facultad de Ciencias, Universidad National de Colombia, Bogotá CO-111321, Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Sven Findeiß
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; (C.K.); (P.F.S.); (S.F.)
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; (C.K.); (P.F.S.); (S.F.)
| |
Collapse
|
14
|
Li FW, Luo SK. Identification and Construction of a Predictive Immune-Related lncRNA Signature Model for Melanoma. Int J Gen Med 2021; 14:9227-9235. [PMID: 34880662 PMCID: PMC8647169 DOI: 10.2147/ijgm.s340025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/25/2021] [Indexed: 01/18/2023] Open
Abstract
Objective The occurrence and development mechanisms of melanoma are related to immunity and lncRNAs. Therefore, it is necessary to systematically explore immune-related lncRNA profiles to help improve the prognosis of melanoma. Methods We integrated immune-related lncRNAs and the basic clinical information of melanoma patients in the TCGA dataset. Immune-associated lncRNAs were selected by differential expression screening and enriched for analysis. After univariate and multivariate Cox regression analyses, a new prognostic indicator based on immune-associated lncRNAs was established. Results Overall, differentially expressed immune-related lncRNAs were significantly associated with clinical outcomes in patients with melanoma. A prognostic model was then established based on 14 immune-associated lncRNAs (LRRC8C-DT, AC021188.1, MALINC1, CCR5AS, EIF2AK3-DT, AC022306.2, AC242842.1, AL034376.1, AL662844.4, AC009065.3, AC099811.3, AC125807.2, SPINT1-AS1 and AC009495.2). Melanoma patients in the high-risk group had worse overall survival than those in the low-risk group. The AUC of the risk score was 0.786. Conclusion This study identified several clinically significant immune-related lncRNAs and established a relevant prognostic model, which provided a molecular analysis of immunity in melanoma and potential prognostic lncRNAs for melanoma.
Collapse
Affiliation(s)
- Fang-Wei Li
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou City, Guangdong Province, 510317, People's Republic of China
| | - Sheng-Kang Luo
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou City, Guangdong Province, 510317, People's Republic of China
| |
Collapse
|
15
|
Non-coding RNA dysregulation in skin cancers. Essays Biochem 2021; 65:641-655. [PMID: 34414406 DOI: 10.1042/ebc20200048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Skin cancers are the most common cancers worldwide. They can be classified in melanoma and non-melanoma skin cancer (NMSC), the latter includes squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and merkel cell carcinoma (MCC). In recent years, the crucial role of non-coding RNAs (ncRNAs) in skin cancer pathogenesis has become increasingly evident. NcRNAs are functional RNA molecules that lack any protein-coding activity. These ncRNAs are classified based on their length: small, medium-size, and long ncRNAs. Among the most studied ncRNAs there are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNA (circRNAs). ncRNAs have the ability to regulate gene expression at transcriptional and post-transcriptional levels and are involved in skin cancer cell proliferation, angiogenesis, invasion, and metastasis. Many ncRNAs exhibit tissue- or cell-specific expression while others have been correlated to tumor staging, drug resistance, and prognosis. For these reasons, ncRNAs have both a diagnostic and prognostic significance in skin cancers. Our review summarizes the functional role of ncRNAs in skin cancers and their potential clinical application as biomarkers.
Collapse
|
16
|
Wozniak M, Czyz M. The Functional Role of Long Non-Coding RNAs in Melanoma. Cancers (Basel) 2021; 13:cancers13194848. [PMID: 34638331 PMCID: PMC8508152 DOI: 10.3390/cancers13194848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the most lethal skin cancer, with increasing incidence worldwide. The molecular events that drive melanoma development and progression have been extensively studied, resulting in significant improvements in diagnostics and therapeutic approaches. However, a high drug resistance to targeted therapies and adverse effects of immunotherapies are still a major challenge in melanoma treatment. Therefore, the elucidation of molecular mechanisms of melanomagenesis and cancer response to treatment is of great importance. Recently, many studies have revealed the close association of long noncoding RNAs (lncRNAs) with the development of many cancers, including melanoma. These RNA molecules are able to regulate a plethora of crucial cellular processes including proliferation, differentiation, migration, invasion and apoptosis through diverse mechanisms, and even slight dysregulation of their expression may lead to tumorigenesis. lncRNAs are able to bind to protein complexes, DNA and RNAs, affecting their stability, activity, and localization. They can also regulate gene expression in the nucleus. Several functions of lncRNAs are context-dependent. This review summarizes current knowledge regarding the involvement of lncRNAs in melanoma. Their possible role as prognostic markers of melanoma response to treatment and in resistance to therapy is also discussed.
Collapse
|
17
|
Peng Q, Wang J. Non-coding RNAs in melanoma: Biological functions and potential clinical applications. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:219-231. [PMID: 34514101 PMCID: PMC8424110 DOI: 10.1016/j.omto.2021.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant melanoma (MM) is a malignant tumor that originates from melanocytes and has a high mortality rate. Therefore, early diagnosis and treatment are very important for survival. So far, the exact molecular mechanism leading to the occurrence of melanoma, especially the molecular metastatic mechanism, remains largely unknown. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNA (circRNAs), have been investigated and found to play vital roles in regulating tumor occurrence and development, including melanoma. In this review, we summarize the progress of recent research on the effects of ncRNAs on melanoma and attempt to elucidate the role of ncRNAs as molecular markers or potential targets that will provide promising application perspectives on melanoma.
Collapse
Affiliation(s)
- Qiu Peng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
| | - Jia Wang
- Department of Immunology, Changzhi Medical College, Changzhi, Shanxi 046000 China
| |
Collapse
|
18
|
Zhang J, Zhou X, Zhu C, Hu Y, Li R, Jin S, Huang D, Ju M, Chen K, Luan C. Whole‑genome identification and systematic analysis of lncRNA‑mRNA co‑expression profiles in patients with cutaneous basal cell carcinoma. Mol Med Rep 2021; 24:631. [PMID: 34278484 PMCID: PMC8281216 DOI: 10.3892/mmr.2021.12270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/10/2021] [Indexed: 11/06/2022] Open
Abstract
Cutaneous basal cell carcinoma (BCC) is a common subtype of malignant skin tumor with low invasiveness. Early diagnosis and treatment of BCC and the identification of specific biomarkers are particularly urgent. Long non‑coding RNAs (lncRNAs) have been shown to be associated with the development of various tumors, including BCC. The present study conducted a comparative analysis of the differential expression of lncRNAs and mRNAs through whole‑genome technology. Microarray analyses were used to identify differentially expressed (DE) lncRNAs and DE mRNAs. Reverse transcription‑quantitative (RT‑q) PCR confirmed the differential expression of 10 lncRNAs in BCC. Subsequently, a lncRNA‑mRNA co‑expression network was constructed using the top 10 DE lncRNAs. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the possible biological effects of the identified mRNAs and to speculate on the possible biological effects of the lncRNAs. A total of 1,838 DE lncRNAs and 2,010 DE mRNAs were identified and 10 of the DE lncRNAs were confirmed by RT‑qPCR. A lncRNA‑mRNA co‑expression network comprising 166 specific co‑expressed lncRNAs and mRNAs was constructed using the top 10 DE lncRNAs. According to the results of the GO and KEGG analyses, lncRNA XR_428612.1 may serve an important role in mitochondrial dysfunction and the progression of BCC by modulating TICAM1, USMG5, COX7A2, FBXO10, ATP5E and TIMM8B. The present study provided whole‑genome identification and a systematic analysis of lncRNA‑mRNA co‑expression profiles in BCC.
