1
|
Iskandar M, Xiao Barbero M, Jaber M, Chen R, Gomez-Guevara R, Cruz E, Westerheide S. A Review of Telomere Attrition in Cancer and Aging: Current Molecular Insights and Future Therapeutic Approaches. Cancers (Basel) 2025; 17:257. [PMID: 39858038 PMCID: PMC11764024 DOI: 10.3390/cancers17020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer. The purpose of this review is to provide an updated overview of telomere biology and therapeutic tactics to address aging and cancer. METHODS We used the Rayyan platform to review the PubMed database and examined the ClinicalTrial.gov registry to gain insight into clinical trials and their results. RESULTS Cancer cells activate telomerase or utilize alternative lengthening of telomeres to escape telomere shortening, leading to near immortality. Contrarily, normal cells experience telomeric erosion, contributing to premature aging disorders, such as Werner syndrome and Hutchinson-Gilford Progeria, and (2) aging-related diseases, such as neurodegenerative and cardiovascular diseases. CONCLUSIONS The literature presents several promising therapeutic approaches to potentially balance telomere maintenance in aging and shortening in cancer. This review highlights gaps in knowledge and points to the potential of these optimal interventions in preclinical and clinical studies to inform future research in cancer and aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandy Westerheide
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (M.X.B.); (M.J.); (R.C.); (R.G.-G.); (E.C.)
| |
Collapse
|
2
|
Fernández-Varas B, Manguan-García C, Rodriguez-Centeno J, Mendoza-Lupiáñez L, Calatayud J, Perona R, Martín-Martínez M, Gutierrez-Rodriguez M, Benítez-Buelga C, Sastre L. Clinical mutations in the TERT and TERC genes coding for telomerase components induced oxidative stress, DNA damage at telomeres and cell apoptosis besides decreased telomerase activity. Hum Mol Genet 2024; 33:818-834. [PMID: 38641551 PMCID: PMC11031360 DOI: 10.1093/hmg/ddae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 04/21/2024] Open
Abstract
Telomeres are nucleoprotein structures at the end of chromosomes that maintain their integrity. Mutations in genes coding for proteins involved in telomere protection and elongation produce diseases such as dyskeratosis congenita or idiopathic pulmonary fibrosis known as telomeropathies. These diseases are characterized by premature telomere shortening, increased DNA damage and oxidative stress. Genetic diagnosis of telomeropathy patients has identified mutations in the genes TERT and TERC coding for telomerase components but the functional consequences of many of these mutations still have to be experimentally demonstrated. The activity of twelve TERT and five TERC mutants, five of them identified in Spanish patients, has been analyzed. TERT and TERC mutants were expressed in VA-13 human cells that express low telomerase levels and the activity induced was analyzed. The production of reactive oxygen species, DNA oxidation and TRF2 association at telomeres, DNA damage response and cell apoptosis were determined. Most mutations presented decreased telomerase activity, as compared to wild-type TERT and TERC. In addition, the expression of several TERT and TERC mutants induced oxidative stress, DNA oxidation, DNA damage, decreased recruitment of the shelterin component TRF2 to telomeres and increased apoptosis. These observations might indicate that the increase in DNA damage and oxidative stress observed in cells from telomeropathy patients is dependent on their TERT or TERC mutations. Therefore, analysis of the effect of TERT and TERC mutations of unknown function on DNA damage and oxidative stress could be of great utility to determine the possible pathogenicity of these variants.
