1
|
Ghadamgahi SR, Hosseinzadeh L, Ardalan Khales S, Nassiri M, Alidoust M, Etemadrezaei S, Khorshid Shamshiri A, Homaei Shandiz F, Pasdar A, Afzaljavan F. Potential Role of Zinc Finger 365 rs10822013 and rs10995190 in Mammographic Density, Sporadic Breast Cancer Risk, and Prognosis. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:551-562. [PMID: 38094285 PMCID: PMC10715120 DOI: 10.30476/ijms.2023.96141.2767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/08/2022] [Accepted: 12/17/2022] [Indexed: 12/18/2023]
Abstract
Background Despite suggesting many genetic risk markers as the outcome of Genome-wide association studies (GWAS) for breast cancer, replicating the results in different populations has remained the main issue. In this regard, this study assessed the association of two variations in Zinc Finger 365 (ZNF365) in an Iranian population. Methods In a case-control study conducted at Mashhad University of Medical Sciences, Mashhad, Iran, between 2017 and 2020, ZNF365-rs10822013 and rs10995190 were genotyped using Allele-Specific PCR (AS-PCR). Breast density was assessed using mammography images. PHASE software module version 2 and SPSS version 16.0 were used for haplotype and statistical analyses. Quantitative and qualitative variables were compared between groups using independent t tests and Chi square tests, respectively. Binary logistic regression analysis was performed to calculate odds ratios. Multivariate analysis was then undertaken for the baseline variables, with a P<0.05 in the univariate analysis. The survival analysis was performed using the Kaplan-Meier method and the log-rank test. Results In this survey, 732 females, including 342 breast cancer patients and 390 healthy subjects, were enrolled. rs10822013-T allele (P=0.014), rs10995190-G allele (P=0.003), and TG haplotype (P=0.002) were significantly associated with the increased risk of breast cancer. Moreover, rs10995190-GG genotype (P=0.042) and C-G haplotype (P=0.019) revealed a significant association with better overall survival. However, considered polymorphisms and their haplotypes indicated no association with breast density and clinical features of breast cancer. Conclusion ZNF365 variants might be a potential risk marker of breast cancer in the Iranian population. The interaction between alleles in haplotypes may modulate the amount of the risk conferred by these variants. Further studies on different ethnic groups can validate these results.
Collapse
Affiliation(s)
- Seyed Reza Ghadamgahi
- Department of Genetics, School of Sciences, Azad University of Damghan, Damghan, Iran
| | - Leila Hosseinzadeh
- Lung Cancer and Immuno- Oncology Laboratory (LCIO), Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Sahar Ardalan Khales
- Congenital Malformations Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammadreza Nassiri
- Recombinant Protein Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Alidoust
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | - Asma Khorshid Shamshiri
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | - Alireza Pasdar
- Division of Applied Medicine, School of Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Fahimeh Afzaljavan
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Shieh Y, Roger J, Yau C, Wolf DM, Hirst GL, Swigart LB, Huntsman S, Hu D, Nierenberg JL, Middha P, Heise RS, Shi Y, Kachuri L, Zhu Q, Yao S, Ambrosone CB, Kwan ML, Caan BJ, Witte JS, Kushi LH, 't Veer LV, Esserman LJ, Ziv E. Development and testing of a polygenic risk score for breast cancer aggressiveness. NPJ Precis Oncol 2023; 7:42. [PMID: 37188791 PMCID: PMC10185660 DOI: 10.1038/s41698-023-00382-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
Aggressive breast cancers portend a poor prognosis, but current polygenic risk scores (PRSs) for breast cancer do not reliably predict aggressive cancers. Aggressiveness can be effectively recapitulated using tumor gene expression profiling. Thus, we sought to develop a PRS for the risk of recurrence score weighted on proliferation (ROR-P), an established prognostic signature. Using 2363 breast cancers with tumor gene expression data and single nucleotide polymorphism (SNP) genotypes, we examined the associations between ROR-P and known breast cancer susceptibility SNPs using linear regression models. We constructed PRSs based on varying p-value thresholds and selected the optimal PRS based on model r2 in 5-fold cross-validation. We then used Cox proportional hazards regression to test the ROR-P PRS's association with breast cancer-specific survival in two independent cohorts totaling 10,196 breast cancers and 785 events. In meta-analysis of these cohorts, higher ROR-P PRS was associated with worse survival, HR per SD = 1.13 (95% CI 1.06-1.21, p = 4.0 × 10-4). The ROR-P PRS had a similar magnitude of effect on survival as a comparator PRS for estrogen receptor (ER)-negative versus positive cancer risk (PRSER-/ER+). Furthermore, its effect was minimally attenuated when adjusted for PRSER-/ER+, suggesting that the ROR-P PRS provides additional prognostic information beyond ER status. In summary, we used integrated analysis of germline SNP and tumor gene expression data to construct a PRS associated with aggressive tumor biology and worse survival. These findings could potentially enhance risk stratification for breast cancer screening and prevention.
Collapse
Affiliation(s)
- Yiwey Shieh
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA.
| | - Jacquelyn Roger
- PhD Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, CA, USA
| | - Christina Yau
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Denise M Wolf
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Gillian L Hirst
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lamorna Brown Swigart
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Donglei Hu
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jovia L Nierenberg
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Pooja Middha
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel S Heise
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Yushu Shi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Qianqian Zhu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Marilyn L Kwan
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Bette J Caan
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - John S Witte
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Laura van 't Veer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Laura J Esserman
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Abstract
Significance: Thioredoxin-interacting protein (Txnip) is an α-arrestin protein that acts as a cancer suppressor. Txnip is simultaneously a critical regulator of energy metabolism. Other alpha-arrestin proteins also play key roles in cell biology and cancer. Recent Advances: Txnip expression is regulated by multilayered mechanisms, including transcriptional regulation, microRNA, messenger RNA (mRNA) stabilization, and protein degradation. The Txnip-based connection between cancer and metabolism has been widely recognized. Meanwhile, new aspects are proposed for the mechanism of action of Txnip, including the regulation of RNA expression and autophagy. Arrestin domain containing 3 (ARRDC3), another α-arrestin protein, regulates endocytosis and signaling, whereas ARRDC1 and ARRDC4 regulate extracellular vesicle formation. Critical Issues: The mechanism of action of Txnip is yet to be elucidated. The regulation of intracellular protein trafficking by arrestin family proteins has opened an emerging field of biology and medical research, which needs to be examined further. Future Directions: A fundamental understanding of the mechanism of action of Txnip and other arrestin family members needs to be explored in the future to combat diseases such as cancer and diabetes. Antioxid. Redox Signal. 36, 1001-1022.
Collapse
Affiliation(s)
- Hiroshi Masutani
- Department of Clinical Laboratory Sciences, Tenri Health Care University, Tenri, Japan.,Department of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Zhu Q, Schultz E, Long J, Roh JM, Valice E, Laurent CA, Radimer KH, Yan L, Ergas IJ, Davis W, Ranatunga D, Gandhi S, Kwan ML, Bao PP, Zheng W, Shu XO, Ambrosone C, Yao S, Kushi LH. UACA locus is associated with breast cancer chemoresistance and survival. NPJ Breast Cancer 2022; 8:39. [PMID: 35322040 PMCID: PMC8943134 DOI: 10.1038/s41523-022-00401-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Few germline genetic variants have been robustly linked with breast cancer outcomes. We conducted trans-ethnic meta genome-wide association study (GWAS) of overall survival (OS) in 3973 breast cancer patients from the Pathways Study, one of the largest prospective breast cancer survivor cohorts. A locus spanning the UACA gene, a key regulator of tumor suppressor Par-4, was associated with OS in patients taking Par-4 dependent chemotherapies, including anthracyclines and anti-HER2 therapy, at a genome-wide significance level (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P = 1.27 \times 10^{ - 9}$$\end{document}P=1.27×10−9). This association was confirmed in meta-analysis across four independent prospective breast cancer cohorts (combined hazard ratio = 1.84, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P = 1.28 \times 10^{ - 11}$$\end{document}P=1.28×10−11). Transcriptome-wide association study revealed higher UACA gene expression was significantly associated with worse OS (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P = 4.68 \times 10^{ - 7}$$\end{document}P=4.68×10−7). Our study identified the UACA locus as a genetic predictor of patient outcome following treatment with anthracyclines and/or anti-HER2 therapy, which may have clinical utility in formulating appropriate treatment strategies for breast cancer patients based on their genetic makeup.