Collapse
Affiliation(s)
- Jiaan Zhang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Xuyue Zhou
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Chenpu Zhu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Yu Hu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Rong Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Shuang Jin
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Dan Huang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Mei Ju
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Kun Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Chao Luan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| |
Collapse
|
19
|
Hussen BM, Azimi T, Abak A, Hidayat HJ, Taheri M, Ghafouri-Fard S. Role of lncRNA BANCR in Human Cancers: An Updated Review. Front Cell Dev Biol 2021; 9:689992. [PMID: 34409032 PMCID: PMC8367322 DOI: 10.3389/fcell.2021.689992] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/02/2021] [Indexed: 01/07/2023] Open
Abstract
Being located in a gene desert region on 9q21.11-q21.12, BRAF-activated non-protein coding RNA (BANCR) is an lncRNA with 693 bp length. It has been discovered in 2012 in a research aimed at assessment of gene expression in the melanocytes in association with BRAF mutation. Increasing numbers of studies have determined its importance in the tumorigenesis through affecting cell proliferation, migration, invasion, apoptosis, and epithelial to mesenchymal transition. BANCR exerts its effects via modulating some tumor-related signaling pathways particularly MAPK and other regulatory mechanisms such as sponging miRNAs. BANCR has been up-regulated in endometrial, gastric, breast, melanoma, and retinoblastoma. Conversely, it has been down-regulated in some other cancers such as those originated from lung, bladder, and renal tissues. In some cancer types such as colorectal cancer, hepatocellular carcinoma and papillary thyroid carcinoma, there is no agreement about BANCR expression, necessitating the importance of additional functional studies in these tissues. In the present manuscript, we review the investigations related to BANCR expression changes in cancerous cell lines, clinical samples, and animal models of cancer. We also discuss the outcome of its deregulation in cancer progression, prognosis, and the underlying mechanisms of these observations.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Tahereh Azimi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahadddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Abstract
Diabetic retinopathy (DR), which is known as a severe complication of type 2 diabetes mellitus, can cause varying degrees of damage to visual acuity. The pathogenesis of DR is multifactorial and not fully understood. Many previous research studies have revealed that an aberrant level of some long non-coding RNAs (lncRNAs) may accelerate the development of DR. These lncRNAs are regulatory factors and research related to them is always underway. In this review, we will update several types of lncRNAs based on the previous studies which are related to the development of DR and discuss its potential mechanisms of action and connections. Generally, the review will help us know more about lncRNAs and provide directions for future research related to DR.
Collapse
Affiliation(s)
- Qinying Huang
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jinying Li
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Xie FW, Liu JC. LncRNA SNHG12 regulates the miR-101-3p/CUL4B axis to mediate the proliferation, migration and invasion of non-small cell lung cancer. Kaohsiung J Med Sci 2021; 37:664-674. [PMID: 34002487 DOI: 10.1002/kjm2.12389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/03/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence has shown that long noncoding RNAs (lncRNAs) play critical roles in carcinogenesis and tumor progression. SNHG12 has been identified in multiple types of malignant tumors. However, the role of SNHG12 in human non-small cell lung cancer (NSCLC) is poorly characterized, and the relevant underlying mechanism remains unclear. The expression levels of SNHG12, miR-101-3p, and CUL4B in collected human NSCLC tumor tissues and NSCLC cell lines were tested via qRT-PCR. Then, NSCLC cellular proliferation, migration and invasion were determined, followed by MTT, scratch and Transwell assays. Dual-luciferase reporter assays and RNA pulldown assays were adopted to explore the target site. Moreover, western blotting was performed to detect the relevant protein expression concerning the CUL4B/PI3K/AKT pathway. This study clarified that SNHG12 knockdown significantly reduced proliferation, migration, invasion and EMT of NSCLC cells. Our data indicated that SNHG12 targeted and negatively regulated miR-101-3p, and this depletion reversed the inhibitory effect of si-SNHG12 on NSCLC cells. Furthermore, CUL4B was confirmed as a functional target of miR-101-3p, and its knockdown resulted in a strong alleviation of the NSLCL cell phenotype, which was enhanced by the silencing of miR-101-3p. Mechanistically, we found that SNHG12 regulated miR-101-3p to modulate the PI3K/AKT pathway mediated by CUL4B.These observations suggested that lncRNA SNHG12-mediated miR-101-3p downregulation regulated the malignant phenotype of NSCLC cells by targeting CUL4B through the PI3K/AKT pathway, which may present a path to novel therapeutic strategies for NSCLC therapy.
Collapse
Affiliation(s)
- Feng-Wen Xie
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ji-Chun Liu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Abstract
In situ hybridization (ISH) and fluorescence in situ hybridization (FISH) techniques enable us to detect the expression of a specific RNA in fixed cells or tissue sections. Here, we describe in detail two procedures adjusted to reveal specifically lncRNAs in normal human keratinocytes and in skin tissue samples. Examples of the results obtained by the two different approaches are also shown.
Collapse
|
23
|
LncRNAs and Immunity: Coding the Immune System with Noncoding Oligonucleotides. Int J Mol Sci 2021; 22:ijms22041741. [PMID: 33572313 PMCID: PMC7916124 DOI: 10.3390/ijms22041741] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) represent key regulators of gene transcription during the inflammatory response. Recent findings showed lncRNAs to be dysregulated in human diseases, such as inflammatory bowel disease, diabetes, allergies, asthma, and cancer. These noncoding RNAs are crucial for immune mechanism, as they are involved in differentiation, cell migration and in the production of inflammatory mediators through regulating protein–protein interactions or their ability to assemble with RNA and DNA. The last interaction can occur in cis or trans and is responsible for all the possible lncRNAs biological effects. Our proposal is to provide an overview on lncRNAs roles and functions related to immunity and immune mediated diseases, since these elucidations could be beneficial to untangle the complex bond between them.
Collapse
|
24
|
De Falco V, Napolitano S, Esposito D, Guerrera LP, Ciardiello D, Formisano L, Troiani T. Comprehensive Review on the Clinical Relevance of Long Non-Coding RNAs in Cutaneous Melanoma. Int J Mol Sci 2021; 22:1166. [PMID: 33503876 PMCID: PMC7865742 DOI: 10.3390/ijms22031166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is considered a rare tumor, although it is one of the most common cancers in young adults and its incidence has risen in the last decades. Targeted therapy, with BRAF and MEK inhibitors, and immunotherapy revolutionized the treatment of metastatic melanoma but there is still a considerable percentage of patients with primary or acquired resistance to these therapies. Recently, oncology researchers directed their attention at the role of long non-coding RNAs (lncRNAs) in different types of cancers, including melanoma. lncRNAs are RNA transcripts, initially considered "junk sequences", that have been proven to have a crucial role in the fine regulation of physiological and pathological processes of different tissues. Furthermore, they are more expressed in tumors than protein-coding genes, constituting perfect candidates either as biomarkers (diagnostic, prognostic, predictive) or as therapeutic targets. In this work, we reviewed all the literature available for lncRNA in melanoma, elucidating all the potential roles in this tumor.
Collapse
Affiliation(s)
- Vincenzo De Falco
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Stefania Napolitano
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Daniela Esposito
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Napoli, Italy; (D.E.); (L.F.)
| | - Luigi Pio Guerrera
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Davide Ciardiello
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Napoli, Italy; (D.E.); (L.F.)
| | - Teresa Troiani
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| |
Collapse
|
25
|
Han W, Niu L, Wang L, Liu J, Li H. Downregulation of long non-coding RNA B-Raf proto-oncogene-activated non-coding RNA reverses cisplatin resistance in laryngeal squamous cell carcinoma. Arch Med Sci 2021; 17:1164-1174. [PMID: 34522245 PMCID: PMC8425235 DOI: 10.5114/aoms.2019.91352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/14/2018] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION This study was performed to explore the function of B-Raf proto-oncogene-activated non-coding RNA (BANCR) in laryngeal squamous cell carcinoma (LSCC) and cisplatin resistance. MATERIAL AND METHODS The relative expression level of long non-coding RNA (lncRNA) BANCR was examined by qRT-PCR in tumor tissues and adjacent tissues, normal laryngeal cells (Het-1A) and laryngeal squamous carcinoma cells (TU686, TU177). Cisplatin-resistant laryngeal squamous carcinoma cell lines (TU686-DDP-R, TU177-DDP-R) were established. Next, we inhibited BANCR expression by transfecting siRNA-BANCR and enhanced BANCR expression by transfecting pcDNA3.1-BANCR into TU686, TU177, TU686-DDP-R and TU177-DDP-R cells. The CCK-8 assay and clone formation assay were performed to detect colony proliferation ability and formation ability of cells. Further, to investigate through which BANCR cell viability/formation is regulated, we detected the expression of MRP1, Bcl-2, p-PKB, and Bax by western blot. RESULTS BANCR was highly expressed in laryngeal squamous carcinoma tissues and cells. Chemoresistance was generated in TU686-DDP-R and TU177-DDP-R compared with TU686 and TU177 cells after cisplatin treatment. In addition, upregulated lncRNA BANCR reduced or postponed cell sensitivity to cisplatin by enhancing cell proliferation in TU686 and TU177 cells. Meanwhile, the expression of MRP1, Bcl-2, and p-PKB was increased, while Bax was reduced. After cisplatin treatment, down-regulation of BANCR could consequently attenuate TU686-DDP-R and TU177-DDP-R cell proliferation, and the expression of MRP1, Bcl-2, and p-PKB was decreased and Bax was increased. CONCLUSIONS Down-regulation of BANCR reverses cisplatin resistance of cisplatin-resistant LSCC cell lines.