Collapse
Affiliation(s)
- Beatriz Fernández-Varas
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Cristina Manguan-García
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III. C. Melchor Fernandez de Almagro, 3, 28029 Madrid, Spain
| | - Javier Rodriguez-Centeno
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Lucía Mendoza-Lupiáñez
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Joaquin Calatayud
- Departamento de Biología y Geología, Física y Química inorgánica. ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, C.P. 28933 Madrid, Spain
| | - Rosario Perona
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III. C. Melchor Fernandez de Almagro, 3, 28029 Madrid, Spain
- Instituto de Salud Carlos III. Calle Monforte de Lemos 5, 28029 Madrid, Spain
| | | | | | - Carlos Benítez-Buelga
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III. C. Melchor Fernandez de Almagro, 3, 28029 Madrid, Spain
| |
Collapse
|
3
|
Kuan XY, Fauzi NSA, Ng KY, Bakhtiar A. Exploring the Causal Relationship Between Telomere Biology and Alzheimer's Disease. Mol Neurobiol 2023; 60:4169-4183. [PMID: 37046137 PMCID: PMC10293431 DOI: 10.1007/s12035-023-03337-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Telomeres, also known as the "protective caps" of our chromosomes, shorten with each cell cycle due to the end replication problem. This process, termed telomere attrition, is associated with many age-related disorders, such as Alzheimer's disease (AD). Despite the numerous studies conducted in this field, the role of telomere attrition in the onset of the disease remains unclear. To investigate the causal relationship between short telomeres and AD, this review aims to highlight the primary factors that regulate telomere length and maintain its integrity, with an additional outlook on the role of oxidative stress, which is commonly associated with aging and molecular damage. Although some findings thus far might be contradictory, telomere attrition likely plays a crucial role in the progression of AD due to its close association with oxidative stress. The currently available treatments for AD are only symptomatic without affecting the progression of the disease. The components of telomere biology discussed in this paper have previously been studied as an alternative treatment option for several diseases and have exhibited promising in vitro and in vivo results. Hence, this should provide a basis for future research to develop a potential therapeutic strategy for AD. (Created with BioRender.com).
Collapse
Affiliation(s)
- Xi-Yuen Kuan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Nurul Syahira Ahmad Fauzi
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
4
|
Jerome MS, Nanjappa DP, Chakraborty A, Chakrabarty S. Molecular etiology of defective nuclear and mitochondrial ribosome biogenesis: Clinical phenotypes and therapy. Biochimie 2023; 207:122-136. [PMID: 36336106 DOI: 10.1016/j.biochi.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Ribosomopathies are rare congenital disorders associated with defective ribosome biogenesis due to pathogenic variations in genes that encode proteins related to ribosome function and biogenesis. Defects in ribosome biogenesis result in a nucleolar stress response involving the TP53 tumor suppressor protein and impaired protein synthesis leading to a deregulated translational output. Despite the accepted notion that ribosomes are omnipresent and essential for all cells, most ribosomopathies show tissue-specific phenotypes affecting blood cells, hair, spleen, or skin. On the other hand, defects in mitochondrial ribosome biogenesis are associated with a range of clinical manifestations affecting more than one organ. Intriguingly, the deregulated ribosomal function is also a feature in several human malignancies with a selective upregulation or downregulation of specific ribosome components. Here, we highlight the clinical conditions associated with defective ribosome biogenesis in the nucleus and mitochondria with a description of the affected genes and the implicated pathways, along with a note on the treatment strategies currently available for these disorders.
Collapse
Affiliation(s)
- Maria Sona Jerome
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to Be University), Deralakate, Mangaluru, 575018, India
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to Be University), Deralakate, Mangaluru, 575018, India.
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
5
|
Multisystemic Manifestations in Rare Diseases: The Experience of Dyskeratosis Congenita. Genes (Basel) 2022; 13:genes13030496. [PMID: 35328050 PMCID: PMC8953471 DOI: 10.3390/genes13030496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
Dyskeratosis congenital (DC) is the first genetic syndrome described among telomeropathies. Its classical phenotype is characterized by the mucocutaneous triad of reticulated pigmentation of skin lace, nail dystrophy and oral leukoplakia. The clinical presentation, however, is heterogeneous and serious clinical complications include bone marrow failure, hematological and solid tumors. It may also involve immunodeficiencies, dental, pulmonary and liver disorders, and other minor complication. Dyskeratosis congenita shows marked genetic heterogeneity, as at least 14 genes are responsible for the shortening of telomeres characteristic of this disease. This review discusses clinical characteristics, molecular genetics, disease evolution, available therapeutic options and differential diagnosis of dyskeratosis congenita to provide an interdisciplinary and personalized medical assessment that includes family genetic counseling.
