1
|
Chatain C, Vallier JM, Paleiron N, Cucchietti Waltz F, Ramdani S, Gruet M. Muscle endurance, neuromuscular fatigability, and cognitive control during prolonged dual-task in people with chronic obstructive pulmonary disease: a case-control study. Eur J Appl Physiol 2025; 125:409-428. [PMID: 39305368 PMCID: PMC11829911 DOI: 10.1007/s00421-024-05608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/03/2024] [Indexed: 02/16/2025]
Abstract
PURPOSE Recent studies suggest that, compared to healthy individuals, people with chronic obstructive pulmonary disease (pwCOPD) present a reduced capacity to perform cognitive-motor dual-task (CMDT). However, these studies were focused on short-duration CMDT offering limited insight to prolonged CMDT inducing fatigue, which can be encountered in daily life. The present study aimed to explore the effect of adding a cognitive task during repeated muscle contractions on muscle endurance, neuromuscular fatigability, and cognitive control in pwCOPD compared to healthy participants. METHODS Thirteen pwCOPD and thirteen age- and sex-matched healthy participants performed submaximal isometric contractions of the knee extensors until exhaustion in two experimental sessions: (1) without cognitive task and (2) with a concurrent working memory task (i.e., 1-back task). Neuromuscular fatigability (as well as central and peripheral components measured by peripheral magnetic stimulation), cognitive performance, and perceived muscle fatigue were assessed throughout the fatiguing tasks. RESULTS Independently to the experimental condition, pwCOPD exhibited lower muscle endurance compared to healthy participants (p = 0.039), mainly explained by earlier peripheral fatigue and faster attainment of higher perceived muscle fatigue (p < 0.05). However, neither effect of cognitive task (p = 0.223) nor interaction effect (group × condition; p = 0.136) was revealed for muscle endurance. Interestingly, cognitive control was significantly reduced only in pwCOPD at the end of CMDT (p < 0.015), suggesting greater difficulty for patients with dual tasking under fatigue. CONCLUSION These findings provide novel insights into how and why fatigue develops in COPD in dual-task context, offering a rationale for including such tasks in rehabilitation programs.
Collapse
Affiliation(s)
- Cyril Chatain
- Laboratoire Jeunesse-Activité Physique et Sportive-Santé (J-AP2S), Université de Toulon, La Garde, France.
| | - Jean-Marc Vallier
- Laboratoire Jeunesse-Activité Physique et Sportive-Santé (J-AP2S), Université de Toulon, La Garde, France
| | - Nicolas Paleiron
- Service de Pneumologie, Hôpital d'Instruction des Armées Saint-Anne, Toulon, France
| | - Fanny Cucchietti Waltz
- Délégation à la Recherche Clinique et à L'Innovation (DRCI), Centre Hospitalier Intercommunal de Toulon-La Seyne sur Mer (CHITS), Toulon, France
| | - Sofiane Ramdani
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier, Centre National de La Recherche Scientifique (CNRS), Montpellier, France
| | - Mathieu Gruet
- Laboratoire Jeunesse-Activité Physique et Sportive-Santé (J-AP2S), Université de Toulon, La Garde, France
| |
Collapse
|
2
|
Corrêa DI, de-Lima-Oliveira M, Nogueira RC, Carvalho-Pinto RM, Bor-Seng-Shu E, Panerai RB, Carvalho CRF, Salinet AS. Integrative assessment of cerebral blood regulation in COPD patients. Respir Physiol Neurobiol 2024; 319:104166. [PMID: 37758031 DOI: 10.1016/j.resp.2023.104166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/16/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Cerebrovascular responses were compared between COPD and non-COPD participants. The association between COPD severity and cognitive function was also investigated. Cerebral blood velocity in the middle cerebral artery, blood pressure, and end-tidal CO2 were recorded at rest, followed by a brain activation paradigm, and an inhaled gas mixture (5% CO2) to assess cerebral autoregulation (CA), neurovascular coupling (NVC) and cerebrovascular reactivity to carbon dioxide (CVRCO2), respectively. Pulmonary function, blood gas analysis (COPD) and cognitive function (MoCA test) were also performed. No difference in baseline (systemic and cerebral parameters) and CA was found between 20 severe COPD and 21 non-COPD. Reduced NVC and CVRCO2 test were found in the COPD group. Lower pulmonary function was positively correlated with CA, NVC and CVRCO2 in COPD patients. Cognitive impairment (MoCA<26) was associated with lower NVC responses (COPD and non-COPD) and lower pulmonary function (COPD). Both mechanisms, CVRCO2 and NVC, were lower in COPD patients. Moreover, disease severity and cognitive impaired were associated with worse cerebrovascular regulation.