Collapse
Affiliation(s)
- Weiwei Han
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medicine Centre, Tianjin, China
| | - Lin Niu
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medicine Centre, Tianjin, China
| | - Lin Wang
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medicine Centre, Tianjin, China
| | - Jixiang Liu
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medicine Centre, Tianjin, China
| | - Huanying Li
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medicine Centre, Tianjin, China
| |
Collapse
|
26
|
Duan Q, Wang G, Wang M, Chen C, Zhang M, Liu M, Shao Y, Zheng Y. LncRNA RP6-65G23.1 accelerates proliferation and inhibits apoptosis via p-ERK1/2/p-AKT signaling pathway on keratinocytes. J Cell Biochem 2020; 121:4580-4589. [PMID: 32065443 DOI: 10.1002/jcb.29685] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022]
Abstract
Long non-coding RNAs (LncRNAs) play essential roles in the development of various diseases including hepatic carcinoma, melanoma, and psoriasis. Meanwhile, lncRNA-RP6-65G23.1 was upregulated in psoriasis. However, it is still unclear whether lncRNA-RP6-65G23.1 expression is upregulated and contributes to keratinocytes proliferation and apoptosis, and which mechanisms are responsible for these processes. The aims of this study are to address these issues. RP6-65G23.1 was significantly upregulated in M5-stimulated keratinocytes and stimulated the proliferation and inhibited the apoptosis of HaCaT cells. Knockdown of RP6-65G23.1 resulted in defects of growth and increased rates of apoptosis in HaCaT cells, while overexpression of RP6-65G23.1 manifested the opposite effects. Consistently, the expression of antiapoptotic proteins Bcl-xl and Bcl2 were decreased in RP6-65G23.1-knockdown cells but elevated in RP6-65G23.1 overexpression cells. In addition, RP6-65G23.1 depletion blunted the activity of extracellular regulated kinase 1/2 (ERK1/2) and AKT signaling pathways and induced G1 /S-growth arrest. By contrast, overexpression of RP6-65G23.1 activates the ERK1/2 and AKT signaling pathways and inhibits the expression of p21 and p27 in an AKT-dependent manner leading to promote the G1/S progression. Our results suggested that lncRNA-RP6-65G23.1 would contribute to the pathogenesis of psoriasis by regulating the proliferation and apoptosis of keratinocytes via the p-ERK1/2 and p-AKT pathways.
Collapse
Affiliation(s)
- Qiqi Duan
- Department of Dermatology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Guorong Wang
- Department of General Surgery, ShaanXi Provincial People's Hospital, Xi'an, China
| | - Min Wang
- Department of Dermatology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Caifeng Chen
- Department of Dermatology, Fujian Provincial Hospital, Fuzhou, China
| | - Mengdi Zhang
- Department of Dermatology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Meng Liu
- Department of Dermatology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Yongping Shao
- Frontier Institute of Science and Technology and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yan Zheng
- Department of Dermatology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| |
Collapse
|
27
|
Aprile M, Katopodi V, Leucci E, Costa V. LncRNAs in Cancer: From garbage to Junk. Cancers (Basel) 2020; 12:E3220. [PMID: 33142861 PMCID: PMC7692075 DOI: 10.3390/cancers12113220] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Sequencing-based transcriptomics has significantly redefined the concept of genome complexity, leading to the identification of thousands of lncRNA genes identification of thousands of lncRNA genes whose products possess transcriptional and/or post-transcriptional regulatory functions that help to shape cell functionality and fate. Indeed, it is well-established now that lncRNAs play a key role in the regulation of gene expression through epigenetic and posttranscriptional mechanims. The rapid increase of studies reporting lncRNAs alteration in cancers has also highlighted their relevance for tumorigenesis. Herein we describe the most prominent examples of well-established lncRNAs having oncogenic and/or tumor suppressive activity. We also discuss how technical advances have provided new therapeutic strategies based on their targeting, and also report the challenges towards their use in the clinical settings.
Collapse
Affiliation(s)
- Marianna Aprile
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy;
| | - Vicky Katopodi
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, LKI, Herestraat 49, 3000 Leuven, Belgium; (V.K.); (E.L.)
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, LKI, Herestraat 49, 3000 Leuven, Belgium; (V.K.); (E.L.)
| | - Valerio Costa
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy;
| |
Collapse
|
28
|
Safa A, Gholipour M, Dinger ME, Taheri M, Ghafouri-Fard S. The critical roles of lncRNAs in the pathogenesis of melanoma. Exp Mol Pathol 2020; 117:104558. [PMID: 33096077 DOI: 10.1016/j.yexmp.2020.104558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNAs) embrace a huge fraction of human transcripts and participate in the pathogenesis of human disorders especially malignant conditions. Malignant melanoma, as the most fatal type of cutaneous malignnacies, is associated with dysregulation of several lncRNAs including PVT1, H19, MALAT1, and CCAT1. Moreover, a portion of lncRNAs are exclusively expressed in melanoma cell lines. Expression levels of several lncRNAs are associated with TNM stage, tumor size and progression of melanoma. Thus, these lncRNAs are regarded as biomarkers for this malignancy. Peripheral transcript levels of a number of lncRNAs, such as PVT1, SNHG5 and SPRY4-IT1, could distinguish melanoma patients from unaffected persons with appropriate sensitivity and specificity values. Moreover, expression levels of numerous lncRNAs in tissue biopsies could differentiate malignant samples from benign samples. Based on the results of both cell line and in vivo studies, lncRNAs regulate critical pathways in the carcinogenesis of melanoma, such as the PI3K/Akt and NF-κB signaling pathways, and are involved in the modulation of response to chemotherapeutic agents. Here we review the existing information on the role of lncRNAs in malignant melanoma.
Collapse
Affiliation(s)
- Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
高 亚, 罗 小, 孟 婷, 朱 敏, 田 渼, 陆 晓. [DNMT1 protein promotes retinoblastoma proliferation by silencing MEG3 gene]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1239-1245. [PMID: 32990237 PMCID: PMC7544569 DOI: 10.12122/j.issn.1673-4254.2020.09.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To investigate whether DNMT1 protein induces retinoblastoma proliferation by silencing MEG3 gene. METHODS Two retinoblastoma cell lines (HXO-RB44 and SO-RB50) and a normal human retinal pigment epithelial (RPE) cell line were transfected with the plasmid pcDNA-DNMT1 or si-DNMT1 for up-regulating or interference of DNMT1 expression, and with pcDNA-MEG3 or si-MEG3 for up-regulating or interference of MEG3 expression. Western blotting was used to detect the changes in the expression of DNMT1 protein in the transfected cells, and CCK-8 and EdU assays were used to detect the changes in cell proliferation. Real-time quantitative PCR (qRT-PCR) was performed to detect MEG3 expression in SO-RB50 and HXO-RB44 cells after transfection, and the methylation level of MEG3 gene promoter after interference of DNMT1 expression was detected using methylation-specific PCR. RESULTS SO-RB50 and HXO-RB44 cells showed significantly increased expression of DNMT1 protein as compared with normal RPE cells (P < 0.05). In HXO-RB44 cells, transfection with pcDNADNMT1 resulted in significantly increased expression of DNMT1 protein, enhanced cell proliferation ability, and significantly reduced expression of MEG3 (P < 0.05). In SO-RB50 cells, transfection with si-DNMT1 significantly reduced the expression of DNMT1 protein, suppressed the cell proliferation, and increased MEG3 expression (P < 0.05). Interference of DNMT1 significantly reduced the methylation level of MEG3 gene promoter. After reversing the regulatory effect of DNMT1 on MEG3 gene, DNMT1 protein showed significantly weakened ability to regulate retinoblastoma cell proliferation (P < 0.05). CONCLUSIONS In retinoblastoma cells, the up-regulation of DNMT1 protein induces promoter methylation and inactivation of MEG3 gene and eventually leads to abnormal cell proliferation.