Collapse
|
6
|
Pintado-Berninches L, Montes-Worboys A, Manguan-García C, Arias-Salgado EG, Serrano A, Fernandez-Varas B, Guerrero-López R, Iarriccio L, Planas L, Guenechea G, Egusquiaguirre SP, Hernandez RM, Igartua M, Luis Pedraz J, Cortijo J, Sastre L, Molina-Molina M, Perona R. GSE4-loaded nanoparticles a potential therapy for lung fibrosis that enhances pneumocyte growth, reduces apoptosis and DNA damage. FASEB J 2021; 35:e21422. [PMID: 33638895 DOI: 10.1096/fj.202001160rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
Idiopathic pulmonary fibrosis is a lethal lung fibrotic disease, associated with aging with a mean survival of 2-5 years and no curative treatment. The GSE4 peptide is able to rescue cells from senescence, DNA and oxidative damage, inflammation, and induces telomerase activity. Here, we investigated the protective effect of GSE4 expression in vitro in rat alveolar epithelial cells (AECs), and in vivo in a bleomycin model of lung fibrosis. Bleomycin-injured rat AECs, expressing GSE4 or treated with GSE4-PLGA/PEI nanoparticles showed an increase of telomerase activity, decreased DNA damage, and decreased expression of IL6 and cleaved-caspase 3. In addition, these cells showed an inhibition in expression of fibrotic markers induced by TGF-β such as collagen-I and III among others. Furthermore, treatment with GSE4-PLGA/PEI nanoparticles in a rat model of bleomycin-induced fibrosis, increased telomerase activity and decreased DNA damage in proSP-C cells. Both in preventive and therapeutic protocols GSE4-PLGA/PEI nanoparticles prevented and attenuated lung damage monitored by SPECT-CT and inhibited collagen deposition. Lungs of rats treated with bleomycin and GSE4-PLGA/PEI nanoparticles showed reduced expression of α-SMA and pro-inflammatory cytokines, increased number of pro-SPC-multicellular structures and increased DNA synthesis in proSP-C cells, indicating therapeutic efficacy of GSE4-nanoparticles in experimental lung fibrosis and a possible curative treatment for lung fibrotic patients.
Collapse
Affiliation(s)
- Laura Pintado-Berninches
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ana Montes-Worboys
- ILD Unit, Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Manguan-García
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Adela Serrano
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,CIBER of Respiratory diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| | | | - Rosa Guerrero-López
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Laura Iarriccio
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain
| | - Lurdes Planas
- ILD Unit, Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Guillermo Guenechea
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Susana P Egusquiaguirre
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Rosa M Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,CIBER of Respiratory diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Maria Molina-Molina
- ILD Unit, Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,CIBER of Respiratory diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
7
|
Carrascoso-Rubio C, Zittersteijn HA, Pintado-Berninches L, Fernández-Varas B, Lozano ML, Manguan-Garcia C, Sastre L, Bueren JA, Perona R, Guenechea G. Generation of dyskeratosis congenita-like hematopoietic stem cells through the stable inhibition of DKC1. Stem Cell Res Ther 2021; 12:92. [PMID: 33514435 PMCID: PMC7844988 DOI: 10.1186/s13287-021-02145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022] Open
Abstract
Dyskeratosis congenita (DC) is a rare telomere biology disorder, which results in different clinical manifestations, including severe bone marrow failure. To date, the only curative treatment for the bone marrow failure in DC patients is allogeneic hematopoietic stem cell transplantation. However, due to the toxicity associated to this treatment, improved therapies are recommended for DC patients. Here, we aimed at generating DC-like human hematopoietic stem cells in which the efficacy of innovative therapies could be investigated. Because X-linked DC is the most frequent form of the disease and is associated with an impaired expression of DKC1, we have generated DC-like hematopoietic stem cells based on the stable knock-down of DKC1 in human CD34+ cells with lentiviral vectors encoding for DKC1 short hairpin RNAs. At a molecular level, DKC1-interfered CD34+ cells showed a decreased expression of TERC, as well as a diminished telomerase activity and increased DNA damage, cell senescence, and apoptosis. Moreover, DKC1-interfered human CD34+ cells showed defective clonogenic ability and were incapable of repopulating the hematopoiesis of immunodeficient NSG mice. The development of DC-like hematopoietic stem cells will facilitate the understanding of the molecular and cellular basis of this inherited bone marrow failure syndrome and will serve as a platform to evaluate the efficacy of new hematopoietic therapies for DC.