Collapse
Affiliation(s)
- Daniel I Corrêa
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil
| | - Marcelo de-Lima-Oliveira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil
| | - Regina M Carvalho-Pinto
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Edson Bor-Seng-Shu
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester and NIHR Biomedical Research Centre, Leicester, UK
| | - Celso R F Carvalho
- Department of Physical Therapy, School of Medicine, University of São Paulo, Brazil
| | - Angela Sm Salinet
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Desachy M, Alexandre F, Varray A, Molinier V, Four E, Charbonnel L, Héraud N. High Prevalence of Non-Responders Based on Quadriceps Force after Pulmonary Rehabilitation in COPD. J Clin Med 2023; 12:4353. [PMID: 37445388 DOI: 10.3390/jcm12134353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pulmonary rehabilitation (PR) in patients with COPD improves quality of life, dyspnea, and exercise tolerance. However, 30 to 50% of patients are "non-responders" (NRs) according to considered variables. Surprisingly, peripheral muscle force is never taken into account to attest the efficacy of PR, despite its major importance. Thus, we aimed to estimate the prevalence of force in NRs, their characteristics, and predictors of non-response. In total, 62 COPD patients were included in this retrospective study (May 2019 to December 2020). They underwent inpatient PR, and their quadriceps isometric maximal force (QMVC) was assessed. The PR program followed international guidelines. Patients with a QMVC increase <7.5 N·m were classified as an NR. COPD patients showed a mean improvement in QMVC after PR (10.08 ± 12.97 N·m; p < 0.001). However, 50% of patients were NRs. NRs had lower pre-PR values for body mass, height, body mass index, PaO2, and QMVC. Non-response can be predicted by low QMVC, high PaCO2, and gender (when male). This model has a sensitivity of 74% and specificity of 81%. The study highlights the considerable number of NRs and potential risk factors for non-response. To systematize the effects, it may be interesting to implement blood gas correction and/or optimize the programs to enhance peripheral and central effects.
Collapse
Affiliation(s)
- Marion Desachy
- EuroMov Digital Health in Motion, University Montpellier, IMT Mines Ales, Montpellier, France
- Direction de la Recherche et de l'Innovation en Santé (Research and Health Innovation Department), Clariane, France
| | - François Alexandre
- Direction de la Recherche et de l'Innovation en Santé (Research and Health Innovation Department), Clariane, France
| | - Alain Varray
- EuroMov Digital Health in Motion, University Montpellier, IMT Mines Ales, Montpellier, France
| | - Virginie Molinier
- Direction de la Recherche et de l'Innovation en Santé (Research and Health Innovation Department), Clariane, France
| | - Elodie Four
- Clinique du Souffle Les Clarines, Inicea, France
| | | | - Nelly Héraud
- Direction de la Recherche et de l'Innovation en Santé (Research and Health Innovation Department), Clariane, France
| |
Collapse
|
4
|
Bonnal J, Monnet F, Le BT, Pila O, Grosmaire AG, Ozsancak C, Duret C, Auzou P. Relation between Cortical Activation and Effort during Robot-Mediated Walking in Healthy People: A Functional Near-Infrared Spectroscopy Neuroimaging Study (fNIRS). SENSORS (BASEL, SWITZERLAND) 2022; 22:5542. [PMID: 35898041 PMCID: PMC9329983 DOI: 10.3390/s22155542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
Force and effort are important components of a motor task that can impact rehabilitation effectiveness. However, few studies have evaluated the impact of these factors on cortical activation during gait. The purpose of the study was to investigate the relation between cortical activation and effort required during exoskeleton-mediated gait at different levels of physical assistance in healthy individuals. Twenty-four healthy participants walked 10 m with an exoskeleton that provided four levels of assistance: 100%, 50%, 0%, and 25% resistance. Functional near-infrared spectroscopy (fNIRS) was used to measure cerebral flow dynamics with a 20-channel (plus two reference channels) device that covered most cortical motor regions bilaterally. We measured changes in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR). According to HbO2 levels, cortical activation only differed slightly between the assisted conditions and rest. In contrast, bilateral and widespread cortical activation occurred during the two unassisted conditions (somatosensory, somatosensory association, primary motor, premotor, and supplementary motor cortices). A similar pattern was seen for HbR levels, with a smaller number of significant channels than for HbO2. These results confirmed the hypothesis that there is a relation between cortical activation and level of effort during gait. This finding should help to optimize neurological rehabilitation strategies to drive neuroplasticity.
Collapse
Affiliation(s)
- Julien Bonnal
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| | - Fanny Monnet
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
- Institut Denis Poisson, Université d’Orléans Collegium Sciences et Techniques Bâtiment de Mathématiques, Rue de Chartres, B.P. 6759, CEDEX 2, 45067 Orleans, France
| | - Ba-Thien Le
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| | - Ophélie Pila
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Rue du Château, 77310 Boissise-Le-Roi, France; (O.P.); (A.-G.G.)
| | - Anne-Gaëlle Grosmaire
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Rue du Château, 77310 Boissise-Le-Roi, France; (O.P.); (A.-G.G.)
| | - Canan Ozsancak
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| | - Christophe Duret
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Rue du Château, 77310 Boissise-Le-Roi, France; (O.P.); (A.-G.G.)