Collapse
Affiliation(s)
- 亚莉 高
- 深圳市人民医院//暨南大学第二临床医学院眼科,广东 深圳 518020Department of Ophthalmology, Second Clinical Medical College of Ji'nan University/Shenzhen People's Hospital, Shenzhen 518020, China
| | - 小玲 罗
- 深圳市人民医院//暨南大学第二临床医学院眼科,广东 深圳 518020Department of Ophthalmology, Second Clinical Medical College of Ji'nan University/Shenzhen People's Hospital, Shenzhen 518020, China
| | - 婷 孟
- 深圳市人民医院//暨南大学第二临床医学院眼科,广东 深圳 518020Department of Ophthalmology, Second Clinical Medical College of Ji'nan University/Shenzhen People's Hospital, Shenzhen 518020, China
| | - 敏娟 朱
- 深圳市人民医院//暨南大学第二临床医学院眼科,广东 深圳 518020Department of Ophthalmology, Second Clinical Medical College of Ji'nan University/Shenzhen People's Hospital, Shenzhen 518020, China
| | - 渼雯 田
- 深圳市人民医院//暨南大学第二临床医学院眼科,广东 深圳 518020Department of Ophthalmology, Second Clinical Medical College of Ji'nan University/Shenzhen People's Hospital, Shenzhen 518020, China
| | - 晓和 陆
- 南方医科大学珠江医院眼科,广东 广州 510280Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
30
|
Fang S, Liu Z, Guo Q, Chen C, Ke X, Xu G. High BANCR expression is associated with worse prognosis in human malignant carcinomas: an updated systematic review and meta-analysis. BMC Cancer 2020; 20:870. [PMID: 32907530 PMCID: PMC7488167 DOI: 10.1186/s12885-020-07177-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/13/2020] [Indexed: 01/11/2023] Open
Abstract
Background BRAF-activated noncoding RNA (BANCR) is aberrantly expressed in various tumor tissues and has been confirmed to function as a tumor suppressor or oncogene in many types of cancers. Considering the conflicting results and insufficient sampling, a meta-analysis was performed to explore the prognostic value of BANCR in various carcinomas. Methods A comprehensive literature search of PubMed, Web of Science, EMBASE, Cochrane Library and the China National Knowledge Infrastructure (CNKI) was conducted to collect relevant articles. Results The pooled results showed a strong relationship between high BANCR expression and poor overall survival (OS) (HR (hazard ratio) =1.60, 95% confidence interval (CI): 1.19–2.15, P = 0.002) and recurrence-free survival (RFS) (HR = 1.53, 95% CI: 1.27–1.85, P < 0.00001). In addition, high BANCR expression predicted advanced tumor stage (OR (odds ratio) =2.39, 95% CI: 1.26–4.53, P = 0.008), presence of lymph node metastasis (OR = 2.03, 95% CI: 1.08–3.83, P = 0.03), positive distant metastasis (OR = 3.08, 95% CI: 1.92–4.96, P < 0.00001) and larger tumor sizes (OR = 1.63, 95% CI: 1.09–2.46, P = 0.02). However, no associations were found for smoking status (OR = 1.01, 95% CI: 0.65–1.56, P = 0.98), age (OR = 0.88, 95% CI: 0.71–1.09, P = 0.236) and sex (OR = 0.91, 95% CI: 0.72–1.16, P = 0.469). The sensitivity analysis of OS showed that the results of each publication were almost consistent with the combined results, and the merged results have high robustness and reliability. Conclusions The results showed that elevated BANCR expression was associated with unfavorable prognosis for most cancer patients, and BANCR could serve as a promising therapeutic target and independent prognostic predictor in most of cancer types.
Collapse
Affiliation(s)
- Shixu Fang
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Zhou Liu
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Qiang Guo
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Cheng Chen
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Xixian Ke
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
| | - Gang Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
31
|
Vafadar A, Shabaninejad Z, Movahedpour A, Mohammadi S, Fathullahzadeh S, Mirzaei HR, Namdar A, Savardashtaki A, Mirzaei H. Long Non-Coding RNAs As Epigenetic Regulators in Cancer. Curr Pharm Des 2020; 25:3563-3577. [PMID: 31470781 DOI: 10.2174/1381612825666190830161528] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/21/2019] [Indexed: 02/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) constitute large portions of the mammalian transcriptome which appeared as a fundamental player, regulating various cellular mechanisms. LncRNAs do not encode proteins, have mRNA-like transcripts and frequently processed similar to the mRNAs. Many investigations have determined that lncRNAs interact with DNA, RNA molecules or proteins and play a significant regulatory function in several biological processes, such as genomic imprinting, epigenetic regulation, cell cycle regulation, apoptosis, and differentiation. LncRNAs can modulate gene expression on three levels: chromatin remodeling, transcription, and post-transcriptional processing. The majority of the identified lncRNAs seem to be transcribed by the RNA polymerase II. Recent evidence has illustrated that dysregulation of lncRNAs can lead to many human diseases, in particular, cancer. The aberrant expression of lncRNAs in malignancies contributes to the dysregulation of proliferation and differentiation process. Consequently, lncRNAs can be useful to the diagnosis, treatment, and prognosis, and have been characterized as potential cancer markers as well. In this review, we highlighted the role and molecular mechanisms of lncRNAs and their correlation with some of the cancers.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sima Fathullahzadeh
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Hamid R Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Namdar
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
32
|
Tu J, Chen Y, Li Z, Yang H, Chen H, Yu Z. Long non-coding RNAs in ovarian granulosa cells. J Ovarian Res 2020; 13:63. [PMID: 32503679 PMCID: PMC7275442 DOI: 10.1186/s13048-020-00663-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Granulosa cells (GCs) are somatic cells surrounding oocytes within follicles and are essential for folliculogenesis. Pathological changes in GCs are found in several ovarian disorders. Recent reports have indicated that long non-coding RNAs (lncRNAs), which modulate gene expression via multiple mechanisms, are key regulators of the normal development of GCs, follicles, and ovaries. In addition, accumulating evidence has suggested that lncRNAs can be utilized as biomarkers for the diagnosis and prognosis of GC-related diseases, such as polycystic ovary syndrome (PCOS) and premature ovarian insufficiency (POI). Therefore, lncRNAs not only play a role in GCs that are involved in normal folliculogenesis, but they may also be considered as potential candidate biomarkers and therapeutic targets in GCs under pathological conditions. In the future, a detailed investigation of the in vivo delivery or targeting of lncRNAs and large-cohort-validation of the clinical applicability of lncRNAs is required.
Collapse
Affiliation(s)
- Jiajie Tu
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong province, China. .,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui province, China.
| | - Yu Chen
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong province, China
| | - Zhe Li
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong province, China
| | - Huan Yang
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong province, China
| | - He Chen
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong province, China
| | - Zhiying Yu
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong province, China.
| |
Collapse
|
33
|
Wu X, Xia T, Cao M, Zhang P, Shi G, Chen L, Zhang J, Yin J, Wu P, Cai B, Lu Z, Miao Y, Jiang K. LncRNA BANCR Promotes Pancreatic Cancer Tumorigenesis via Modulating MiR-195-5p/Wnt/β-Catenin Signaling Pathway. Technol Cancer Res Treat 2020; 18:1533033819887962. [PMID: 31769353 PMCID: PMC6880033 DOI: 10.1177/1533033819887962] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Long noncoding BRAF-activated noncoding RNA has been reported to be tightly associated
with tumorigenesis and development in various types of cancers. However, the expression,
biological function, and modulatory mechanism of BRAF-activated noncoding RNA in
pancreatic cancer remained unclear. In the present work, we explored the carcinogenic
activity and underlying mechanism of BRAF-activated noncoding RNA on pancreatic cancer
in vitro. We identified that BRAF-activated noncoding RNA was
upregulated in pancreatic cancer tissues and cell lines, and BRAF-activated noncoding RNA
was related to tumor metastasis and stage. BRAF-activated noncoding RNA reinforces
proliferation, invasion, and migration in PANC-1 and SW1990 cells. Moreover, miR-195-5p
was downregulated in both PC tissues and cell lines. Our results based on luciferase
reporter, RIP-Ago2 and qRT-PCR assays, showed that miR-195-5p was a direct target of
BRAF-activated noncoding RNA. Furthermore, miR-195-5p inhibitor abrogated the effects of
short-interfering BRAF-activated noncoding RNA on PANC-1 and SW1990 cell growth and
invasion in vitro. We further identified that BRAF-activated noncoding
RNA played a vital role in activating the Wnt/β-catenin pathway by sponging miR-195-5p.