Collapse
Affiliation(s)
- Carlos Carrascoso-Rubio
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), 28029, Madrid, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense, 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain.,Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040, Madrid, Spain
| | - Hidde A Zittersteijn
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense, 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain.,Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040, Madrid, Spain
| | - Laura Pintado-Berninches
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Beatriz Fernández-Varas
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - M Luz Lozano
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense, 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain.,Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040, Madrid, Spain
| | - Cristina Manguan-Garcia
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Juan A Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense, 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain.,Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040, Madrid, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Guillermo Guenechea
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense, 40, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain. .,Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040, Madrid, Spain.
| |
Collapse
|
8
|
Ibáñez-Cabellos JS, Seco-Cervera M, Picher-Latorre C, Pérez-Machado G, García-Giménez JL, Pallardó FV. Acute depletion of telomerase components DKC1 and NOP10 induces oxidative stress and disrupts ribosomal biogenesis via NPM1 and activation of the P53 pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118845. [DOI: 10.1016/j.bbamcr.2020.118845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
|
9
|
Potential roles of telomeres and telomerase in neurodegenerative diseases. Int J Biol Macromol 2020; 163:1060-1078. [DOI: 10.1016/j.ijbiomac.2020.07.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
|
10
|
AlSabbagh MM. Dyskeratosis congenita: ein Literaturüberblick. J Dtsch Dermatol Ges 2020; 18:943-968. [PMID: 32985809 DOI: 10.1111/ddg.14268_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
|
11
|
AlSabbagh MM. Dyskeratosis congenita: a literature review. J Dtsch Dermatol Ges 2020; 18:943-967. [PMID: 32930426 DOI: 10.1111/ddg.14268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/29/2020] [Indexed: 12/26/2022]
Abstract
Dyskeratosis congenita is a rare hereditary disease that occurs predominantly in males and manifests clinically as the classic triad of reticulate hyperpigmentation, nail dystrophy and leukoplakia. It increases the risk of malignancy and other potentially lethal complications such as bone marrow failure, lung and liver diseases. Mutations in 19 genes are associated with dyskeratosis congenita, and a fifth of the pathogenic mutations are found in DKC1, the gene coding for dyskerin. This review aims to address the clinical and genetic aspects of the disease.
Collapse
|
12
|
Dyskerin Mutations Present in Dyskeratosis Congenita Patients Increase Oxidative Stress and DNA Damage Signalling in Dictyostelium Discoideum. Cells 2019; 8:cells8111406. [PMID: 31717312 PMCID: PMC6912284 DOI: 10.3390/cells8111406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Dyskerin is a protein involved in the formation of small nucleolar and small Cajal body ribonucleoproteins. These complexes participate in RNA pseudouridylation and are also components of the telomerase complex required for telomere elongation. Dyskerin mutations cause a rare disease, X-linked dyskeratosis congenita, with no curative treatment. The social amoeba Dictyostelium discoideum contains a gene coding for a dyskerin homologous protein. In this article D. discoideum mutant strains that have mutations corresponding to mutations found in dyskeratosis congenita patients are described. The phenotype of the mutant strains has been studied and no alterations were observed in pseudouridylation activity and telomere structure. Mutant strains showed increased proliferation on liquid culture but reduced growth feeding on bacteria. The results obtained indicated the existence of increased DNA damage response and reactive oxygen species, as also reported in human Dyskeratosis congenita cells and some other disease models. These data, together with the haploid character of D. discoideum vegetative cells, that resemble the genomic structure of the human dyskerin gene, located in the X chromosome, support the conclusion that D. discoideum can be a good model system for the study of this disease.