Collapse
Affiliation(s)
- Qianqian Zhu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Emily Schultz
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Janise M Roh
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Emily Valice
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Cecile A Laurent
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Kelly H Radimer
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Isaac J Ergas
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Warren Davis
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dilrini Ranatunga
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Shipra Gandhi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Marilyn L Kwan
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Ping-Ping Bao
- Shanghai Municipal Center for Disease Prevention and Control, Shanghai, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christine Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.
| |
Collapse
|
5
|
Tesi N, Hulsman M, van der Lee SJ, Jansen IE, Stringa N, van Schoor NM, Scheltens P, van der Flier WM, Huisman M, Reinders MJT, Holstege H. The Effect of Alzheimer's Disease-Associated Genetic Variants on Longevity. Front Genet 2022; 12:748781. [PMID: 34992629 PMCID: PMC8724252 DOI: 10.3389/fgene.2021.748781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
Human longevity is influenced by the genetic risk of age-related diseases. As Alzheimer’s disease (AD) represents a common condition at old age, an interplay between genetic factors affecting AD and longevity is expected. We explored this interplay by studying the prevalence of AD-associated single-nucleotide-polymorphisms (SNPs) in cognitively healthy centenarians, and replicated findings in a parental-longevity GWAS. We found that 28/38 SNPs that increased AD-risk also associated with lower odds of longevity. For each SNP, we express the imbalance between AD- and longevity-risk as an effect-size distribution. Based on these distributions, we grouped the SNPs in three groups: 17 SNPs increased AD-risk more than they decreased longevity-risk, and were enriched for β-amyloid metabolism and immune signaling; 11 variants reported a larger longevity-effect compared to their AD-effect, were enriched for endocytosis/immune-signaling, and were previously associated with other age-related diseases. Unexpectedly, 10 variants associated with an increased risk of AD and higher odds of longevity. Altogether, we show that different AD-associated SNPs have different effects on longevity, including SNPs that may confer general neuro-protective functions against AD and other age-related diseases.
Collapse
Affiliation(s)
- Niccolò Tesi
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Alzheimer Centre, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | - Marc Hulsman
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Alzheimer Centre, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | - Sven J van der Lee
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Alzheimer Centre, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Iris E Jansen
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU, Amsterdam, Netherlands
| | - Najada Stringa
- Department of Epidemiology and Data Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Natasja M van Schoor
- Department of Epidemiology and Data Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Philip Scheltens
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wiesje M van der Flier
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Epidemiology and Data Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Martijn Huisman
- Department of Epidemiology and Data Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | - Henne Holstege
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Alzheimer Centre, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
6
|
Li N, Shi H, Hou P, Gao L, Shi Y, Mi W, Zhang G, Wang N, Dai W, Wei L, Jin T, Shi Y, Guo S. ARRDC3 polymorphisms may affect the risk of glioma in Chinese Han. Funct Integr Genomics 2021; 22:27-33. [PMID: 34748117 DOI: 10.1007/s10142-021-00807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022]
Abstract
This study ascertained to explore the potential contribution of ARRDC3 polymorphisms in the risk and prognosis of glioma. One thousand sixty-one patients and healthy controls were conducted to assess whether ARDC3 polymorphism was associated with glioma risk and prognosis. Four sites in ARRDC3 were selected and genotyped in MassARRAY platform. The calculated odd ratios and 95% confidence intervals from logistic regression were applied for risk assessment. The relationship between ARRDC3 variants and glioma prognosis was evaluated using log-rank test, Kaplan-Meier analysis, and so on. Also, false-positive report probability (FPRP) and statistical power were also assessed. Our findings suggested the negative role of ARRDC3 polymorphisms in the glioma risk. We also found the effect of candidate SNPs in ARRDC3 on the susceptibility to glioma was dependent on the age, gender, and histology of glioma patients. The results suggested that the genetic polymorphisms of ARRDC3 were related to an increased risk of glioma.
Collapse
Affiliation(s)
- Nan Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, # 277 YanTa West Road, Xi'an, 710061, Shaanxi, China.,The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Hangyu Shi
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Pengfei Hou
- Ninth Hospital of Xi'an, Xi'an, 710054, Shaanxi, China
| | - Lu Gao
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Yongqiang Shi
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Weiyang Mi
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Gang Zhang
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Ning Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, # 277 YanTa West Road, Xi'an, 710061, Shaanxi, China
| | - Wei Dai
- Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Lin Wei
- Xi'an Chest Hospital, Xi'an, 710100, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Yongzhi Shi
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Shiwen Guo
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, # 277 YanTa West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
7
|
Morra A, Escala-Garcia M, Beesley J, Keeman R, Canisius S, Ahearn TU, Andrulis IL, Anton-Culver H, Arndt V, Auer PL, Augustinsson A, Beane Freeman LE, Becher H, Beckmann MW, Behrens S, Bojesen SE, Bolla MK, Brenner H, Brüning T, Buys SS, Caan B, Campa D, Canzian F, Castelao JE, Chang-Claude J, Chanock SJ, Cheng TYD, Clarke CL, Colonna SV, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, Dennis J, Dörk T, Dossus L, Dunning AM, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Eriksson M, Evans DG, Fasching PA, Flyger H, Fritschi L, Gago-Dominguez M, García-Sáenz JA, Giles GG, Grip M, Guénel P, Gündert M, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Hart SN, Hartikainen JM, Hartmann A, He W, Hooning MJ, Hoppe R, Hopper JL, Howell A, Hunter DJ, Jager A, Jakubowska A, Janni W, John EM, Jung AY, Kaaks R, Keupers M, Kitahara CM, Koutros S, Kraft P, Kristensen VN, Kurian AW, Lacey JV, Lambrechts D, Le Marchand L, Lindblom A, Linet M, Luben RN, Lubiński J, Lush M, Mannermaa A, Manoochehri M, Margolin S, Martens JWM, Martinez ME, Mavroudis D, Michailidou K, Milne RL, Mulligan AM, Muranen TA, Nevanlinna H, Newman WG, Nielsen SF, et alMorra A, Escala-Garcia M, Beesley J, Keeman R, Canisius S, Ahearn TU, Andrulis IL, Anton-Culver H, Arndt V, Auer PL, Augustinsson A, Beane Freeman LE, Becher H, Beckmann MW, Behrens S, Bojesen SE, Bolla MK, Brenner H, Brüning T, Buys SS, Caan B, Campa D, Canzian F, Castelao JE, Chang-Claude J, Chanock SJ, Cheng TYD, Clarke CL, Colonna SV, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, Dennis J, Dörk T, Dossus L, Dunning AM, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Eriksson M, Evans DG, Fasching PA, Flyger H, Fritschi L, Gago-Dominguez M, García-Sáenz JA, Giles GG, Grip M, Guénel P, Gündert M, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Hart SN, Hartikainen JM, Hartmann A, He W, Hooning MJ, Hoppe R, Hopper JL, Howell A, Hunter DJ, Jager A, Jakubowska A, Janni W, John EM, Jung AY, Kaaks R, Keupers M, Kitahara CM, Koutros S, Kraft P, Kristensen VN, Kurian AW, Lacey JV, Lambrechts D, Le Marchand L, Lindblom A, Linet M, Luben RN, Lubiński J, Lush M, Mannermaa A, Manoochehri M, Margolin S, Martens JWM, Martinez ME, Mavroudis D, Michailidou K, Milne RL, Mulligan AM, Muranen TA, Nevanlinna H, Newman WG, Nielsen SF, Nordestgaard BG, Olshan AF, Olsson H, Orr N, Park-Simon TW, Patel AV, Peissel B, Peterlongo P, Plaseska-Karanfilska D, Prajzendanc K, Prentice R, Presneau N, Rack B, Rennert G, Rennert HS, Rhenius V, Romero A, Roylance R, Ruebner M, Saloustros E, Sawyer EJ, Schmutzler RK, Schneeweiss A, Scott C, Shah M, Smichkoska S, Southey MC, Stone J, Surowy H, Swerdlow AJ, Tamimi RM, Tapper WJ, Teras LR, Terry MB, Tollenaar RAEM, Tomlinson I, Troester MA, Truong T, Vachon CM, Wang Q, Hurson AN, Winqvist R, Wolk A, Ziogas A, Brauch H, García-Closas M, Pharoah PDP, Easton DF, Chenevix-Trench G, Schmidt MK. Association of germline genetic variants with breast cancer-specific survival in patient subgroups defined by clinic-pathological variables related to tumor biology and type of systemic treatment. Breast Cancer Res 2021; 23:86. [PMID: 34407845 PMCID: PMC8371820 DOI: 10.1186/s13058-021-01450-7] [Show More Authors] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Given the high heterogeneity among breast tumors, associations between common germline genetic variants and survival that may exist within specific subgroups could go undetected in an unstratified set of breast cancer patients. METHODS We performed genome-wide association analyses within 15 subgroups of breast cancer patients based on prognostic factors, including hormone receptors, tumor grade, age, and type of systemic treatment. Analyses were based on 91,686 female patients of European ancestry from the Breast Cancer Association Consortium, including 7531 breast cancer-specific deaths over a median follow-up of 8.1 years. Cox regression was used to assess associations of common germline variants with 15-year and 5-year breast cancer-specific survival. We assessed the probability of these associations being true positives via the Bayesian false discovery probability (BFDP < 0.15). RESULTS Evidence of associations with breast cancer-specific survival was observed in three patient subgroups, with variant rs5934618 in patients with grade 3 tumors (15-year-hazard ratio (HR) [95% confidence interval (CI)] 1.32 [1.20, 1.45], P = 1.4E-08, BFDP = 0.01, per G allele); variant rs4679741 in patients with ER-positive tumors treated with endocrine therapy (15-year-HR [95% CI] 1.18 [1.11, 1.26], P = 1.6E-07, BFDP = 0.09, per G allele); variants rs1106333 (15-year-HR [95% CI] 1.68 [1.39,2.03], P = 5.6E-08, BFDP = 0.12, per A allele) and rs78754389 (5-year-HR [95% CI] 1.79 [1.46,2.20], P = 1.7E-08, BFDP = 0.07, per A allele), in patients with ER-negative tumors treated with chemotherapy. CONCLUSIONS We found evidence of four loci associated with breast cancer-specific survival within three patient subgroups. There was limited evidence for the existence of associations in other patient subgroups. However, the power for many subgroups is limited due to the low number of events. Even so, our results suggest that the impact of common germline genetic variants on breast cancer-specific survival might be limited.