Collectively, our study showed that BRAF-activated noncoding RNA promotes pancreatic
cancer tumorigenesis through miR-195-5p/Wnt/β-catenin axis may serve as a potential target
for diagnostics and therapeutics in pancreatic cancer.
Collapse
Affiliation(s)
- Xinquan Wu
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Hepato-Pancreato-Biliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Tianfang Xia
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Department of General Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Meng Cao
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Department of General Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengbo Zhang
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Pancreatic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guodong Shi
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Chen
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingjing Zhang
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Yin
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengfei Wu
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Baobao Cai
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zipeng Lu
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Miao
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kuirong Jiang
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
34
|
Jeyaraman S, Hanif EAM, Ab Mutalib NS, Jamal R, Abu N. Circular RNAs: Potential Regulators of Treatment Resistance in Human Cancers. Front Genet 2020; 10:1369. [PMID: 32047511 PMCID: PMC6997550 DOI: 10.3389/fgene.2019.01369] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/16/2019] [Indexed: 01/06/2023] Open
Abstract
Circular RNAs (circRNAs) which were once considered as "junk" are now in the spotlight as a potential player in regulating human diseases, especially cancer. With the development of high throughput technologies in recent years, the full potential of circRNAs is being uncovered. CircRNAs possess some unique characteristics and advantageous properties that could benefit medical research and clinical applications. CircRNAs are stable with covalently closed loops that are resistant to ribonucleases, have disease stage-specific expressions and are selectively abundant in different types of tissues. Interestingly, the presence of circRNAs in different types of treatment resistance in human cancers was recently observed with the involvement of a few key pathways. The activation of certain pathways by circRNAs may give new insights to treatment resistance management. The potential usage of circRNAs from this aspect is very much in its infancy stage and has not been fully validated. This mini-review attempts to highlight the possible role of circRNAs as regulators of treatment resistance in human cancers based on its intersection molecules and cancer-related regulatory networks.
Collapse
Affiliation(s)
- Shivapriya Jeyaraman
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Kuala Lumpur, Malaysia
| | | | | | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Mannavola F, D’Oronzo S, Cives M, Stucci LS, Ranieri G, Silvestris F, Tucci M. Extracellular Vesicles and Epigenetic Modifications Are Hallmarks of Melanoma Progression. Int J Mol Sci 2019; 21:E52. [PMID: 31861757 PMCID: PMC6981648 DOI: 10.3390/ijms21010052] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022] Open
Abstract
Cutaneous melanoma shows a high metastatic potential based on its ability to overcome the immune system's control. The mechanisms activated for these functions vary extremely and are also represented by the production of a number of extracellular vesicles including exosomes. Other vesicles showing a potential role in the melanoma progression include oncosomes and melanosomes and the majority of them mediate tumor processes including angiogenesis, immune regulation, and modifications of the micro-environment. Moreover, a number of epigenetic modifications have been described in melanoma and abundant production of altered microRNAs (mi-RNAs), non-coding RNAs, histones, and abnormal DNA methylation have been associated with different phases of melanoma progression. In addition, exosomes, miRNAs, and other molecular factors have been used as potential biomarkers reflecting disease evolution while others have been suggested to be potential druggable molecules for therapeutic application.
Collapse
Affiliation(s)
- Francesco Mannavola
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
| | - Stella D’Oronzo
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
- National Cancer Research Center, Istituto Tumori ‘Giovanni Paolo II’, 70121 Bari, Italy;
| | - Mauro Cives
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
| | - Luigia Stefania Stucci
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
| | - Girolamo Ranieri
- National Cancer Research Center, Istituto Tumori ‘Giovanni Paolo II’, 70121 Bari, Italy;
| | - Franco Silvestris
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
| | - Marco Tucci
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
- National Cancer Research Center, Istituto Tumori ‘Giovanni Paolo II’, 70121 Bari, Italy;
| |
Collapse
|
36
|
Huang Y, Sun H, Ma X, Zeng Y, Pan Y, Yu D, Liu Z, Xiang Y. HLA-F-AS1/miR-330-3p/PFN1 axis promotes colorectal cancer progression. Life Sci 2019; 254:117180. [PMID: 31863778 DOI: 10.1016/j.lfs.2019.117180] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Accumulating Studies implies that long-chain non-coding RNA (lncRNA) plays a vital regulatory role in the occurrence and progression of tumors. This study aimed to explore the function and mechanism of lncRNA HLA-F antisense RNA 1 (HLA-F-AS1) in colorectal cancer (CRC). METHODS Expressions of HLA-F-AS1, miR-330-3p and profilin 1 (PFN1) mRNA in CRC tissues were detected by RT-PCR. MTT assay was used to detect cell proliferation, and Transwell assay was used to detect cell migration and invasion. In addition, PFN1 and apoptosis-related protein Bcl-2 associated X (Bax) and B cell lymphoma/leukmia-2 (Bcl2) were detected by western blot. Interactions between miR-330-3p and HLA-F-AS1 or the 3'UTR of PFN1 were predicted and determined by bioinformatics analysis and luciferase reporter assay. RESULTS Expressions of HLA-F-AS1 and PFN1 were significantly up-regulated while miR-330-3p was significantly down-regulated in CRC tissues and cell lines. Over-expressions of HLA-F-AS1 or transfection of miR-330-3p inhibitors could promote the proliferation, migration and invasion and block apoptosis of CRC cells, whereas knockdown of HLA-F-AS1 or transfection of miR-330-3p mimics led to the opposite effects. Additionally, HLA-F-AS1 could down-regulate miR-330-3p via sponging it. HLA-F-AS1 also enhanced the expressions of PFN1, which was validated as a target gene of miR-330-3p. CONCLUSION HLA-F-AS1 promoted CRC progression via regulating miR-330-3p/PFN1 axis.
Collapse
Affiliation(s)
- Yongguo Huang
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, Hubei Province, China
| | - Hong Sun
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, Hubei Province, China
| | - Xiang Ma
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, Hubei Province, China
| | - Ye Zeng
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, Hubei Province, China
| | - Yang Pan
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, Hubei Province, China
| | - Dongyang Yu
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, Hubei Province, China
| | - Zhisheng Liu
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, Hubei Province, China
| | - Yun Xiang
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, Hubei Province, China.
| |
Collapse
|
37
|
Shi HZ, Xiong JS, Xu CC, Bu WB, Wang Y, Sun JF, Chen H. Long non-coding RNA expression identified by microarray analysis: Candidate biomarkers in human acral lentiginous melanoma. Oncol Lett 2019; 19:1465-1477. [PMID: 31966073 PMCID: PMC6956422 DOI: 10.3892/ol.2019.11207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/14/2019] [Indexed: 11/05/2022] Open
Abstract
Melanoma is a rare but fatal form of skin cancer and acral lentiginous melanoma (ALM) is one of its most common types. Long non-coding RNA (lncRNA) has emerged as a crucial molecule in the development and progression of human cancers, and several studies have revealed that lncRNAs may be associated with the pathogenesis, progression and metastasis of melanoma. To demonstrate the association between ALM and lncRNAs, microarray analysis was performed in tumor and adjacent non-tumor tissues. A total of 4,488 lncRNAs and 3,913 mRNAs were identified to be differentially expressed in these samples. Among them, 2,211 and 2,277 lncRNAs were upregulated and downregulated in the ALM samples compared with adjacent tissues, respectively. In addition, 1,191 and 2,722 mRNAs were upregulated and downregulated, respectively. Additionally, five randomly selected lncRNAs (fold-change >2; P<0.05) were validated by reverse transcription-quantitative PCR. An lncRNA and mRNA co-expression network and competing endogenous network analysis were also constructed. In summary, the results of the present study may reveal a novel mechanism associated with the pathogenesis and malignant biological processes of ALM and indicate that lncRNAs may serve as potential targets for the treatment of ALM.