Collapse
|
13
|
Pintado-Berninches L, Fernandez-Varas B, Benitez-Buelga C, Manguan-Garcia C, Serrano-Benitez A, Iarriccio L, Carrillo J, Guenechea G, Egusquiaguirre SP, Pedraz JL, Hernández RM, Igartua M, Arias-Salgado EG, Cortés-Ledesma F, Sastre L, Perona R. GSE4 peptide suppresses oxidative and telomere deficiencies in ataxia telangiectasia patient cells. Cell Death Differ 2019; 26:1998-2014. [PMID: 30670828 PMCID: PMC6748109 DOI: 10.1038/s41418-018-0272-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 11/21/2018] [Accepted: 12/03/2018] [Indexed: 01/05/2023] Open
Abstract
Ataxia telangiectasia (AT) is a genetic disease caused by mutations in the ATM gene but the mechanisms underlying AT are not completely understood. Key functions of the ATM protein are to sense and regulate cellular redox status and to transduce DNA double-strand break signals to downstream effectors. ATM-deficient cells show increased ROS accumulation, activation of p38 protein kinase, and increased levels of DNA damage. GSE24.2 peptide and a short derivative GSE4 peptide corresponding to an internal domain of Dyskerin have proved to induce telomerase activity, decrease oxidative stress, and protect from DNA damage in dyskeratosis congenita (DC) cells. We have found that expression of GSE24.2 and GSE4 in human AT fibroblast is able to decrease DNA damage, detected by γ-H2A.X and 53BP1 foci. However, GSE24.2/GSE4 expression does not improve double-strand break signaling and repair caused by the lack of ATM activity. In contrast, they cause a decrease in 8-oxoguanine and OGG1-derived lesions, particularly at telomeres and mitochondrial DNA, as well as in reactive oxygen species, in parallel with increased expression of SOD1. These cells also showed lower levels of IL6 and decreased p38 phosphorylation, decreased senescence and increased ability to divide for longer times. Additionally, these cells are more resistant to treatment with H202 and the radiomimetic-drug bleomycin. Finally, we found shorter telomere length (TL) in AT cells, lower levels of TERT expression, and telomerase activity that were also partially reverted by GSE4. These observations suggest that GSE4 may be considered as a new therapy for the treatment of AT that counteracts the cellular effects of high ROS levels generated in AT cells and in addition increases telomerase activity contributing to increased cell proliferation.
Collapse
Affiliation(s)
- Laura Pintado-Berninches
- Instituto de Investigaciones Biomédicas CSIC/UAM, IDiPaz, C/ Arturo Duperier, 4, 28029, Madrid, Spain
- Advanced Medical Projects, Madrid, Spain
| | - Beatriz Fernandez-Varas
- Instituto de Investigaciones Biomédicas CSIC/UAM, IDiPaz, C/ Arturo Duperier, 4, 28029, Madrid, Spain
| | | | - Cristina Manguan-Garcia
- Instituto de Investigaciones Biomédicas CSIC/UAM, IDiPaz, C/ Arturo Duperier, 4, 28029, Madrid, Spain
- CIBER de Enfermedades Raras, Madrid, Spain
| | - Almudena Serrano-Benitez
- Centro Andaluz de Biologia Molecular y Medicina regenerativa (CABIMER) - CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Sevilla, Spain
| | - Laura Iarriccio
- Instituto de Investigaciones Biomédicas CSIC/UAM, IDiPaz, C/ Arturo Duperier, 4, 28029, Madrid, Spain
- Advanced Medical Projects, Madrid, Spain
| | - Jaime Carrillo
- Instituto de Investigaciones Biomédicas CSIC/UAM, IDiPaz, C/ Arturo Duperier, 4, 28029, Madrid, Spain
| | - Guillermo Guenechea
- CIBER de Enfermedades Raras, Madrid, Spain
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Susana P Egusquiaguirre
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Jose-Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Rosa M Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Elena G Arias-Salgado
- Instituto de Investigaciones Biomédicas CSIC/UAM, IDiPaz, C/ Arturo Duperier, 4, 28029, Madrid, Spain
- Advanced Medical Projects, Madrid, Spain
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biologia Molecular y Medicina regenerativa (CABIMER) - CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Sevilla, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas CSIC/UAM, IDiPaz, C/ Arturo Duperier, 4, 28029, Madrid, Spain
- CIBER de Enfermedades Raras, Madrid, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas CSIC/UAM, IDiPaz, C/ Arturo Duperier, 4, 28029, Madrid, Spain.