| | - Pascal Auzou
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| |
Collapse
|
5
|
Marillier M, Gruet M, Bernard AC, Verges S, Neder JA. The Exercising Brain: An Overlooked Factor Limiting the Tolerance to Physical Exertion in Major Cardiorespiratory Diseases? Front Hum Neurosci 2022; 15:789053. [PMID: 35126072 PMCID: PMC8813863 DOI: 10.3389/fnhum.2021.789053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
“Exercise starts and ends in the brain”: this was the title of a review article authored by Dr. Bengt Kayser back in 2003. In this piece of work, the author highlights that pioneer studies have primarily focused on the cardiorespiratory-muscle axis to set the human limits to whole-body exercise tolerance. In some circumstances, however, exercise cessation may not be solely attributable to these players: the central nervous system is thought to hold a relevant role as the ultimate site of exercise termination. In fact, there has been a growing interest relative to the “brain” response to exercise in chronic cardiorespiratory diseases, and its potential implication in limiting the tolerance to physical exertion in patients. To reach these overarching goals, non-invasive techniques, such as near-infrared spectroscopy and transcranial magnetic stimulation, have been successfully applied to get insights into the underlying mechanisms of exercise limitation in clinical populations. This review provides an up-to-date outline of the rationale for the “brain” as the organ limiting the tolerance to physical exertion in patients with cardiorespiratory diseases. We first outline some key methodological aspects of neuromuscular function and cerebral hemodynamics assessment in response to different exercise paradigms. We then review the most prominent studies, which explored the influence of major cardiorespiratory diseases on these outcomes. After a balanced summary of existing evidence, we finalize by detailing the rationale for investigating the “brain” contribution to exercise limitation in hitherto unexplored cardiorespiratory diseases, an endeavor that might lead to innovative lines of applied physiological research.
Collapse
Affiliation(s)
- Mathieu Marillier
- Laboratory of Clinical Exercise Physiology, Queen's University and Kingston General Hospital, Kingston, ON, Canada
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, Grenoble, France
| | - Mathieu Gruet
- IAPS Laboratory, University of Toulon, Toulon, France
| | - Anne-Catherine Bernard
- Laboratory of Clinical Exercise Physiology, Queen's University and Kingston General Hospital, Kingston, ON, Canada
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, Grenoble, France
| | - Samuel Verges
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, Grenoble, France
| | - J Alberto Neder
- Laboratory of Clinical Exercise Physiology, Queen's University and Kingston General Hospital, Kingston, ON, Canada
| |
Collapse
|
6
|
Cognitive and motor performances in dual task in patients with chronic obstructive pulmonary disease: a comparative study. Ir J Med Sci 2020; 190:723-730. [PMID: 32885377 DOI: 10.1007/s11845-020-02357-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Patients with chronic obstructive pulmonary disease (COPD) may display a motor and/or cognitive disadvantage during dual tasking. However, studies investigating dual task are quite limited in patients with COPD. AIMS To compare cognitive and motor performances (i.e., muscle force production and functional balance/mobility together with a cognitive task) in dual task between patients with COPD and healthy controls. METHODS Thirty-five clinically stable patients with COPD and 27 age- and sex-matched healthy controls participated in this cross-sectional controlled study. The muscle force production (knee extension muscle strength assessed with an isokinetic strength dynamometer) and functional balance/mobility (Timed Up and Go (TUG) test) were performed with and without a cognitive task. Dual-task interference (DTI) was assessed. Additionally, the rate of correct responses per second (RCR) was calculated to evaluate cognitive performance. RESULTS The decrease in RCRmuscle force production values was greater in the COPD group compared with the control group (p = 0.045). Similarly, the cognitive DTI in muscle force production test was higher in the control group than in the COPD group (p < 0.001). There was no significant difference in other outcome measures between the two groups (p > 0.05). CONCLUSION The study results indicate that in individuals with COPD, cognitive performance deteriorations are more pronounced than motor performance defects during dual tasking. Further studies are needed to investigate the effects of dual task taking into account this disadvantage in patients with COPD rather than focusing solely on motor performance.