Collapse
Affiliation(s)
- Hao-Ze Shi
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Jing-Shu Xiong
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Cong-Cong Xu
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Wen-Bo Bu
- Department of Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Yan Wang
- Department of Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Jian-Fang Sun
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Hao Chen
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| |
Collapse
|
38
|
Shakib H, Rajabi S, Dehghan MH, Mashayekhi FJ, Safari-Alighiarloo N, Hedayati M. Epithelial-to-mesenchymal transition in thyroid cancer: a comprehensive review. Endocrine 2019; 66:435-455. [PMID: 31378850 DOI: 10.1007/s12020-019-02030-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
The Metastatic progression of solid tumors, such as thyroid cancer is a complex process which involves various factors. Current understanding on the role of epithelial-mesenchymal transition (EMT) in thyroid carcinomas suggests that EMT is implicated in the progression from follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC) to poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid cancer (ATC). According to the literature, the initiation of the EMT program in thyroid epithelial cells elevates the number of stem cells, which contribute to recurrent and metastatic diseases. The EMT process is orchestrated by a complex network of transcription factors, growth factors, signaling cascades, epigenetic modulations, and the tumor milieu. These factors have been shown to be dysregulated in thyroid carcinomas. Therefore, molecular interferences restoring the expression of tumor suppressors, or thwarting overexpressed oncogenes is a hopeful therapeutic method to improve the treatment of progressive diseases. In this review, we summarize the recent findings on EMT in thyroid cancer focusing on the main role-players and regulators of this process in thyroid tumors.
Collapse
Affiliation(s)
- Heewa Shakib
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Luan W, Ding Y, Ma S, Ruan H, Wang J, Lu F. Long noncoding RNA LINC00518 acts as a competing endogenous RNA to promote the metastasis of malignant melanoma via miR-204-5p/AP1S2 axis. Cell Death Dis 2019; 10:855. [PMID: 31712557 PMCID: PMC6848151 DOI: 10.1038/s41419-019-2090-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
Long intergenic nonprotein coding RNA 518 (LINC00518) has been shown to promote cancer cell growth and metastasis in some human tumors. Although it has been reported that LINC00518 is dysregulated in melanoma, its exact role and molecular mechanism in melanoma remain unclear. RNA-seq analysis and qRT-PCR was used to detect the expression of LINC00518 in melanoma tissues. Melanoma cases from The Cancer Genome Atlas (TCGA), GEO#GSE15605 and GEO#GSE24469 were included in this study. 3D migration, transwell and scratch wound assay were used to explore the role of LINC00518 in melanoma cells. Bioinformatics, luciferase reporter assays, MS2-RIP assay, RNA pull-down assay and RNA-ChIP assay were used to demonstrate the mechanism of LINC00518 in melanoma. We found that LICN00518 was significantly upregulated in melanoma tissue, and high LICN00518 level was an independent risk factor for melanoma patients. LICN00518 promoted the invasion and migration of melanoma cells. LICN00518 exerted its role by decoying miR-204-5p to upregulate Adaptor Related Protein Complex 1 Sigma 2 Subunit (AP1S2) expression. We also demonstrated that LICN00518 promoted melanoma metastasis in vivo through pulmonary metastasis assay. This result elucidates a new mechanism for LICN00518 in the metastasis of melanoma. LICN00518 may serve as a survival indicator and potential therapeutic target in melanoma patients.
Collapse
Affiliation(s)
- Wenkang Luan
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Yuting Ding
- Department of Rehabilitation, Changshu No. 2 People's Hospital (The 5th Clinical Medical College of Yangzhou University), Changshu, Jiangsu, China
| | - Shaojun Ma
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hongru Ruan
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jinlong Wang
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Feng Lu
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
40
|
Chen Q, Zheng Y, Wu B, Chen X, Sun F, Ge P, Wang P. BANCR Regulates The Cell Invasion And Migration In Esophageal Squamous Cell Carcinoma Through Wnt/β-Catenin Signaling Pathway. Onco Targets Ther 2019; 12:9319-9327. [PMID: 31807012 PMCID: PMC6847997 DOI: 10.2147/ott.s227220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Objective To explore the regulation of long-chain noncoding BANCR on cell invasion and migration of esophageal squamous carcinoma cells and related mechanisms. Method The mRNA expression of BANCR in esophageal squamous carcinoma cells and esophageal squamous cells was detected by quantitative PCR . The relationship between the expression of BANCR and the survival rate of patients with esophageal squamous cell carcinoma (ESCC) was analyzed by Kaplan–Meier method. The BANCR pair was detected by Transwell invasion and scratch test. In ESCC cell lines, the cells had invasion and migration ability; Western blot was applied to detect the expression of proteins involved in the Wnt/β-catenin signaling pathway. Results BANCR revealed relatively high expression in esophageal squamous carcinoma cells, and the higher the expression of BANCR was, the lower the survival rate of patients with ESCC was. Inhibition of BANCR expression could effectively reduce the invasion and migration ability of esophageal squamous cell carcinoma. After silencing BANCR, the expression of wnt3a, survivin, β-catenin and c-myc protein was downregulated compared with the negative control group (p<0.05). Conclusion Long-chain noncoding BANCR was highly expressed in patients with ESCC and was negatively correlated with patients' survival time. It was of the capability to modulate the cell migration and invasion of ESCC cells through inducing Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Quan Chen
- Department of Thoracic Surgery, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, People's Republic of China
| | - Yiming Zheng
- Department of Thoracic Surgery, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, People's Republic of China
| | - Bingbing Wu
- Department of Thoracic Surgery, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, People's Republic of China
| | - Xia Chen
- Department of Thoracic Surgery, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, People's Republic of China
| | - Fei Sun
- Department of Thoracic Surgery, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, People's Republic of China
| | - Pengfei Ge
- Department of Thoracic Surgery, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, People's Republic of China
| | - Pengcheng Wang
- Department of Thoracic Surgery, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, People's Republic of China
| |
Collapse
|
41
|
Ma S, Yang D, Liu Y, Wang Y, Lin T, Li Y, Yang S, Zhang W, Zhang R. LncRNA BANCR promotes tumorigenesis and enhances adriamycin resistance in colorectal cancer. Aging (Albany NY) 2019; 10:2062-2078. [PMID: 30144787 PMCID: PMC6128424 DOI: 10.18632/aging.101530] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/13/2018] [Indexed: 01/02/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy in the United States. Chemotherapeutic resistance is a massive obstacle for cancer treatment. The roles and molecular basis of long non-coding RNA BRAF-activated noncoding RNA (BANCR) in CRC progression and adriamycin (ADR) resistance have not been extensively identified. In this study, we found that BANCR and CSE1L expressions were upregulated in CRC tumor tissues. Meanwhile, CSE1L expression was correlated with depth of CRC. BANCR silencing suppressed cell proliferation and invasion capacity, increased apoptotic rate and potentiated cell sensitivity to ADR. CSE1L downregulation triggered a reduction of cell proliferation and invasion ability, and an increase of apoptosis rate and cell sensitivity to ADR. CSE1L overexpression attenuated si-BANCR-mediated anti-proliferation, anti-invasion and pro-apoptosis effects in CRC cells. BANCR acted as a molecular sponge of miR-203 to sequester miR-203 away from CSE1L in CRC cells, resulting in the upregulation of CSE1L expression. CSE1L knockdown inhibited expressions of DNA-repair-related proteins (53BP1 and FEN1) in HCT116 cells. BANCR knockdown also inhibited tumor growth and enhanced ADR sensitivity in CRC mice model. In conclusion, BANCR knockdown suppressed CRC progression and strengthened chemosensitization of CRC cells to ADR possibly by regulating miR-203/CSE1L axis, indicating that BANCR might be a promising target for CRC treatment.