- CIBER de Enfermedades Raras, Madrid, Spain.
| |
Collapse
|
14
|
Bueren JA, Quintana-Bustamante O, Almarza E, Navarro S, Río P, Segovia JC, Guenechea G. Advances in the gene therapy of monogenic blood cell diseases. Clin Genet 2019; 97:89-102. [PMID: 31231794 DOI: 10.1111/cge.13593] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/12/2019] [Accepted: 05/21/2019] [Indexed: 01/19/2023]
Abstract
Hematopoietic gene therapy has markedly progressed during the last 15 years both in terms of safety and efficacy. While a number of serious adverse events (SAE) were initially generated as a consequence of genotoxic insertions of gamma-retroviral vectors in the cell genome, no SAEs and excellent outcomes have been reported in patients infused with autologous hematopoietic stem cells (HSCs) transduced with self-inactivated lentiviral and gammaretroviral vectors. Advances in the field of HSC gene therapy have extended the number of monogenic diseases that can be treated with these approaches. Nowadays, evidence of clinical efficacy has been shown not only in primary immunodeficiencies, but also in other hematopoietic diseases, including beta-thalassemia and sickle cell anemia. In addition to the rapid progression of non-targeted gene therapies in the clinic, new approaches based on gene editing have been developed thanks to the discovery of designed nucleases and improved non-integrative vectors, which have markedly increased the efficacy and specificity of gene targeting to levels compatible with its clinical application. Based on advances achieved in the field of gene therapy, it can be envisaged that these therapies will soon be part of the therapeutic approaches used to treat life-threatening diseases of the hematopoietic system.
Collapse
Affiliation(s)
- Juan A Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Oscar Quintana-Bustamante
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Elena Almarza
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Susana Navarro
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - José C Segovia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Guillermo Guenechea
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Telomere attrition has been proposed as one of the aging hallmarks in pulmonary fibrosis. Telomere shortening and telomerase gene mutations have been widely evaluated in recent years. Reduced telomere length may be identified in a quarter of patients with sporadic idiopathic pulmonary fibrosis (IPF) and half of those cases with family aggregation. However, telomere studies have not transferred from the research field to the clinic. This review is focused on our current understanding of the pathogenic implication of telomere dysfunction in lung fibrosis and its relevance in the clinical setting. RECENT FINDINGS The most prevalent clinical expression of telomere dysfunction is IPF. Disease onset is usually seen at a younger age and family aggregation is frequently present. Short telomere syndrome is associated in a minority of cases and includes premature hair greying, bone marrow failure and liver cirrhosis. However, patients often present with some extrapulmonary associated telomeric features and related comorbidities that may help to suspect telomere defects. Telomere shortening confers a poor prognosis and reduced lung-transplant free survival time in IPF and other nonidiopathic pulmonary fibrotic entities. SUMMARY Telomere dysfunction associates some common clinical features that could modify patient management in pulmonary fibrosis.
Collapse
|
16
|
Barratt SL, Creamer A, Hayton C, Chaudhuri N. Idiopathic Pulmonary Fibrosis (IPF): An Overview. J Clin Med 2018; 7:jcm7080201. [PMID: 30082599 PMCID: PMC6111543 DOI: 10.3390/jcm7080201] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterised by chronic, progressive scarring of the lungs and the pathological hallmark of usual interstitial pneumonia. Current paradigms suggest alveolar epithelial cell damage is a key initiating factor. Globally, incidence of the disease is rising, with associated high morbidity, mortality, and economic healthcare burden. Diagnosis relies on a multidisciplinary team approach with exclusion of other causes of interstitial lung disease. Over recent years, two novel antifibrotic therapies, pirfenidone and nintedanib, have been developed, providing treatment options for many patients with IPF, with several other agents in early clinical trials. Current efforts are directed at identifying key biomarkers that may direct more customized patient-centred healthcare to improve outcomes for these patients in the future.
Collapse
Affiliation(s)
- Shaney L Barratt
- Bristol Interstitial Lung Disease Service, North Bristol NHS Trust, Bristol BS10 5NB, UK.
- Academic Respiratory Unit, University of Bristol, Bristol BS16 1QY, UK.
| | - Andrew Creamer
- Bristol Interstitial Lung Disease Service, North Bristol NHS Trust, Bristol BS10 5NB, UK.
| | - Conal Hayton
- North West Interstitial Lung Disease Unit, Manchester University NHS Foundation Trust, Wythenshawe, Manchester M23 9LT, UK.
| | - Nazia Chaudhuri
- North West Interstitial Lung Disease Unit, Manchester University NHS Foundation Trust, Wythenshawe, Manchester M23 9LT, UK.