Collapse
|
7
|
Cabibel V, Héraud N, Perrey S, Oliver N, Alexandre F, Varray A. Is bilateral corticospinal connectivity impaired in patients with chronic obstructive pulmonary disease? J Physiol 2020; 598:4591-4602. [PMID: 32697330 DOI: 10.1113/jp279560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/01/2020] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS During moderate and high levels of quadriceps force production, the ipsilateral motor cortex is concomitantly activated with the contralateral motor cortex throughout the corpus callosum to generate the motor command. Chronic obstructive pulmonary disease (COPD) patients display a structurally impaired corpus callosum that may explain the reduced motor command in this population, which in turn contributes to COPD-related muscle weakness of the knee extensors. The study aimed to determine whether bilateral connectivity was impaired and ipsilateral activation was lowered during unilateral strength production of the knee extensors. Our results indicate impaired bilateral connectivity but preserved ipsilateral activation in patients during unilateral isometric contractions of 50% of maximum voluntary strength. The preservation of ipsilateral activation during force production despite impaired bilateral connectivity is consistent with a reorganization of bilateral motor network function that drives unilateral strength production. ABSTRACT The contralateral primary motor cortex (M1) is not the only brain area implicated in motor command generation. During moderate and high levels of quadriceps force production, the ipsilateral M1 is concomitantly activated. Such activation is mediated by the corpus callosum, the main component of bilateral connectivity. Structural damage to the corpus callosum has been observed in chronic obstructive pulmonary disease (COPD) patients, which might reduce ipsilateral activation and contribute to the lower motor command associated with COPD muscle weakness. We thus aimed to determine whether bilateral connectivity and ipsilateral activation were impaired in COPD. Twenty-two COPD patients and 21 healthy age-matched controls were evaluated by transcranial magnetic stimulation, at rest and during 50% of maximal voluntary isometric contraction (MVIC) of the dominant vastus lateralis muscle. Bilateral connectivity was determined by the ipsilateral silent period (iSP) during 50% MVIC. Ipsilateral activation was determined as the increase in ipsilateral excitability from rest to 50% MVIC. As expected, COPD patients had significantly lower MVIC (-25%, p = 0.03). These patients also showed a significantly lower iSP (-53%, p < 0.001) compared to controls. The ipsilateral excitability was increased in patients and controls (×2.5 and ×3.5, respectively, p < 0.001) but not differently between groups (p = 0.84). Despite impaired bilateral connectivity in COPD, ipsilateral activation was not increased. Reorganization in the patients' interhemispheric pathways could explain the preserved ipsilateral activation.
Collapse
Affiliation(s)
- Vincent Cabibel
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France.,Les Cliniques du Souffle, Groupe 5 Santé, France
| | - Nelly Héraud
- Les Cliniques du Souffle, Groupe 5 Santé, France
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | | | | | - Alain Varray
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| |
Collapse
|
8
|
Alexandre F, Héraud N, Tremey E, Oliver N, Bourgouin D, Varray A. Specific motor cortex hypoexcitability and hypoactivation in COPD patients with peripheral muscle weakness. BMC Pulm Med 2020; 20:1. [PMID: 31900129 PMCID: PMC6942311 DOI: 10.1186/s12890-019-1042-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/24/2019] [Indexed: 12/05/2022] Open
Abstract
Background Peripheral muscle weakness can be caused by both peripheral muscle and neural alterations. Although peripheral alterations cannot totally explain peripheral muscle weakness in COPD, the existence of an activation deficit remains controversial. The heterogeneity of muscle weakness (between 32 and 57% of COPD patients) is generally not controlled in studies and could explain this discrepancy. This study aimed to specifically compare voluntary and stimulated activation levels in COPD patients with and without muscle weakness. Methods Twenty-two patients with quadriceps weakness (COPDMW), 18 patients with preserved quadriceps strength (COPDNoMW) and 20 controls were recruited. Voluntary activation was measured through peripheral nerve (VAperipheral) and transcranial magnetic (VAcortical) stimulation. Corticospinal and spinal excitability (MEP/Mmax and Hmax/Mmax) and corticospinal inhibition (silent period duration) were assessed during maximal voluntary quadriceps contractions. Results COPDMW exhibited lower VAcortical and lower MEP/Mmax compared with COPDNoMW (p < 0.05). Hmax/Mmax was not significantly different between groups (p = 0.25). Silent period duration was longer in the two groups of COPD patients compared with controls (p < 0.01). Interestingly, there were no significant differences between all COPD patients taken together and controls regarding VAcortical and MEP/Mmax. Conclusions COPD patients with muscle weakness have reduced voluntary activation without altered spinal excitability. Corticospinal inhibition is higher in COPD regardless of muscle weakness. Therefore, reduced cortical excitability and a voluntary activation deficit from the motor cortex are the most likely cortical mechanisms implicated in COPD muscle weakness. The mechanisms responsible for cortical impairment and possible therapeutic interventions need to be addressed.
Collapse
Affiliation(s)
- Francois Alexandre
- Les Cliniques du Souffle, Research Department, Groupe 5 Santé, 800 avenue Joseph Vallot, 34700, Lodève, France. .,Euromov Laboratory, University of Montpellier, Montpellier, France.