Collapse
Affiliation(s)
- Anna Morra
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, 1066 CX The Netherlands
| | - Maria Escala-Garcia
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, 1066 CX The Netherlands
| | - Jonathan Beesley
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland Australia
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, 1066 CX The Netherlands
| | - Sander Canisius
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, 1066 CX The Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Thomas U. Ahearn
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul L. Auer
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA USA
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI USA
| | - Annelie Augustinsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Laura E. Beane Freeman
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stig E. Bojesen
- Copenhagen University Hospital, Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manjeet K. Bolla
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Thomas Brüning
- Institute of the Ruhr University Bochum (IPA), Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Bochum, Germany
| | - Saundra S. Buys
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT USA
| | - Bette Caan
- Division of Research, Kaiser Permanente, Oakland, CA USA
| | - Daniele Campa
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Biology, University of Pisa, Pisa, Italy
| | - Federico Canzian
- German Cancer Research Center (DKFZ), Genomic Epidemiology Group, Heidelberg, Germany
| | - Jose E. Castelao
- Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Oncology and Genetics Unit, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen J. Chanock
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Ting-Yuan David Cheng
- Division of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY USA
| | - Christine L. Clarke
- Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales Australia
| | - Sarah V. Colonna
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT USA
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Angela Cox
- Department of Oncology and Metabolism, University of Sheffield, Sheffield Institute for Nucleic Acids (SInFoNiA), Sheffield, UK
| | - Simon S. Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B. Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA USA
| | - Joe Dennis
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Laure Dossus
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Alison M. Dunning
- Department of Oncology, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, UK
| | - Diana M. Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Arif B. Ekici
- Institute of Human Genetics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - A. Heather Eliassen
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Channing Division of Network Medicine, Boston, MA USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - D. Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester, UK
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
- Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA USA
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Lin Fritschi
- School of Public Health, Curtin University, Perth, Western Australia Australia
| | - Manuela Gago-Dominguez
- Galician Public Foundation of Genomic Medicine (FPGMX), Genomic Medicine Group, International Cancer Genetics and Epidemiology Group, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- University of California San Diego, Moores Cancer Center, La Jolla, CA USA
| | - José A. García-Sáenz
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria Australia
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Pascal Guénel
- Team Exposome and Heredity, INSERM, University Paris-Saclay, Center for Research in Epidemiology and Population Health (CESP), Villejuif, France
| | - Melanie Gündert
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg, Germany
- German Research Center for Environmental Health, Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Eric Hahnen
- Faculty of Medicine and University Hospital Cologne, Center for Familial Breast and Ovarian Cancer, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology (CIO), University of Cologne, Cologne, Germany
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steven N. Hart
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN USA
| | - Jaana M. Hartikainen
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen Nuremberg, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Maartje J. Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria Australia
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - David J. Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - kConFab Investigators
- Research Department, Peter MacCallum Cancer Center, Melbourne, Victoria Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria Australia
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Wolfgang Janni
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Esther M. John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA USA
| | - Audrey Y. Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Machteld Keupers
- Department of Radiation Oncology, University Hospitals Leuven, , University of Leuven, Leuven, Belgium
| | - Cari M. Kitahara
- Division of Cancer Epidemiology and Genetics, Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD USA
| | - Stella Koutros
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Vessela N. Kristensen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Allison W. Kurian
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA USA
| | - James V. Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA USA
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI USA
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Martha Linet
- Division of Cancer Epidemiology and Genetics, Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD USA
| | - Robert N. Luben
- Clinical Gerontology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Michael Lush
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Kuopio University Hospital, Biobank of Eastern Finland, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Maria Elena Martinez
- University of California San Diego, Moores Cancer Center, La Jolla, CA USA
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA USA
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Greece
| | - Kyriaki Michailidou
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
- The Cyprus Institute of Neurology & Genetics, Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Roger L. Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria Australia
| | - Anna Marie Mulligan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
- University Health Network, Laboratory Medicine Program, Toronto, ON Canada
| | - Taru A. Muranen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - William G. Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester, UK
| | - Sune F. Nielsen
- Copenhagen University Hospital, Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Børge G. Nordestgaard
- Copenhagen University Hospital, Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Nick Orr
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland, UK
| | | | - Alpa V. Patel
- Department of Population Science, American Cancer Society, Atlanta, GA USA
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Dijana Plaseska-Karanfilska
- MASA, Research Centre for Genetic Engineering and Biotechnology ‘Georgi D. Efremov’, Skopje, Republic of North Macedonia
| | - Karolina Prajzendanc
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Ross Prentice
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Nadege Presneau
- School of Life Sciences, University of Westminster, London, UK
| | - Brigitte Rack
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Gad Rennert
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Hedy S. Rennert
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Valerie Rhenius
- Department of Oncology, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Atocha Romero
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | | | - Elinor J. Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy’s Campus, King’s College London, London, UK
| | - Rita K. Schmutzler
- Faculty of Medicine and University Hospital Cologne, Center for Familial Breast and Ovarian Cancer, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology (CIO), University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Andreas Schneeweiss
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg, Germany
- University Hospital and German Cancer Research Center, National Center for Tumor Diseases, Heidelberg, Germany
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN USA
| | - Mitul Shah
- Department of Oncology, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Snezhana Smichkoska
- Medical Faculty, University Clinic of Radiotherapy and Oncology, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Melissa C. Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria Australia
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria Australia
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia, Perth, Western Australia Australia
| | - Harald Surowy
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Rulla M. Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY USA