| |
Collapse
|
17
|
Molina-Molina M, Planas-Cerezales L, Perona R. Acortamiento de los telómeros en fibrosis pulmonar idiopática. Arch Bronconeumol 2018; 54:3-4. [DOI: 10.1016/j.arbres.2017.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 11/25/2022]
|
18
|
Ibáñez-Cabellos JS, Pérez-Machado G, Seco-Cervera M, Berenguer-Pascual E, García-Giménez JL, Pallardó FV. Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening. Redox Biol 2017; 14:398-408. [PMID: 29055871 PMCID: PMC5650655 DOI: 10.1016/j.redox.2017.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/13/2023] Open
Abstract
Loss of function of dyskerin (DKC1), NOP10 and TIN2 are responsible for different inheritance patterns of Dyskeratosis congenita (DC; ORPHA1775). They are key components of telomerase (DKC1 and NOP10) and shelterin (TIN2), and play an important role in telomere homeostasis. They participate in several fundamental cellular processes by contributing to Dyskeratosis congenita through mechanisms that are not fully understood. Presence of oxidative stress was postulated to result from telomerase ablation. However, the resulting disturbed redox status can promote telomere attrition by generating a vicious circle, which promotes cellular senescence. This fact prompted us to study if acute loss of DKC1, NOP10 and TINF2 can promote redox disequilibrium as an early event when telomere shortening has not yet taken place. We generated siRNA-mediated (DKC1, NOP10 and TINF2) cell lines by RNA interference, which was confirmed by mRNA and protein expression analyses. No telomere shortening occurred in any silenced cell line. Depletion of H/ACA ribonucleoproteins DKC1 and NOP10 diminished telomerase activity via TERC down-regulation, and produced alterations in pseudouridylation and ribosomal biogenesis. An increase in the GSSG/GSH ratio, carbonylated proteins and oxidized peroxiredoxin-6 was observed, in addition to MnSOD and TRX1 overexpression in the siRNA DC cells. Likewise, high PARylation levels and high PARP1 protein expression were detected. In contrast, the silenced TINF2 cells did not alter any evaluated oxidative stress marker. Altogether these findings lead us to conclude that loss of DKC1 and NOP10 functions induces oxidative stress in a telomere shortening independent manner. Transient silencing of DKC1 and NOP10 genes produce oxidative stress. Cells depleted of DKC1 and NOP10 are susceptible to DNA damage. Acute DKC1 and NOP10 depletion disrupts RNA maturation. Oxidative stress is an early event previous to telomere shortening.
Collapse
Affiliation(s)
- José Santiago Ibáñez-Cabellos
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Giselle Pérez-Machado
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Marta Seco-Cervera
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Ester Berenguer-Pascual
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| |
Collapse
|
19
|
Brief Report: Differential Effects of Tenofovir, Abacavir, Emtricitabine, and Darunavir on Telomerase Activity In Vitro. J Acquir Immune Defic Syndr 2017; 74:91-94. [PMID: 27552152 DOI: 10.1097/qai.0000000000001154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In vitro, tenofovir and abacavir induced a significant dose-dependent inhibition of telomerase activity at therapeutic concentrations in peripheral blood mononuclear cells of healthy subjects. Median inhibition of telomerase activity by tenofovir at 0.5 and 1 μM was 29% [Interquartile range (IQR) 29%-34%, P = 0.042] and 28% (IQR 28%-41%, P = 0.042), respectively. Abacavir inhibition was 12% (IQR 9%-13%, P = 0.043) at 3 μM and 14% (IQR 10%-29%, P = 0.043) at 10 μM. Tenofovir and abacavir did not change human telomerase reverse transcriptase (hTERT) levels or mRNA levels of other telomerase complex genes. Exposure to emtricitabine or darunavir did not affect telomerase activity, hTERT protein levels, or mRNA levels of telomerase/shelterin genes.