Collapse
Affiliation(s)
- Siping Ma
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Dongxiang Yang
- Department of Orthopedics, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yongpeng Wang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Tao Lin
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Yanxi Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Shihua Yang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Wanchuan Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| |
Collapse
|
42
|
Rochet E, Appukuttan B, Ma Y, Ashander LM, Smith JR. Expression of Long Non-Coding RNAs by Human Retinal Müller Glial Cells Infected with Clonal and Exotic Virulent Toxoplasma gondii. Noncoding RNA 2019; 5:ncrna5040048. [PMID: 31547203 PMCID: PMC6958423 DOI: 10.3390/ncrna5040048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Retinal infection with Toxoplasma gondii-ocular toxoplasmosis-is a common cause of vision impairment worldwide. Pathology combines parasite-induced retinal cell death and reactive intraocular inflammation. Müller glial cells, which represent the supporting cell population of the retina, are relatively susceptible to infection with T. gondii. We investigated expression of long non-coding RNAs (lncRNAs) with immunologic regulatory activity in Müller cells infected with virulent T. gondii strains-GT1 (haplogroup 1, type I) and GPHT (haplogroup 6). We first confirmed expression of 33 lncRNA in primary cell isolates. MIO-M1 human retinal Müller cell monolayers were infected with T. gondii tachyzoites (multiplicity of infection = 5) and harvested at 4, 12, 24, and 36 h post-infection, with infection being tracked by the expression of parasite surface antigen 1 (SAG1). Significant fold-changes were observed for 31 lncRNAs at one or more time intervals. Similar changes between strains were measured for BANCR, CYTOR, FOXD3-AS1, GAS5, GSTT1-AS1, LINC-ROR, LUCAT1, MALAT1, MIR22HG, MIR143HG, PVT1, RMRP, SNHG15, and SOCS2-AS1. Changes differing between strains were measured for APTR, FIRRE, HOTAIR, HOXD-AS1, KCNQ1OT1, LINC00968, LINC01105, lnc-SGK1, MEG3, MHRT, MIAT, MIR17HG, MIR155HG, NEAT1, NeST, NRON, and PACER. Our findings suggest roles for lncRNAs in regulating retinal Müller cell immune responses to T. gondii, and encourage future studies on lncRNA as biomarkers and/or drug targets in ocular toxoplasmosis.
Collapse
Affiliation(s)
- Elise Rochet
- Flinders University College of Medicine & Public Health, Adelaide, SA 5042, Australia.
| | - Binoy Appukuttan
- Flinders University College of Medicine & Public Health, Adelaide, SA 5042, Australia.
| | - Yuefang Ma
- Flinders University College of Medicine & Public Health, Adelaide, SA 5042, Australia.
| | - Liam M Ashander
- Flinders University College of Medicine & Public Health, Adelaide, SA 5042, Australia.
| | - Justine R Smith
- Flinders University College of Medicine & Public Health, Adelaide, SA 5042, Australia.
| |
Collapse
|
43
|
Siena ÁDD, Plaça JR, Araújo LF, de Barros II, Peronni K, Molfetta G, de Biagi CAO, Espreafico EM, Sousa JF, Silva WA. Whole transcriptome analysis reveals correlation of long noncoding RNA ZEB1-AS1 with invasive profile in melanoma. Sci Rep 2019; 9:11350. [PMID: 31383874 PMCID: PMC6683136 DOI: 10.1038/s41598-019-47363-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Melanoma is the deadliest form of skin cancer, and little is known about the impact of deregulated expression of long noncoding RNAs (lncRNAs) in the progression of this cancer. In this study, we explored RNA-Seq data to search for lncRNAs associated with melanoma progression. We found distinct lncRNA gene expression patterns across melanocytes, primary and metastatic melanoma cells. Also, we observed upregulation of the lncRNA ZEB1-AS1 (ZEB1 antisense RNA 1) in melanoma cell lines. Data analysis from The Cancer Genome Atlas (TCGA) confirmed higher ZEB1-AS1 expression in metastatic melanoma and its association with hotspot mutations in BRAF (B-Raf proto-oncogene, serine/threonine kinase) gene and RAS family genes. In addition, a positive correlation between ZEB1-AS1 and ZEB1 (zinc finger E-box binding homeobox 1) gene expression was verified in primary and metastatic melanomas. Using gene expression signatures indicative of invasive or proliferative phenotypes, we found an association between ZEB1-AS1 upregulation and a transcriptional profile for invasiveness. Enrichment analysis of correlated genes demonstrated cancer genes and pathways associated with ZEB1-AS1. We suggest that the lncRNA ZEB1-AS1 could function by activating ZEB1 gene expression, thereby influencing invasiveness and phenotype switching in melanoma, an epithelial-to-mesenchymal transition (EMT)-like process, which the ZEB1 gene has an essential role.
Collapse
Affiliation(s)
- Ádamo Davi Diógenes Siena
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Jéssica Rodrigues Plaça
- Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Integrative Systems Biology (CISBi) - NAP/USP, Ribeirão Preto, Brazil
| | - Luiza Ferreira Araújo
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Integrative Systems Biology (CISBi) - NAP/USP, Ribeirão Preto, Brazil
| | - Isabela Ichihara de Barros
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Kamila Peronni
- Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Greice Molfetta
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Medical Genomics, HCFMRP/USP, Ribeirão Preto, Brazil
| | - Carlos Alberto Oliveira de Biagi
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Enilza Maria Espreafico
- Department of Cellular and Molecular Biology at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Josane Freitas Sousa
- Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Integrative Systems Biology (CISBi) - NAP/USP, Ribeirão Preto, Brazil.,Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Wilson Araújo Silva
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil. .,Center for Integrative Systems Biology (CISBi) - NAP/USP, Ribeirão Preto, Brazil. .,Center for Medical Genomics, HCFMRP/USP, Ribeirão Preto, Brazil.
| |
Collapse
|
44
|
Yang Y, Zhang Z, Wu Z, Lin W, Yu M. Downregulation of the expression of the lncRNA MIAT inhibits melanoma migration and invasion through the PI3K/AKT signaling pathway. Cancer Biomark 2019; 24:203-211. [PMID: 30614798 DOI: 10.3233/cbm-181869] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Long noncoding RNA MIAT expression is related to the development of some diseases. However, the role of MIAT in melanoma was has seldom been studied. OBJECTIVE To investigate the effect of the lncRNA MIAT on melanoma cells. METHOD Microarray was used to analyze the lncRNAs expression in tissue samples. The expression of the lncRNA MIAT was detected by qRT-PCR. A CCK-8 assay was used to assess cell viability, and cell counting was used to analyze cell proliferation. Wound healing and Transwell invasion assays were used to detect the migration and invasion abilities, respectively, of melanoma cells. Western blotting was performed to explore the molecular mechanisms of MIAT in melanoma. RESULTS The lncRNA MIAT was overexpressed in melanoma. The overexpression of MIAT promoted cell proliferation, cell invasion and migration, while the knockdown of MIAT expression got the opposite results. MIAT significantly upregulated the phosphorylation of PI3K and AKT and promoted cMyc and cyclin D1 protein expression. CONCLUSION LncRNA MIAT was a key factor to promote cell invasion, migration and proliferation through the PI3K/AKT signaling pathway. These findings may give us a potential way to treat melanoma.
Collapse
Affiliation(s)
- Ying Yang
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Zongduan Zhang
- Department of Ophthalmology, Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.,Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Zhengzheng Wu
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wei Lin
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Man Yu
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| |
Collapse
|
45
|
Huang Q, Zhang D, Diao Q, Lin M. lncRNA LINC-PINT is downregulated in melanoma and regulates cell proliferation by downregulating lncRNA BANCR. Oncol Lett 2019; 18:2917-2922. [PMID: 31452772 PMCID: PMC6676454 DOI: 10.3892/ol.2019.10631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/13/2019] [Indexed: 12/19/2022] Open
Abstract
The development of melanoma may involve long non-coding RNAs (lncRNAs); however, the functions of the majority of lncRNAs in melanoma are unknown. The present study investigated the role of long intergenic non-protein coding RNA p53 induced transcript (LINC-PINT) in melanoma. In the present study, quantitative PCR was used to detect gene expression, overexpression experiments were performed to analyze gene interactions and CCK-8 assays were used to analyze cell proliferation. LINC-PINT was downregulated, while BRAF-activated non-coding RNA (BANCR) was upregulated in melanoma tissues compared with normal adjacent tissues. Expression levels of LINC-PINT decreased, while expression levels of BANCR increased with increasing tumor thickness. The expression levels of LINC-PINT and BANCR were inversely associated in melanoma tissues but not in healthy adjacent tissue. LINC-PINT overexpression downregulated BANCR expression in melanoma cells, while BANCR overexpression did not significantly affect LINC-PINT expression. LINC-PINT overexpression inhibited melanoma cell proliferation in vitro compared to controls. BANCR overexpression attenuated the effects of LINC-PINT overexpression. The present study revealed that lncRNA LINC-PINT is downregulated in melanoma and may regulate melanoma cell proliferation by downregulating lncRNA BANCR.