| | | | - Lauren R. Teras
- Department of Population Science, American Cancer Society, Atlanta, GA USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY USA
| | | | - Ian Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- University of Oxford, Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Melissa A. Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Thérèse Truong
- Team Exposome and Heredity, INSERM, University Paris-Saclay, Center for Research in Epidemiology and Population Health (CESP), Villejuif, France
| | - Celine M. Vachon
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN USA
| | - Qin Wang
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Amber N. Hurson
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Argyrios Ziogas
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA USA
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- iFIT-Cluster of Excellence, University of Tübingen, Tübingen, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) Partner Site Tübingen, Tübingen, Germany
| | - Montserrat García-Closas
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Paul D. P. Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
- Department of Oncology, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Douglas F. Easton
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
- Department of Oncology, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland Australia
| | - Marjanka K. Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, 1066 CX The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Fattahi F, Kiani J, Khosravi M, Vafaei S, Mohammadi A, Madjd Z, Najafi M. Enrichment of Up-regulated and Down-regulated Gene Clusters Using Gene Ontology, miRNAs and lncRNAs in Colorectal Cancer. Comb Chem High Throughput Screen 2020; 22:534-545. [PMID: 31654507 DOI: 10.2174/1386207321666191010114149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/28/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023]
Abstract
AIM AND OBJECTIVE It is interesting to find the gene signatures of cancer stages based on the omics data. The aim of study was to evaluate and to enrich the array data using gene ontology and ncRNA databases in colorectal cancer. METHODS The human colorectal cancer data were obtained from the GEO databank. The downregulated and up-regulated genes were identified after scoring, weighing and merging of the gene data. The clusters with high-score edges were determined from gene networks. The miRNAs related to the gene clusters were identified and enriched. Furthermore, the long non-coding RNA (lncRNA) networks were predicted with a central core for miRNAs. RESULTS Based on cluster enrichment, genes related to peptide receptor activity (1.26E-08), LBD domain binding (3.71E-07), rRNA processing (2.61E-34), chemokine (4.58E-19), peptide receptor (1.16E-19) and ECM organization (3.82E-16) were found. Furthermore, the clusters related to the non-coding RNAs, including hsa-miR-27b-5p, hsa-miR-155-5p, hsa-miR-125b-5p, hsa-miR-21-5p, hsa-miR-30e-5p, hsa-miR-588, hsa-miR-29-3p, LINC01234, LINC01029, LINC00917, LINC00668 and CASC11 were found. CONCLUSION The comprehensive bioinformatics analyses provided the gene networks related to some non-coding RNAs that might help in understanding the molecular mechanisms in CRC.
Collapse
Affiliation(s)
- Fahimeh Fattahi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Khosravi
- Medicine Biochemistry, Qom Branch, Islamic Azad University, Qom, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Asghar Mohammadi
- Biochemistry Department, Tarbiat Modares University, Tehran, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Bhattacharya A, García-Closas M, Olshan AF, Perou CM, Troester MA, Love MI. A framework for transcriptome-wide association studies in breast cancer in diverse study populations. Genome Biol 2020; 21:42. [PMID: 32079541 PMCID: PMC7033948 DOI: 10.1186/s13059-020-1942-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The relationship between germline genetic variation and breast cancer survival is largely unknown, especially in understudied minority populations who often have poorer survival. Genome-wide association studies (GWAS) have interrogated breast cancer survival but often are underpowered due to subtype heterogeneity and clinical covariates and detect loci in non-coding regions that are difficult to interpret. Transcriptome-wide association studies (TWAS) show increased power in detecting functionally relevant loci by leveraging expression quantitative trait loci (eQTLs) from external reference panels in relevant tissues. However, ancestry- or race-specific reference panels may be needed to draw correct inference in ancestrally diverse cohorts. Such panels for breast cancer are lacking. RESULTS We provide a framework for TWAS for breast cancer in diverse populations, using data from the Carolina Breast Cancer Study (CBCS), a population-based cohort that oversampled black women. We perform eQTL analysis for 406 breast cancer-related genes to train race-stratified predictive models of tumor expression from germline genotypes. Using these models, we impute expression in independent data from CBCS and TCGA, accounting for sampling variability in assessing performance. These models are not applicable across race, and their predictive performance varies across tumor subtype. Within CBCS (N = 3,828), at a false discovery-adjusted significance of 0.10 and stratifying for race, we identify associations in black women near AURKA, CAPN13, PIK3CA, and SERPINB5 via TWAS that are underpowered in GWAS. CONCLUSIONS We show that carefully implemented and thoroughly validated TWAS is an efficient approach for understanding the genetics underpinning breast cancer outcomes in diverse populations.
Collapse
Affiliation(s)
- Arjun Bhattacharya
- Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, USA
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Andrew F. Olshan
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, USA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, USA
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, USA
| | - Melissa A. Troester
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, USA
| | - Michael I. Love
- Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, USA
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, USA
| |
Collapse
|
10
|
Chou WC, Hsiung CN, Chen WT, Tseng LM, Wang HC, Chu HW, Hou MF, Yu JC, Shen CY. A functional variant near XCL1 gene improves breast cancer survival via promoting cancer immunity. Int J Cancer 2020; 146:2182-2193. [PMID: 31904872 DOI: 10.1002/ijc.32855] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Most genome-wide association studies (GWASs) identify genetic variants for breast cancer occurrence. In contrast, few are for recurrence and mortality. We conducted a GWAS on breast cancer survival after diagnosis in estrogen receptor-positive patients, including 953 Taiwanese patients with 159 events. Through Cox proportional hazard models estimation, we identified 24 risk SNPs with p < 1 × 10-5 . Based on imputation and integrated analysis, one SNP, rs1024176 (located in 1q24.2, p = 2.43 × 10-5 ) was found to be a functional variant associated with breast cancer survival and XCL1 gene expression. A series of experimental approaches, including cell-based analyses and CRISPR/Cas9 genome-editing system, were then used and identified the transcription factor MYBL2 was able to discriminately bind to the A allele of rs1024176, the protective variant for breast cancer survival, which promoted XCL1 expression, but not to the G allele of rs1024176. The chemokine XCL1 attracts type 1 dendritic cells (DC1s) to the tumor microenvironment. In breast cancer tissues, we applied a two-step Mendelian randomization analysis, using expression quantitative trait loci as instrumental variables, to confirm higher XCL1 expression was correlated with higher DC1 signatures and favorable disease progression, through the causal effect of rs1024176-A allele. Our study supports the genetic effect on preventing breast cancer survival through XCL1-induced DC1 recruitment in tumor microenvironment.
Collapse
Affiliation(s)
- Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Ni Hsiung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Data Science Statistical Cooperation Center, Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Wei-Ting Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Feng Hou
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyh-Cherng Yu
- Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,College of Public Health, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Zolotovskaia M, Sorokin M, Garazha A, Borisov N, Buzdin A. Molecular Pathway Analysis of Mutation Data for Biomarkers Discovery and Scoring of Target Cancer Drugs. Methods Mol Biol 2020; 2063:207-234. [PMID: 31667773 DOI: 10.1007/978-1-0716-0138-9_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DNA mutations govern cancer development. Cancer mutation profiles vary dramatically among the individuals. In some cases, they may serve as the predictors of disease progression and response to therapies. However, the biomarker potential of cancer mutations can be dramatically (several orders of magnitude) enhanced by applying molecular pathway-based approach. We developed Oncobox system for calculation of pathway instability (PI) values for the molecular pathways that are aggregated mutation frequencies of the pathway members normalized on gene lengths and on number of genes in the pathway. PI scores can be effective biomarkers in different types of comparisons, for example, as the cancer type biomarkers and as the predictors of tumor response to target therapies. The latter option is implemented using mutation drug score (MDS) values, which algorithmically rank the drugs capacity of interfering with the mutated molecular pathways. Here, describe the mathematical basis and algorithms for PI and MDS values calculation, validation and implementation. The example analysis is provided encompassing 5956 human tumor mutation profiles of 15 cancer types from The Cancer Genome Atlas (TCGA) project, that totally make 2,316,670 mutations in 19,872 genes and 1748 molecular pathways, thus enabling ranking of 128 clinically approved target drugs. Our results evidence that the Oncobox PI and MDS approaches are highly useful for basic and applied aspects of molecular oncology and pharmacology research.