| | - Nelly Héraud
- Les Cliniques du Souffle, Research Department, Groupe 5 Santé, 800 avenue Joseph Vallot, 34700, Lodève, France
| | - Emilie Tremey
- Les Cliniques du Souffle, Research Department, Groupe 5 Santé, 800 avenue Joseph Vallot, 34700, Lodève, France
| | - Nicolas Oliver
- Les Cliniques du Souffle, Research Department, Groupe 5 Santé, 800 avenue Joseph Vallot, 34700, Lodève, France
| | - Dominique Bourgouin
- Les Cliniques du Souffle, Research Department, Groupe 5 Santé, 800 avenue Joseph Vallot, 34700, Lodève, France
| | - Alain Varray
- Euromov Laboratory, University of Montpellier, Montpellier, France
| |
Collapse
|
9
|
Cabibel V, Alexandre F, Oliver N, Varray A, Héraud N. Psychoactive medications in chronic obstructive pulmonary disease patients: From prevalence to effects on motor command and strength. Respir Med 2019; 159:105805. [PMID: 31704592 DOI: 10.1016/j.rmed.2019.105805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In chronic-obstructive pulmonary disease (COPD) patients, the peripheral muscle weakness is partly due to reduced motor command. The psychoactive medications, which are often prescribed in COPD, are mainly inhibitory and thus may contribute to motor command reduction. The aims were to characterize and quantify the use of these drugs and determine their effects on cortical excitability and inhibition and thus on motor command and muscle weakness in these patients. METHODS First, a prevalence study was conducted on 421 COPD patients. Second, cortical excitability, inhibition and voluntary activation were assessed in 40 patients (15 under psychoactive medications vs. 25 controls) by transcranial magnetic stimulation of the rectus femoris. Quadriceps maximal isometric strength was also assessed. RESULTS About 48% of the patients were taking psychoactive medication. Benzodiazepines (21%) and antidepressants (13.5%) were the most prescribed. Patients with medications tended to be younger and isolated (p < 0.05). They also showed impaired cortical inhibition and decreased cortical excitability (+36%, p = 0.02). Voluntary activation was reduced (-3.6%, p = 0.04) but quadriceps strength was comparable between groups. CONCLUSIONS Psychoactive medications are prevalent in COPD patients. Patients under these medications exhibited brain impairment and reduced motor command. Paradoxically, voluntary strength was unaltered.
Collapse
Affiliation(s)
- Vincent Cabibel
- EuroMov Laboratory, Univ. Montpellier, Montpellier, France; Les Cliniques du Souffle, Groupe 5 Santé, France.
| | | | | | - Alain Varray
- EuroMov Laboratory, Univ. Montpellier, Montpellier, France
| | - Nelly Héraud
- Les Cliniques du Souffle, Groupe 5 Santé, France
| |
Collapse
|
10
|
Gruet M. Fatigue in Chronic Respiratory Diseases: Theoretical Framework and Implications For Real-Life Performance and Rehabilitation. Front Physiol 2018; 9:1285. [PMID: 30283347 PMCID: PMC6156387 DOI: 10.3389/fphys.2018.01285] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022] Open
Abstract
Fatigue is a primary disabling symptom in chronic respiratory diseases (CRD) with major clinical implications. However, fatigue is not yet sufficiently explored and is still poorly understood in CRD, making this symptom underdiagnosed and undertreated in these populations. Fatigue is a dynamic phenomenon, particularly in such evolving diseases punctuated by acute events which can, alone or in combination, modulate the degree of fatigue experienced by the patients. This review supports a comprehensive inter-disciplinary approach of CRD-related fatigue and emphasizes the need to consider both its performance and perceived components. Most studies in CRD evaluated perceived fatigue as a trait characteristic using multidimensional scales, providing precious information about its prevalence and clinical impact. However, these scales are not adapted to understand the complex dynamics of fatigue in real-life settings and should be augmented with ecological assessment of fatigue. The state level of fatigue must also be considered during physical tasks as severe fatigue can emerge rapidly during exercise. CRD patients exhibit alterations in both peripheral and central nervous systems and these abnormalities can be exacerbated during exercise. Laboratory tests are necessary to provide mechanistic insights into how and why fatigue develops during exercise in CRD. A better knowledge of the neurophysiological mechanisms underlying perceived and performance fatigability and their influence on real-life performance will enable the development of new individualized countermeasures. This review aims first to shed light on the terminology of fatigue and then critically considers the contemporary models of fatigue and their relevance in the particular context of CRD. This article then briefly reports the prevalence and clinical consequences of fatigue in CRD and discusses the strengths and weaknesses of various fatigue scales. This review also provides several arguments to select the ideal test of performance fatigability in CRD and to translate the mechanistic laboratory findings into the clinical practice and real-world performance. Finally, this article discusses the dose-response relationship to training and the feasibility and validity of using the fatigue produced during exercise training sessions in CRD to optimize exercise training efficiency. Methodological concerns, examples of applications in selected diseases and avenues for future research are also provided.