Collapse
Affiliation(s)
- Qing Huang
- Department of Dermatology, Chongqing Shapingba District People's Hospital, Chongqing 400011, P.R. China.,Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400011, P.R. China
| | - Deli Zhang
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, P.R. China.,Department of Dermatology, School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qingchun Diao
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, P.R. China
| | - Mao Lin
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, P.R. China
| |
Collapse
|
46
|
Fu Y, Bi Y, Wang F, Chen X, Liu H. Declination of long noncoding RNA paternally expressed gene 10 inhibits A375 cells proliferation, migration, and invasion via mediating microRNA‐33a. J Cell Biochem 2019; 120:19868-19877. [PMID: 31318088 DOI: 10.1002/jcb.29292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Fu
- Department of Dermatology Binzhou People's Hospital Binzhou China
| | - Yiming Bi
- Department of Oncology Binzhou People's Hospital Binzhou China
| | - Fang Wang
- Department of Traditional Chinese Medicine Binzhou People's Hospital Binzhou China
| | - Xingxiu Chen
- Department of Oncology Binzhou People's Hospital Binzhou China
| | - Huiling Liu
- Department of Oncology Binzhou People's Hospital Binzhou China
| |
Collapse
|
47
|
Yang L, Liu G. lncRNA BANCR suppresses cell viability and invasion and promotes apoptosis in non-small-cell lung cancer cells in vitro and in vivo. Cancer Manag Res 2019; 11:3565-3574. [PMID: 31114383 PMCID: PMC6497868 DOI: 10.2147/cmar.s194848] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/22/2019] [Indexed: 12/28/2022] Open
Abstract
Background: As a leading cause of deaths worldwide, lung cancer is a collection of diseases with diverse etiologies which includes non-small-cell lung cancer (NSCLC). Increasing evidence reported that aberrant expression of BRAF activated non-coding RNA (BANCR) was involved in the tumorigenesis and progression of various malignancies. Purpose and methods: However, its role in NSCLC has not been completely clarified. In the present study, we identified the role of BANCR in the regulation of NSCLC cell viability, invasion, and apoptosis. Down-regulation of BANCR expression was significantly observed in different NSCLC cell lines (A549, H1299, H1650, H1975, SPC-A1, and PC-9), tumor tissue from NSCLC mouse model and 30 human NSCLC tissues compared with adjacent normal tissues. Result: Overexpression of BANCR in these six NSCLC cell lines attenuated the cell viability and invasion. An increased apoptotic level caused by BANCR overexpression was also detected and displayed a conversed influence on Bcl-2 and Bax expression in mRNA and protein level. Furthermore, we identified the effect of BANCR overexpression on tumor growth in NSCLC mouse model. The restoration of BANCR expression inhibits NSCLC. Conclusion: Taken together, our findings shed an insight on the novel molecular mechanisms of lung NSCLC oncogenesis and provide the information for new therapeutic approaches on the disease.
Collapse
Affiliation(s)
- Liu Yang
- Sterile Supply Center, Mudanjiang Medical College, Hongqi Hospital, Mudanjiang City 157011, Heilongjiang Province, People's Republic of China
| | - Guiting Liu
- Department of Thoracic Surgery, Mudanjiang Medical College, Hongqi Hospital, Mudanjiang City 157011, Heilongjiang Province, People's Republic of China
| |
Collapse
|
48
|
Zhang L, Dong Y, Wang Y, Gao J, Lv J, Sun J, Li M, Wang M, Zhao Z, Wang J, Xu W. Long non-coding RNAs in ocular diseases: new and potential therapeutic targets. FEBS J 2019; 286:2261-2272. [PMID: 30927500 DOI: 10.1111/febs.14827] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/21/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022]
Abstract
Long non-coding RNAs (lncRNAs) are non-protein coding transcripts containing more than 200 nucleotides. In the past, lncRNAs were considered as 'transcript noise' or 'pseudogenes' and were thus ignored. However, in recent years, lncRNAs have been proven to regulate gene expression at the epigenetic, transcriptional and translational level, and thereby influence cell proliferation, apoptosis, viability, immune response and oxidative stress. Furthermore, increasing evidence points to their involvement in different diseases, including cancer and heart diseases. Recently, lncRNAs were shown to be differentially expressed in ocular tissues and play a significant role in the pathogenesis of ophthalmological disorders such as glaucoma, corneal diseases, cataract, diabetic retinopathy, proliferative vitreoretinopathy and ocular tumors. In this review, we summarize the classification and mechanisms of known lncRNAs, while detailing their biological functions and roles in ocular diseases. Moreover, we provide a concise review of the clinical relevance of lncRNAs as novel, potential therapeutic targets in the treatment of eye diseases.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Yanhan Dong
- Institute for Translational Medicine, Qingdao University, China
| | - Yujie Wang
- The Clinical Laboratory of Qingdao Municipal Hospital, China
| | - Jinning Gao
- Institute for Translational Medicine, Qingdao University, China
| | - Jiayi Lv
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Jingguo Sun
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Mengjie Li
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Meng Wang
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Zhihong Zhao
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Jianxun Wang
- Institute for Translational Medicine, Qingdao University, China
| | - Wenhua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, China
| |
Collapse
|
49
|
Sun L, Guan Z, Wei S, Tan R, Li P, Yan L. Identification of Long Non-coding and Messenger RNAs Differentially Expressed Between Primary and Metastatic Melanoma. Front Genet 2019; 10:292. [PMID: 31024618 PMCID: PMC6459964 DOI: 10.3389/fgene.2019.00292] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: Melanoma is the most aggressive and life-threatening cutaneous cancer. To explore new treatment strategies, it is essential to identify the mechanisms underlying melanoma tumorigenesis and metastasis. Methods: In the current study, we demonstrated altered expression of long non-coding RNA (lncRNA) and messenger RNA (mRNA) in melanoma using data from the Cancer Genome Atlas (TCGA) database. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) analyses were conducted. We also constructed a functional lncRNA-mRNA regulatory network and Kaplan-Meier analysis. Results: We identified 246 differentially expressed (DE) lncRNAs and 856 DEmRNAs. A total of 184 DElncRNAs and 428 DEmRNAs were upregulated in metastatic melanoma, while all others were downregulated. Additionally, we investigated the co-expression pattern of 363 genes, among which 26 upregulated lncRNAs, 9 down- regulated lncRNAs, 49 upregulated mRNAs and 151 downregulated mRNAs were identified as being co-expressed with others. Survival analysis suggested high levels of 14 lncRNAs and 10 mRNAs may significantly increase or decrease overall survival. These differentially expressed genes are also potentially prognostic in melanoma. Conclusion: Our findings observe potential roles for lncRNAs and mRNAs during melanoma progression and provide candidate biomarkers for further studies.
Collapse
Affiliation(s)
- Ledong Sun
- Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiguang Guan
- Department of Plastic Surgery and Dermatology, Taishan People's Hospital, Tangshan, China
| | - Shanshan Wei
- Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Tan
- Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Pengfei Li
- Department of Plastic Surgery and Dermatology, Taishan People's Hospital, Tangshan, China
| | - Lu Yan
- Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
50
|
Hu K, Jiang W, Sun H, Li Z, Rong G, Yin Z. Long noncoding RNA ZBED3‐AS1 induces the differentiation of mesenchymal stem cells and enhances bone regeneration by repressing IL‐1β via Wnt/β‐catenin signaling pathway. J Cell Physiol 2019; 234:17863-17875. [DOI: 10.1002/jcp.28416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Kongzu Hu
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei Anhui P. R. China
| | - Wei Jiang
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei Anhui P. R. China
| | - Heyan Sun
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei Anhui P. R. China
| | - Zhenwei Li
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei Anhui P. R. China
| | - Genxiang Rong
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei Anhui P. R. China
| | - Zongsheng Yin
- Department of Orthopaedics The First Affiliated Hospital of Anhui Medical University Hefei Anhui P. R. China
| |
Collapse
|