Collapse
Affiliation(s)
- Marianna Zolotovskaia
- Omicsway Corp., Walnut, CA, USA
- Department of Oncology, Hematology and Radiotherapy of Pediatric Faculty, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Maxim Sorokin
- Omicsway Corp., Walnut, CA, USA
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Nikolay Borisov
- Omicsway Corp., Walnut, CA, USA
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anton Buzdin
- Omicsway Corp., Walnut, CA, USA.
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| |
Collapse
|
12
|
Ruiz-Arenas C, Cáceres A, Moreno V, González JR. Common polymorphic inversions at 17q21.31 and 8p23.1 associate with cancer prognosis. Hum Genomics 2019; 13:57. [PMID: 31753042 PMCID: PMC6873427 DOI: 10.1186/s40246-019-0242-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chromosomal inversions are structural genetic variants where a chromosome segment changes its orientation. While sporadic de novo inversions are known genetic risk factors for cancer susceptibility, it is unknown if common polymorphic inversions are also associated with the prognosis of common tumors, as they have been linked to other complex diseases. We studied the association of two well-characterized human inversions at 17q21.31 and 8p23.1 with the prognosis of lung, liver, breast, colorectal, and stomach cancers. RESULTS Using data from The Cancer Genome Atlas (TCGA), we observed that inv8p23.1 was associated with overall survival in breast cancer and that inv17q21.31 was associated with overall survival in stomach cancer. In the meta-analysis of two independent studies, inv17q21.31 heterozygosity was significantly associated with colorectal disease-free survival. We found that the association was mediated by the de-methylation of cg08283464 and cg03999934, also linked to lower disease-free survival. CONCLUSIONS Our results suggest that chromosomal inversions are important genetic factors of tumor prognosis, likely affecting changes in methylation patterns.
Collapse
Affiliation(s)
- Carlos Ruiz-Arenas
- Barcelona Institute for Global Health, ISGlobal, Doctor Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Alejandro Cáceres
- Barcelona Institute for Global Health, ISGlobal, Doctor Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Victor Moreno
- Programa de Prevención y Control del Cáncer, Instituto Catalán de Oncología, L'Hospitalet, Barcelona, Spain
| | - Juan R González
- Barcelona Institute for Global Health, ISGlobal, Doctor Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| |
Collapse
|
13
|
Escala-Garcia M, Guo Q, Dörk T, Canisius S, Keeman R, Dennis J, Beesley J, Lecarpentier J, Bolla MK, Wang Q, Abraham J, Andrulis IL, Anton-Culver H, Arndt V, Auer PL, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Bernstein L, Blomqvist C, Boeckx B, Bojesen SE, Bonanni B, Børresen-Dale AL, Brauch H, Brenner H, Brentnall A, Brinton L, Broberg P, Brock IW, Brucker SY, Burwinkel B, Caldas C, Caldés T, Campa D, Canzian F, Carracedo A, Carter BD, Castelao JE, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Cheng TYD, Chin SF, Clarke CL, Cordina-Duverger E, Couch FJ, Cox DG, Cox A, Cross SS, Czene K, Daly MB, Devilee P, Dunn JA, Dunning AM, Durcan L, Dwek M, Earl HM, Ekici AB, Eliassen AH, Ellberg C, Engel C, Eriksson M, Evans DG, Figueroa J, Flesch-Janys D, Flyger H, Gabrielson M, Gago-Dominguez M, Galle E, Gapstur SM, García-Closas M, García-Sáenz JA, Gaudet MM, George A, Georgoulias V, Giles GG, Glendon G, Goldgar DE, González-Neira A, Alnæs GIG, Grip M, Guénel P, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Hankinson S, Harkness EF, Harrington PA, Hart SN, Hartikainen JM, Hein A, Hillemanns P, Hiller L, Holleczek B, Hollestelle A, et alEscala-Garcia M, Guo Q, Dörk T, Canisius S, Keeman R, Dennis J, Beesley J, Lecarpentier J, Bolla MK, Wang Q, Abraham J, Andrulis IL, Anton-Culver H, Arndt V, Auer PL, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Bernstein L, Blomqvist C, Boeckx B, Bojesen SE, Bonanni B, Børresen-Dale AL, Brauch H, Brenner H, Brentnall A, Brinton L, Broberg P, Brock IW, Brucker SY, Burwinkel B, Caldas C, Caldés T, Campa D, Canzian F, Carracedo A, Carter BD, Castelao JE, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Cheng TYD, Chin SF, Clarke CL, Cordina-Duverger E, Couch FJ, Cox DG, Cox A, Cross SS, Czene K, Daly MB, Devilee P, Dunn JA, Dunning AM, Durcan L, Dwek M, Earl HM, Ekici AB, Eliassen AH, Ellberg C, Engel C, Eriksson M, Evans DG, Figueroa J, Flesch-Janys D, Flyger H, Gabrielson M, Gago-Dominguez M, Galle E, Gapstur SM, García-Closas M, García-Sáenz JA, Gaudet MM, George A, Georgoulias V, Giles GG, Glendon G, Goldgar DE, González-Neira A, Alnæs GIG, Grip M, Guénel P, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Hankinson S, Harkness EF, Harrington PA, Hart SN, Hartikainen JM, Hein A, Hillemanns P, Hiller L, Holleczek B, Hollestelle A, Hooning MJ, Hoover RN, Hopper JL, Howell A, Huang G, Humphreys K, Hunter DJ, Janni W, John EM, Jones ME, Jukkola-Vuorinen A, Jung A, Kaaks R, Kabisch M, Kaczmarek K, Kerin MJ, Khan S, Khusnutdinova E, Kiiski JI, Kitahara CM, Knight JA, Ko YD, Koppert LB, Kosma VM, Kraft P, Kristensen VN, Krüger U, Kühl T, Lambrechts D, Le Marchand L, Lee E, Lejbkowicz F, Li L, Lindblom A, Lindström S, Linet M, Lissowska J, Lo WY, Loibl S, Lubiński J, Lux MP, MacInnis RJ, Maierthaler M, Maishman T, Makalic E, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Martinez ME, Mavroudis D, McLean C, Meindl A, Middha P, Miller N, Milne RL, Moreno F, Mulligan AM, Mulot C, Nassir R, Neuhausen SL, Newman WT, Nielsen SF, Nordestgaard BG, Norman A, Olsson H, Orr N, Pankratz VS, Park-Simon TW, Perez JIA, Pérez-Barrios C, Peterlongo P, Petridis C, Pinchev M, Prajzendanc K, Prentice R, Presneau N, Prokofieva D, Pylkäs K, Rack B, Radice P, Ramachandran D, Rennert G, Rennert HS, Rhenius V, Romero A, Roylance R, Saloustros E, Sawyer EJ, Schmidt DF, Schmutzler RK, Schneeweiss A, Schoemaker MJ, Schumacher F, Schwentner L, Scott RJ, Scott C, Seynaeve C, Shah M, Simard J, Smeets A, Sohn C, Southey MC, Swerdlow AJ, Talhouk A, Tamimi RM, Tapper WJ, Teixeira MR, Tengström M, Terry MB, Thöne K, Tollenaar RAEM, Tomlinson I, Torres D, Truong T, Turman C, Turnbull C, Ulmer HU, Untch M, Vachon C, van Asperen CJ, van den Ouweland AMW, van Veen EM, Wendt C, Whittemore AS, Willett W, Winqvist R, Wolk A, Yang XR, Zhang Y, Easton DF, Fasching PA, Nevanlinna H, Eccles DM, Pharoah PDP, Schmidt MK. Genome-wide association study of germline variants and breast cancer-specific mortality. Br J Cancer 2019; 120:647-657. [PMID: 30787463 PMCID: PMC6461853 DOI: 10.1038/s41416-019-0393-x] [Show More Authors] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/02/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We examined the associations between germline variants and breast cancer mortality using a large meta-analysis of women of European ancestry. METHODS Meta-analyses included summary estimates based on Cox models of twelve datasets using ~10.4 million variants for 96,661 women with breast cancer and 7697 events (breast cancer-specific deaths). Oestrogen receptor (ER)-specific analyses were based on 64,171 ER-positive (4116) and 16,172 ER-negative (2125) patients. We evaluated the probability of a signal to be a true positive using the Bayesian false discovery probability (BFDP). RESULTS We did not find any variant associated with breast cancer-specific mortality at P < 5 × 10-8. For ER-positive disease, the most significantly associated variant was chr7:rs4717568 (BFDP = 7%, P = 1.28 × 10-7, hazard ratio [HR] = 0.88, 95% confidence interval [CI] = 0.84-0.92); the closest gene is AUTS2. For ER-negative disease, the most significant variant was chr7:rs67918676 (BFDP = 11%, P = 1.38 × 10-7, HR = 1.27, 95% CI = 1.16-1.39); located within a long intergenic non-coding RNA gene (AC004009.3), close to the HOXA gene cluster. CONCLUSIONS We uncovered germline variants on chromosome 7 at BFDP < 15% close to genes for which there is biological evidence related to breast cancer outcome. However, the paucity of variants associated with mortality at genome-wide significance underpins the challenge in providing genetic-based individualised prognostic information for breast cancer patients.