Collapse
|
11
|
Heraud N, Alexandre F, Gueugnon M, Davy C, Tremey E, Oliver N, Varray A. Impact of Chronic Obstructive Pulmonary Disease on Cognitive and Motor Performances in Dual-Task Walking. COPD 2018; 15:277-282. [PMID: 29799281 DOI: 10.1080/15412555.2018.1469607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
When two tasks are performed simultaneously, they compete for attentional resources, resulting in a performance decrement in one or both tasks. Patients with attention disorders have a reduced ability to perform several tasks simultaneously (e.g., talking while walking), which increases the fall risk and frailty. This study assessed the cognitive and motor performances of patients with COPD and healthy controls within a dual-task walking paradigm. A subobjective was to assess the impact of a pulmonary rehabilitation program on the dual-task performances in COPD. Twenty-five patients with COPD and 20 controls performed a cognitive task (subtraction) and a 15-m walking test separately (single-task; ST) and jointly (dual-task; DT). In addition, a subsample of 10 patients performed the same evaluations 5 weeks later after a pulmonary rehabilitation program following current recommendations. Cognitive and gait performances in ST showed no differences between patients with COPD and controls (all p > 0.05). However, COPD patients exhibited a greater increase in gait variability than controls in DT (4.07 ± 1.46% vs. 2.17 ± 0.7%, p < 0.001). The pulmonary rehabilitation program had no effect on the dual-task impairment for the subsample of patients (p = 0.87). This study provides evidence of insufficient attentional resources to successfully deal with DT in patients with COPD, and this was expressed through an exaggerated increase in gait variability in DT walking. Given the high risk of falls and disability associated with altered gait variability, dual-task training interventions should be considered in pulmonary rehabilitation programs.
Collapse
Affiliation(s)
- Nelly Heraud
- a Cliniques du Souffle , Service Recherche , Groupe 5 Sante, Lodeve , France
| | - François Alexandre
- a Cliniques du Souffle , Service Recherche , Groupe 5 Sante, Lodeve , France
| | - Mathieu Gueugnon
- a Cliniques du Souffle , Service Recherche , Groupe 5 Sante, Lodeve , France
| | - Corentin Davy
- a Cliniques du Souffle , Service Recherche , Groupe 5 Sante, Lodeve , France
| | - Emilie Tremey
- a Cliniques du Souffle , Service Recherche , Groupe 5 Sante, Lodeve , France
| | - Nicolas Oliver
- a Cliniques du Souffle , Service Recherche , Groupe 5 Sante, Lodeve , France
| | - Alain Varray
- a Cliniques du Souffle , Service Recherche , Groupe 5 Sante, Lodeve , France.,b Euromov, University of Montpellier , Montpellier , France
| |
Collapse
|
12
|
Altérations corticales et faiblesse musculaire chez le patient atteint de BPCO : effet de la neuromodulation sur l’inhibition intracorticale. Rev Mal Respir 2018. [DOI: 10.1016/j.rmr.2017.10.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Peripheral muscle abnormalities in cystic fibrosis: Etiology, clinical implications and response to therapeutic interventions. J Cyst Fibros 2017; 16:538-552. [DOI: 10.1016/j.jcf.2017.02.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 12/14/2022]
|
14
|
|
15
|
Alexandre F, Heraud N, Sanchez AM, Tremey E, Oliver N, Guerin P, Varray A. Brain Damage and Motor Cortex Impairment in Chronic Obstructive Pulmonary Disease: Implication of Nonrapid Eye Movement Sleep Desaturation. Sleep 2016; 39:327-35. [PMID: 26446126 PMCID: PMC4712404 DOI: 10.5665/sleep.5438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 09/05/2015] [Indexed: 12/14/2022] Open
Abstract
STUDY OBJECTIVES Nonrapid eye movement (NREM) sleep desaturation may cause neuronal damage due to the withdrawal of cerebrovascular reactivity. The current study (1) assessed the prevalence of NREM sleep desaturation in nonhypoxemic patients with chronic obstructive pulmonary disease (COPD) and (2) compared a biological marker of cerebral lesion and neuromuscular function in patients with and without NREM sleep desaturation. METHODS One hundred fifteen patients with COPD (Global Initiative for Chronic Obstructive Lung Disease [GOLD] grades 2 and 3), resting PaO2 of 60-80 mmHg, aged between 40 and 80 y, and without sleep apnea (apnea-hypopnea index < 15) had polysomnographic sleep recordings. In addition, twenty-nine patients (substudy) were assessed i) for brain impairment by serum S100B (biological marker of cerebral lesion), and ii) for neuromuscular function via motor cortex activation and excitability and maximal voluntary quadriceps strength measurement. RESULTS A total of 51.3% patients (n = 59) had NREM sleep desaturation (NREMDes). Serum S100B was higher in the NREMDes patients of the substudy (n = 14): 45.1 [Q1: 37.7, Q3: 62.8] versus 32.9 [Q1: 25.7, Q3: 39.5] pg.ml(-1) (P = 0.028). Motor cortex activation and excitability were lower in NREMDes patients (both P = 0.03), but muscle strength was comparable between groups (P = 0.58). CONCLUSIONS Over half the nonhypoxemic COPD patients exhibited NREM sleep desaturation associated with higher values of the cerebral lesion biomarker and lower neural drive reaching the quadriceps during maximal voluntary contraction. The lack of muscle strength differences between groups suggests a compensatory mechanism(s). Altogether, the results are consistent with an involvement of NREM sleep desaturation in COPD brain impairment. CLINICAL TRIAL REGISTRATION The study was registered at www.clinicaltrials.gov as NCT01679782.