Collapse
|
20
|
Pereboeva L, Hubbard M, Goldman FD, Westin ER. Robust DNA Damage Response and Elevated Reactive Oxygen Species in TINF2-Mutated Dyskeratosis Congenita Cells. PLoS One 2016; 11:e0148793. [PMID: 26859482 PMCID: PMC4747510 DOI: 10.1371/journal.pone.0148793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/22/2016] [Indexed: 12/13/2022] Open
Abstract
Dyskeratosis Congenita (DC) is an inherited multisystem premature aging disorder with characteristic skin and mucosal findings as well as a predisposition to cancer and bone marrow failure. DC arises due to gene mutations associated with the telomerase complex or telomere maintenance, resulting in critically shortened telomeres. The pathogenesis of DC, as well as several congenital bone marrow failure (BMF) syndromes, converges on the DNA damage response (DDR) pathway and subsequent elevation of reactive oxygen species (ROS). Historically, DC patients have had poor outcomes following bone marrow transplantation (BMT), perhaps as a consequence of an underlying DNA hypersensitivity to cytotoxic agents. Previously, we demonstrated an activated DDR and increased ROS, augmented by chemotherapy and radiation, in somatic cells isolated from DC patients with a mutation in the RNA component of telomerase, TERC. The current study was undertaken to determine whether previous findings related to ROS and DDR in TERC patients’ cells could be extended to other DC mutations. Of particular interest was whether an antioxidant approach could counter increased ROS and decrease DC pathologies. To test this, we examined lymphocytes from DC patients from different DC mutations (TERT, TINF2, and TERC) for the presence of an active DDR and increased ROS. All DC mutations led to increased steady-state p53 (2-fold to 10-fold) and ROS (1.5-fold to 2-fold). Upon exposure to ionizing radiation (XRT), DC cells increased in both DDR and ROS to a significant degree. Exposing DC cells to hydrogen peroxide also revealed that DC cells maintain a significant oxidant burden compared to controls (1.5-fold to 3-fold). DC cell culture supplemented with N-acetylcysteine, or alternatively grown in low oxygen, afforded significant proliferative benefits (proliferation: maximum 2-fold increase; NAC: 5-fold p53 decrease; low oxygen: maximum 3.5-fold p53 decrease). Together, our data supports a mechanism whereby telomerase deficiency and subsequent shortened telomeres initiate a DDR and create a pro-oxidant environment, especially in cells carrying the TINF2 mutations. Finally, the ameliorative effects of antioxidants in vitro suggest this could translate to therapeutic benefits in DC patients.
Collapse
Affiliation(s)
- Larisa Pereboeva
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Meredith Hubbard
- Department of Pediatrics, Division of Hematology Oncology, University of Alabama, Birmingham, Alabama, United States of America
| | - Frederick D. Goldman
- Department of Pediatrics, Division of Hematology Oncology, University of Alabama, Birmingham, Alabama, United States of America
| | - Erik R. Westin
- Department of Pediatrics, Division of Hematology Oncology, University of Alabama, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
21
|
GSE4, a Small Dyskerin- and GSE24.2-Related Peptide, Induces Telomerase Activity, Cell Proliferation and Reduces DNA Damage, Oxidative Stress and Cell Senescence in Dyskerin Mutant Cells. PLoS One 2015; 10:e0142980. [PMID: 26571381 PMCID: PMC4646510 DOI: 10.1371/journal.pone.0142980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/29/2015] [Indexed: 02/04/2023] Open
Abstract
Dyskeratosis congenita is an inherited disease caused by mutations in genes coding for telomeric components. It was previously reported that expression of a dyskerin-derived peptide, GSE24.2, increases telomerase activity, regulates gene expression and decreases DNA damage and oxidative stress in dyskeratosis congenita patient cells. The biological activity of short peptides derived from GSE24.2 was tested and one of them, GSE4, that probed to be active, was further characterized in this article. Expression of this eleven amino acids long peptide increased telomerase activity and reduced DNA damage, oxidative stress and cell senescence in dyskerin-mutated cells. GSE4 expression also activated c-myc and TERT promoters and increase of c-myc, TERT and TERC expression. The level of biological activity of GSE4 was similar to that obtained by GSE24.2 expression. Incorporation of a dyskerin nuclear localization signal to GSE24.2 did not change its activity on promoter regulation and DNA damage protection. However, incorporation of a signal that increases the rate of nucleolar localization impaired GSE24.2 activity. Incorporation of the dyskerin nuclear localization signal to GSE4 did not alter its biological activity. Mutation of the Aspartic Acid residue that is conserved in the pseudouridine synthase domain present in GSE4 did not impair its activity, except for the repression of c-myc promoter activity and the decrease of c-myc, TERT and TERC gene expression in dyskerin-mutated cells. These results indicated that GSE4 could be of great therapeutic interest for treatment of dyskeratosis congenita patients.
Collapse
|