Collapse
Affiliation(s)
- Maria Escala-Garcia
- The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam, The Netherlands
| | - Qi Guo
- University of Cambridge, Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Cambridge, UK.
| | - Thilo Dörk
- Hannover Medical School, Gynaecology Research Unit, Hannover, Germany
| | - Sander Canisius
- The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam, The Netherlands
- The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Division of Molecular Carcinogenesis, Amsterdam, The Netherlands
| | - Renske Keeman
- The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam, The Netherlands
| | - Joe Dennis
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Jonathan Beesley
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, Queensland, Australia
| | - Julie Lecarpentier
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Manjeet K Bolla
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Qin Wang
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Jean Abraham
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge, UK
- University of Cambridge NHS Foundation Hospitals, Cambridge Breast Unit and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON, Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON, Canada
| | - Hoda Anton-Culver
- University of California Irvine, Department of Epidemiology, Genetic Epidemiology Research Institute, Irvine, CA, USA
| | - Volker Arndt
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
| | - Paul L Auer
- Fred Hutchinson Cancer Research Center, Cancer Prevention Program, Seattle, WA, USA
- University of Wisconsin-Milwaukee, Zilber School of Public Health, Milwaukee, WI, USA
| | - Matthias W Beckmann
- University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, Erlangen, Germany
| | - Sabine Behrens
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Javier Benitez
- Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme, Madrid, Spain
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Marina Bermisheva
- Ufa Scientific Center of Russian Academy of Sciences, Institute of Biochemistry and Genetics, Ufa, Russia
| | - Leslie Bernstein
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA, USA
| | - Carl Blomqvist
- University of Helsinki, Department of Oncology, Helsinki University Hospital, Helsinki, Finland
- Örebro University Hospital, Department of Oncology, Örebro, Sweden
| | - Bram Boeckx
- VIB, VIB Center for Cancer Biology, Leuven, Belgium
- University of Leuven, Laboratory for Translational Genetics, Department of Human Genetics, Leuven, Belgium
| | - Stig E Bojesen
- Copenhagen University Hospital, Copenhagen General Population Study, Herlevand Gentofte Hospital, Herlev, Denmark
- Copenhagen University Hospital, Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Herlev, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS Milan, Milan, 20141, Italy
| | - Anne-Lise Børresen-Dale
- Oslo University Hospital-Radiumhospitalet, Department of Cancer Genetics, Institute for Cancer Research, Oslo, Norway
- University of Oslo, Institute of Clinical Medicine, Faculty of Medicine, Oslo, Norway
- Department of Research, Vestre Viken Hospital, Drammen, Norway; Section for Breast- and Endocrine Surgery, Department of Cancer, Division of Surgery, Cancer and Transplantation Medicine, Oslo University Hospital-Ullevål, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Department of Pathology at Akershus University hospital, Lørenskog, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Division of Surgery and Cancer and Transplantation Medicine, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- National Advisory Unit on Late Effects after Cancer Treatment, Department of Oncology, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Breast Cancer Research Consortium, Oslo University Hospital, Oslo, Norway
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hermann Brenner
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Division of Preventive Oncology, Heidelberg, Germany
| | - Adam Brentnall
- Queen Mary University of London, Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, London, UK
| | - Louise Brinton
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
| | - Per Broberg
- Lund University, Department of Cancer Epidemiology, Clinical Sciences, Lund, Sweden
| | - Ian W Brock
- University of Sheffield, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, Sheffield, UK
| | - Sara Y Brucker
- University of Tübingen, Department of Gynecology and Obstetrics, Tübingen, Germany
| | - Barbara Burwinkel
- University of Heidelberg, Department of Obstetrics and Gynecology, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Molecular Epidemiology Group, C080, Heidelberg, Germany
| | - Carlos Caldas
- Cambridge Experimental Cancer Medicine Centre, Cambridge, UK
- University of Cambridge NHS Foundation Hospitals, Cambridge Breast Unit and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- The Institute of Cancer Research, Section of Cancer Genetics, London, UK
| | - Trinidad Caldés
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Medical Oncology Department, Hospital Cl'nico San Carlos, Madrid, Spain
| | - Daniele Campa
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
- University of Pisa, Department of Biology, Pisa, Italy
| | - Federico Canzian
- German Cancer Research Center (DKFZ), Molecular Epidemiology Group, C080, Heidelberg, Germany
| | - Angel Carracedo
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Genomic Medicine Group, Galician Foundation of Genomic Medicine, SERGAS, Santiago de Compostela, Spain
- Universidad de Santiago de Compostela, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Santiago De Compostela, Spain
- King Abdulaziz University, Center of Excellence in Genomic Medicine, Jeddah, Kingdom of Saudi Arabia
| | - Brian D Carter
- American Cancer Society, Epidemiology Research Program, Atlanta, GA, USA
| | - Jose E Castelao
- Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Oncology and Genetics Unit, Vigo, Spain
| | - Jenny Chang-Claude
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
- University Medical Center Hamburg-Eppendorf, Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), Hamburg, Germany
| | - Stephen J Chanock
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
| | - Georgia Chenevix-Trench
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, Queensland, Australia
| | - Ting-Yuan David Cheng
- Roswell Park Cancer Institute, Division of Cancer Prevention and Control, Buffalo, NY, USA
| | - Suet-Feung Chin
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Christine L Clarke
- University of Sydney, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Emilie Cordina-Duverger
- INSERM, University Paris-Sud, University Paris-Saclay, Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), Villejuif, France
| | - Fergus J Couch
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - David G Cox
- Imperial College London, Department of Epidemiology and Biostatistics, School of Public Health, London, UK
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France
| | - Angela Cox
- University of Sheffield, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, Sheffield, UK
| | - Simon S Cross
- University of Sheffield, Academic Unit of Pathology, Department of Neuroscience, Sheffield, UK
| | - Kamila Czene
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Mary B Daly
- Fox Chase Cancer Center, Department of Clinical Genetics, Philadelphia, PA, USA
| | - Peter Devilee
- Leiden University Medical Center, Department of Pathology, Leiden, The Netherlands
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
| | - Janet A Dunn
- University of Warwick, Warwick Clinical Trials Unit, Coventry, UK
| | - Alison M Dunning
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Lorraine Durcan
- University of Southampton, Southampton Clinical Trials Unit, Faculty of Medicine, Southampton, UK
- University of Southampton, Cancer Sciences Academic Unit, Faculty of Medicine, Southampton, UK
| | - Miriam Dwek
- University of Westminster, Department of Biomedical Sciences, Faculty of Science and Technology, London, UK
| | - Helena M Earl
- University of Cambridge NHS Foundation Hospitals, Cambridge Breast Unit and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- University of Cambridge, Department of Oncology, Cambridge, UK
| | - Arif B Ekici
- Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Institute of Human Genetics, University Hospital Erlangen, Erlangen, Germany
| | - A Heather Eliassen
- Harvard Medical School, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
| | - Carolina Ellberg
- Lund University, Department of Cancer Epidemiology, Clinical Sciences, Lund, Sweden
| | - Christoph Engel
- University of Leipzig, Institute for Medical Informatics, Statistics and Epidemiology, Leipzig, Germany
- University of Leipzig, LIFE - Leipzig Research Centre for Civilization Diseases, Leipzig, Germany
| | - Mikael Eriksson
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - D Gareth Evans
- University of Manchester, Manchester Academic Health Science Centre, Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester, UK