Collapse
Affiliation(s)
- Francois Alexandre
- Movement To Health Laboratory, Euromov, University of Montpellier, Montpellier, France
- Clinique du Souffle La Vallonie, Fontalvie, Lodève, France
| | - Nelly Heraud
- Clinique du Souffle La Vallonie, Fontalvie, Lodève, France
- Clinique du Souffle Les Clarines, Fontalvie, Riom-es-Montagnes, France
| | - Anthony M.J. Sanchez
- UMR866 Dynamique Musculaire et Métabolisme, INRA, University of Montpellier, Montpellier, France
- Laboratoire Performance Santé Altitude, EA 4604, University of Perpignan Via Domitia, Font-Romeu, France
| | - Emilie Tremey
- Clinique du Souffle La Vallonie, Fontalvie, Lodève, France
- Clinique du Souffle Les Clarines, Fontalvie, Riom-es-Montagnes, France
| | - Nicolas Oliver
- Clinique du Souffle La Vallonie, Fontalvie, Lodève, France
| | - Philippe Guerin
- Clinique du Souffle Les Clarines, Fontalvie, Riom-es-Montagnes, France
| | - Alain Varray
- Movement To Health Laboratory, Euromov, University of Montpellier, Montpellier, France
| |
Collapse
|
16
|
Higashimoto Y, Honda N, Yamagata T, Sano A, Nishiyama O, Sano H, Iwanaga T, Kume H, Chiba Y, Fukuda K, Tohda Y. Exertional dyspnoea and cortical oxygenation in patients with COPD. Eur Respir J 2015; 46:1615-24. [PMID: 26493791 DOI: 10.1183/13993003.00541-2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 07/08/2015] [Indexed: 11/05/2022]
Abstract
This study was designed to investigate the association of perceived dyspnoea intensity with cortical oxygenation and cortical activation during exercise in patients with chronic obstructive pulmonary disease (COPD) and exertional hypoxaemia.Low-intensity exercise was performed at a constant work rate by patients with COPD and exertional hypoxaemia (n=11) or no hypoxaemia (n=16), and in control participants (n=11). Cortical oxyhaemoglobin (oxy-Hb) and deoxyhaemoglobin (deoxy-Hb) concentrations were measured by multichannel near-infrared spectroscopy. Increased deoxy-Hb is assumed to reflect impaired oxygenation, whereas decreased deoxy-Hb signifies cortical activation.Exercise decreased cortical deoxy-Hb in control and nonhypoxaemic patients. Deoxy-Hb was increased in hypoxaemic patients and oxygen supplementation improved cortical oxygenation. Decreased deoxy-Hb in the pre-motor cortex (PMA) was significantly correlated with exertional dyspnoea in control participants and patients with COPD without hypoxaemia. In contrast, increased cortical deoxy-Hb concentration was correlated with dyspnoea in patients with COPD and hypoxaemia. With the administration of oxygen supplementation, exertional dyspnoea was correlated with decreased deoxy-Hb in the PMA of COPD patients with hypoxaemia.During exercise, cortical oxygenation was impaired in patients with COPD and hypoxaemia compared with control and nonhypoxaemic patients; this difference was ameliorated with oxygen supplementation. Exertional dyspnoea was related to activation of the pre-motor cortex in COPD patients.
Collapse
Affiliation(s)
- Yuji Higashimoto
- Dept of Respiratory Medicine and Allergology, Kinki University, Osaka, Japan
| | - Noritsugu Honda
- Dept of Rehabilitation Medicine, Kinki University, Osaka, Japan
| | - Toshiyuki Yamagata
- Dept of Respiratory Medicine and Allergology, Kinki University, Osaka, Japan
| | - Akiko Sano
- Dept of Respiratory Medicine and Allergology, Kinki University, Osaka, Japan
| | - Osamu Nishiyama
- Dept of Respiratory Medicine and Allergology, Kinki University, Osaka, Japan
| | - Hiroyuki Sano
- Dept of Respiratory Medicine and Allergology, Kinki University, Osaka, Japan
| | - Takashi Iwanaga
- Dept of Respiratory Medicine and Allergology, Kinki University, Osaka, Japan
| | - Hiroaki Kume
- Dept of Respiratory Medicine and Allergology, Kinki University, Osaka, Japan
| | - Yasutaka Chiba
- Division of Biostatistics, Clinical Research Center, Kinki University, Osaka, Japan
| | - Kanji Fukuda
- Dept of Rehabilitation Medicine, Kinki University, Osaka, Japan
| | - Yuji Tohda
- Dept of Respiratory Medicine and Allergology, Kinki University, Osaka, Japan
| |
Collapse
|
17
|
Skeletal muscle contractility and fatigability in adults with cystic fibrosis. J Cyst Fibros 2015; 15:e1-8. [PMID: 26033387 DOI: 10.1016/j.jcf.2015.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Recent discovery of cystic fibrosis transmembrane conductance regulator expression in human skeletal muscle suggests that CF patients may have intrinsic skeletal muscle abnormalities potentially leading to functional impairments. The aim of the present study was to determine whether CF patients with mild to moderate lung disease have altered skeletal muscle contractility and greater muscle fatigability compared to healthy controls. METHODS Thirty adults (15 CF and 15 controls) performed a quadriceps neuromuscular evaluation using single and paired femoral nerve magnetic stimulations. Electromyographic and mechanical parameters during voluntary and magnetically-evoked contractions were recorded at rest, during and after a fatiguing isometric task. Quadriceps cross-sectional area was determined by magnetic resonance imaging. RESULTS Some indexes of muscle contractility tended to be reduced at rest in CF compared to controls (e.g., mechanical response to doublets stimulation at 100 Hz: 74±30 Nm vs. 97±28 Nm, P=0.06) but all tendencies disappeared when expressed relative to quadriceps cross-sectional area (P>0.5 for all parameters). CF and controls had similar alterations in muscle contractility with fatigue, similar endurance and post exercise recovery. CONCLUSIONS We found similar skeletal muscle endurance and fatigability in CF adults and controls and only trends for reduced muscle strength in CF which disappeared when normalized to muscle cross-sectional area. These results indicate small quantitative (reduced muscle mass) rather than qualitative (intrinsic skeletal muscle abnormalities) muscle alterations in CF with mild to moderate lung disease.
Collapse
|
18
|
Yentes JM, Schmid KK, Blanke D, Romberger DJ, Rennard SI, Stergiou N. Gait mechanics in patients with chronic obstructive pulmonary disease. Respir Res 2015; 16:31. [PMID: 25849481 PMCID: PMC4351940 DOI: 10.1186/s12931-015-0187-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/04/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by the frequent association of disease outside the lung. The objective of this study was to determine the presence of biomechanical gait abnormalities in COPD patients compared to healthy controls while well rested and without rest. METHODS Patients with COPD (N = 17) and aged-matched, healthy controls (N = 21) walked at their self-selected pace down a 10-meter walkway while biomechanical gait variables were collected. A one-minute rest was given between each of the five collected trials to prevent tiredness (REST condition). Patients with COPD then walked at a self-selected pace on a treadmill until the onset of self-reported breathlessness or leg tiredness. Subjects immediately underwent gait analysis with no rest between each of the five collected trials (NO REST condition). Statistical models with and without covariates age, gender, and smoking history were used. RESULTS After adjusting for covariates, COPD patients demonstrated more ankle power absorption in mid-stance (P = 0.006) than controls during both conditions. Both groups during NO REST demonstrated increased gait speed (P = 0.04), stride length (P = 0.03), and peak hip flexion (P = 0.04) with decreased plantarflexion moment (P = 0.04) and increased knee power absorption (P = 0.04) as compared to REST. A significant interaction revealed that peak ankle dorsiflexion moment was maintained from REST to NO REST for COPD but increased for controls (P < 0.01). Stratifying by disease severity did not alter these findings, except that step width decreased in NO REST as compared to REST (P = 0.01). Standardized effect sizes of significant effects varied from 0.5 to 0.98. CONCLUSIONS Patients with COPD appear to demonstrate biomechanical gait changes at the ankle as compared to healthy controls. This was seen not only in increased peak ankle power absorption during no rest but was also demonstrated by a lack of increase in peak ankle dorsiflexion moment from the REST to the NO REST condition as compared to the healthy controls. Furthermore, a wider step width has been associated with fall risk and this could account for the increased incidence of falls in patients with COPD.
Collapse
Affiliation(s)
- Jennifer M Yentes
- />Biomechanics Research Building, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE 68182-0860 USA
| | - Kendra K Schmid
- />College of Public Health, University of Nebraska Medical Center, 984355 Nebraska Medical Center, Omaha, NE 68198 USA
| | - Daniel Blanke
- />Biomechanics Research Building, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE 68182-0860 USA
| | - Debra J Romberger
- />Nebraska-Western Iowa Veterans’ Health Care System; U.S. Department of Veterans’ Affairs, 4101 Woolworth Avenue, Omaha, NE 68105 USA
- />Department of Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, 036 DRC2, Omaha, NE 68198-5910 USA
| | - Stephen I Rennard
- />Department of Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, 036 DRC2, Omaha, NE 68198-5910 USA
| | - Nicholas Stergiou
- />Biomechanics Research Building, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE 68182-0860 USA
- />College of Public Health, University of Nebraska Medical Center, 984355 Nebraska Medical Center, Omaha, NE 68198 USA
| |
Collapse
|
19
|
Alexandre F, Heraud N, Varray A. Is nocturnal desaturation a trigger for neuronal damage in chronic obstructive pulmonary disease? Med Hypotheses 2015; 84:25-30. [DOI: 10.1016/j.mehy.2014.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/03/2014] [Accepted: 11/09/2014] [Indexed: 01/26/2023]
|