- St Marys Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester Centre for Genomic Medicine, Manchester, UK
| | - Jonine Figueroa
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
- The University of Edinburgh Medical School, Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Edinburgh, UK
| | - Dieter Flesch-Janys
- University Medical Centre Hamburg-Eppendorf, Institute for Medical Biometrics and Epidemiology, Hamburg, Germany
- University Medical Centre Hamburg-Eppendorf, Department of Cancer Epidemiology, Clinical Cancer Registry, Hamburg, Germany
| | - Henrik Flyger
- Copenhagen University Hospital, Department of Breast Surgery, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Marike Gabrielson
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Manuela Gago-Dominguez
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Genomic Medicine Group, Galician Foundation of Genomic Medicine, SERGAS, Santiago de Compostela, Spain
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Eva Galle
- VIB, VIB Center for Cancer Biology, Leuven, Belgium
- University of Leuven, Laboratory for Translational Genetics, Department of Human Genetics, Leuven, Belgium
| | - Susan M Gapstur
- American Cancer Society, Epidemiology Research Program, Atlanta, GA, USA
| | - Montserrat García-Closas
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
- Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
| | - José A García-Sáenz
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Medical Oncology Department, Hospital Cl'nico San Carlos, Madrid, Spain
| | - Mia M Gaudet
- American Cancer Society, Epidemiology Research Program, Atlanta, GA, USA
| | - Angela George
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
- The Royal Marsden NHS Foundation Trust, Cancer Genetics Unit, London, UK
| | | | - Graham G Giles
- Cancer Council Victoria, Cancer Epidemiology & Intelligence Division, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne School of Population and Global Health, Centre for Epidemiology and Biostatistics, Melbourne, VIC, Australia
- Monash University, Department of Epidemiology and Preventive Medicine, Melbourne, VIC, Australia
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON, Canada
| | - David E Goldgar
- Huntsman Cancer Institute, University of Utah School of Medicine, Department of Dermatology, Salt Lake City, UT, USA
| | - Anna González-Neira
- Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme, Madrid, Spain
| | - Grethe I Grenaker Alnæs
- Oslo University Hospital-Radiumhospitalet, Department of Cancer Genetics, Institute for Cancer Research, Oslo, Norway
| | - Mervi Grip
- University of Oulu, Department of Surgery, Oulu University Hospital, Oulu, Finland
| | - Pascal Guénel
- INSERM, University Paris-Sud, University Paris-Saclay, Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), Villejuif, France
| | - Lothar Haeberle
- Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Centre Erlangen-EMN, Department of Gynaecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Eric Hahnen
- University Hospital of Cologne, Centre for Hereditary Breast and Ovarian Cancer, Cologne, Germany
- University of Cologne, Centre for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Christopher A Haiman
- University of Southern California, Department of Preventive Medicine, Keck School of Medicine, Los Angeles, CA, USA
| | - Niclas Håkansson
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
| | - Per Hall
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
- South General Hospital, Department of Oncology, Stockholm, Sweden
| | - Ute Hamann
- German Cancer Research Centre (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg, Germany
| | - Susan Hankinson
- University of Massachusetts, Amherst, Department of Biostatistics & Epidemiology, Amherst, MA, USA
| | - Elaine F Harkness
- University of Manchester, Manchester Academic Health Science Centre, Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, Manchester, UK
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Nightingale Breast Screening Centre, Manchester, UK
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Unit, Manchester, UK
| | - Patricia A Harrington
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Steven N Hart
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN, USA
| | - Jaana M Hartikainen
- University of Eastern Finland, Translational Cancer Research Area, Kuopio, Finland
- University of Eastern Finland, Institute of Clinical Medicine, Pathology and Forensic Medicine, Kuopio, Finland
- Kuopio University Hospital, Imaging Centre, Department of Clinical Pathology, Kuopio, Finland
| | - Alexander Hein
- University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, Erlangen, Germany
| | - Peter Hillemanns
- Hannover Medical School, Gynaecology Research Unit, Hannover, Germany
| | - Louise Hiller
- University of Warwick, Warwick Clinical Trials Unit, Coventry, UK
| | | | - Antoinette Hollestelle
- Erasmus MC Cancer Institute, Department of Medical Oncology, Family Cancer Clinic, Rotterdam, The Netherlands
| | - Maartje J Hooning
- Erasmus MC Cancer Institute, Department of Medical Oncology, Family Cancer Clinic, Rotterdam, The Netherlands
| | - Robert N Hoover
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
| | - John L Hopper
- The University of Melbourne, Melbourne School of Population and Global Health, Centre for Epidemiology and Biostatistics, Melbourne, VIC, Australia
| | - Anthony Howell
- University of Manchester, Institute of Cancer studies, Manchester, UK
| | - Guanmengqian Huang
- German Cancer Research Centre (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg, Germany
| | - Keith Humphreys
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - David J Hunter
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Program in Genetic Epidemiology and Statistical Genetics, Boston, MA, USA
- University of Oxford, Nuffield Department of Population Health, Oxford, UK
| | | | - Esther M John
- Cancer Prevention Institute of California, Department of Epidemiology, Fremont, CA, USA
- Stanford University School of Medicine, Department of Health Research and Policy - Epidemiology, Stanford, CA, USA
- Stanford University School of Medicine, Department of Biomedical Data Science, Stanford, CA, USA
| | - Michael E Jones
- Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
| | | | - Audrey Jung
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Rudolf Kaaks
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Maria Kabisch
- German Cancer Research Centre (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg, Germany
| | - Katarzyna Kaczmarek
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
| | - Michael J Kerin
- National University of Ireland, Surgery, School of Medicine, Galway, Ireland
| | - Sofia Khan
- University of Helsinki, Department of Obstetrics and Gynaecology, Helsinki University Hospital, Helsinki, Finland
| | - Elza Khusnutdinova
- Ufa Scientific Center of Russian Academy of Sciences, Institute of Biochemistry and Genetics, Ufa, Russia
- Bashkir State University, Department of Genetics and Fundamental Medicine, Ufa, Russia
| | - Johanna I Kiiski
- University of Helsinki, Department of Obstetrics and Gynaecology, Helsinki University Hospital, Helsinki, Finland
| | - Cari M Kitahara
- National Cancer Institute, Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
| | - Julia A Knight
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Prosserman Centre for Population Health Research, Toronto, ON, Canada
- University of Toronto, Division of Epidemiology, Dalla Lana School of Public Health, Toronto, ON, Canada
| | - Yon-Dschun Ko
- Johanniter Krankenhaus, Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Bonn, Germany
| | - Linetta B Koppert
- Erasmus MC Cancer Institute, Department of Surgical Oncology, Family Cancer Clinic, Rotterdam, The Netherlands
| | - Veli-Matti Kosma
- University of Eastern Finland, Translational Cancer Research Area, Kuopio, Finland
- University of Eastern Finland, Institute of Clinical Medicine, Pathology and Forensic Medicine, Kuopio, Finland
- Kuopio University Hospital, Imaging Centre, Department of Clinical Pathology, Kuopio, Finland
| | - Peter Kraft
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Program in Genetic Epidemiology and Statistical Genetics, Boston, MA, USA
| | - Vessela N Kristensen
- Oslo University Hospital-Radiumhospitalet, Department of Cancer Genetics, Institute for Cancer Research, Oslo, Norway
- University of Oslo, Institute of Clinical Medicine, Faculty of Medicine, Oslo, Norway
- Department of Research, Vestre Viken Hospital, Drammen, Norway; Section for Breast- and Endocrine Surgery, Department of Cancer, Division of Surgery, Cancer and Transplantation Medicine, Oslo University Hospital-Ullevål, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Department of Pathology at Akershus University hospital, Lørenskog, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Division of Surgery and Cancer and Transplantation Medicine, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- National Advisory Unit on Late Effects after Cancer Treatment, Department of Oncology, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Breast Cancer Research Consortium, Oslo University Hospital, Oslo, Norway
| | - Ute Krüger
- Lund University, Department of Cancer Epidemiology, Clinical Sciences, Lund, Sweden
| | - Tabea Kühl
- University Medical Center Hamburg-Eppendorf, Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), Hamburg, Germany
| | - Diether Lambrechts
- VIB, VIB Center for Cancer Biology, Leuven, Belgium
- University of Leuven, Laboratory for Translational Genetics, Department of Human Genetics, Leuven, Belgium
| | - Loic Le Marchand
- University of Hawaii Cancer Center, Epidemiology Program, Honolulu, HI, USA
| | - Eunjung Lee
- University of Southern California, Department of Preventive Medicine, Keck School of Medicine, Los Angeles, CA, USA
| | - Flavio Lejbkowicz
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Lian Li
- Tianjin Medical University Cancer Institute and Hospital, Department of Epidemiology, Tianjin, China
| | - Annika Lindblom
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden
| | - Sara Lindström
- University of Washington School of Public Health, Department of Epidemiology, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Public Health Sciences Division, Seattle, WA, USA
| | - Martha Linet
- National Cancer Institute, Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
| | - Jolanta Lissowska
- M. Sklodowska-Curie Cancer Centre, Oncology Institute, Department of Cancer Epidemiology and Prevention, Warsaw, Poland
| | - Wing-Yee Lo
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | | | - Jan Lubiński
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
| | - Michael P Lux
- Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Centre Erlangen-EMN, Department of Gynaecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Robert J MacInnis
- Cancer Council Victoria, Cancer Epidemiology & Intelligence Division, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne School of Population and Global Health, Centre for Epidemiology and Biostatistics, Melbourne, VIC, Australia
| | - Melanie Maierthaler
- German Cancer Research Center (DKFZ), Molecular Epidemiology Group, C080, Heidelberg, Germany
| | - Tom Maishman
- University of Southampton, Southampton Clinical Trials Unit, Faculty of Medicine, Southampton, UK
- University of Southampton, Cancer Sciences Academic Unit, Faculty of Medicine, Southampton, UK
| | - Enes Makalic
- The University of Melbourne, Melbourne School of Population and Global Health, Centre for Epidemiology and Biostatistics, Melbourne, VIC, Australia
| | - Arto Mannermaa
- University of Eastern Finland, Translational Cancer Research Area, Kuopio, Finland
- University of Eastern Finland, Institute of Clinical Medicine, Pathology and Forensic Medicine, Kuopio, Finland
- Kuopio University Hospital, Imaging Centre, Department of Clinical Pathology, Kuopio, Finland
| | - Mehdi Manoochehri
- German Cancer Research Centre (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg, Germany
| | - Siranoush Manoukian
- Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT), Unit of Medical Genetics, Department of Medical Oncology and Haematology, Milan, Italy
| | - Sara Margolin
- Karolinska Institutet, Department of Clinical Science and Education, Sšdersjukhuset, Stockholm, Sweden
| | - Maria Elena Martinez
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
- University of California San Diego, Department of Family Medicine and Public Health, La Jolla, CA, USA
| | - Dimitrios Mavroudis
- University Hospital of Heraklion, Department of Medical Oncology, Heraklion, Greece
| | - Catriona McLean
- The Alfred Hospital, Anatomical Pathology, Melbourne, VIC, Australia
| | - Alfons Meindl
- Ludwig Maximilian University of Munich, Department of Gynaecology and Obstetrics, Munich, Germany
| | - Pooja Middha
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
- University of Heidelberg, Faculty of Medicine, Heidelberg, Germany
| | - Nicola Miller
- National University of Ireland, Surgery, School of Medicine, Galway, Ireland
| | - Roger L Milne
- Cancer Council Victoria, Cancer Epidemiology & Intelligence Division, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne School of Population and Global Health, Centre for Epidemiology and Biostatistics, Melbourne, VIC, Australia
| | - Fernando Moreno
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Medical Oncology Department, Hospital Cl'nico San Carlos, Madrid, Spain
| | - Anna Marie Mulligan
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
- University Health Network, Laboratory Medicine Program, Toronto, ON, Canada
| | - Claire Mulot
- INSERM UMR-S1147, Université Paris Sorbonne Cité, Paris, France
| | - Rami Nassir
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, CA, USA
| | - Susan L Neuhausen
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA, USA
| | - William T Newman
- University of Manchester, Manchester Academic Health Science Centre, Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester, UK
- St Marys Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester Centre for Genomic Medicine, Manchester, UK
| | - Sune F Nielsen
- Copenhagen University Hospital, Copenhagen General Population Study, Herlevand Gentofte Hospital, Herlev, Denmark
- Copenhagen University Hospital, Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Børge G Nordestgaard
- Copenhagen University Hospital, Copenhagen General Population Study, Herlevand Gentofte Hospital, Herlev, Denmark
- Copenhagen University Hospital, Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Herlev, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Aaron Norman
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN, USA
| | - Håkan Olsson
- Lund University, Department of Cancer Epidemiology, Clinical Sciences, Lund, Sweden
| | - Nick Orr
- Queen's University Belfast, Centre for Cancer Research and Cell Biology, Belfast, Ireland, UK
| | - V Shane Pankratz
- University of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | - Jose I A Perez
- Hospital Monte Naranco, Servicio de Cirug'a General y Especialidades, Oviedo, Spain
| | - Clara Pérez-Barrios
- Hospital Universitario Puerta de Hierro, Medical Oncology Department, Madrid, Spain
| | - Paolo Peterlongo
- The FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, IFOM, Milan, Italy
| | - Christos Petridis
- King's College London, Research Oncology, Guy's Hospital, London, UK
| | - Mila Pinchev
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Karoliona Prajzendanc
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
| | - Ross Prentice
- Fred Hutchinson Cancer Research Center, Cancer Prevention Program, Seattle, WA, USA
| | - Nadege Presneau
- University of Westminster, Department of Biomedical Sciences, Faculty of Science and Technology, London, UK
| | - Darya Prokofieva
- Bashkir State University, Department of Genetics and Fundamental Medicine, Ufa, Russia
| | - Katri Pylkäs
- University of Oulu, Laboratory of Cancer Genetics and Tumour Biology, Cancer and Translational Medicine Research Unit, Biocentre Oulu, Oulu, Finland
- Northern Finland Laboratory Centre Oulu, Laboratory of Cancer Genetics and Tumour Biology, Oulu, Finland
| | - Brigitte Rack
- Ludwig Maximilian University of Munich, Department of Gynaecology and Obstetrics, Munich, Germany
| | - Paolo Radice
- Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT), Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Milan, Italy
| | | | - Gadi Rennert
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Hedy S Rennert
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Valerie Rhenius
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Atocha Romero
- Hospital Universitario Puerta de Hierro, Medical Oncology Department, Madrid, Spain
| | | | | | - Elinor J Sawyer
- King's College London, Research Oncology, Guy's Hospital, London, UK
| | - Daniel F Schmidt
- The University of Melbourne, Melbourne School of Population and Global Health, Centre for Epidemiology and Biostatistics, Melbourne, VIC, Australia
| | - Rita K Schmutzler
- University Hospital of Cologne, Centre for Hereditary Breast and Ovarian Cancer, Cologne, Germany
- University of Cologne, Centre for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Andreas Schneeweiss
- University of Heidelberg, Department of Obstetrics and Gynecology, Heidelberg, Germany
- University of Heidelberg, National Centre for Tumour Diseases, Heidelberg, Germany
| | - Minouk J Schoemaker
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
| | - Fredrick Schumacher
- Case Western Reserve University, Department of Population and Quantitative Health Sciences, Cleveland, OH, USA
| | | | - Rodney J Scott
- John Hunter Hospital, Division of Molecular Medicine, Pathology North, Newcastle, NSW, Australia
- University of Newcastle, Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, Faculty of Health, Callaghan, NSW, Australia
- John Hunter Hospital, Hunter Medical Research Institute, Newcastle, NSW, Australia
- University of Newcastle, Centre for Information Based Medicine, Callaghan, Newcastle, NSW, Australia
| | - Christopher Scott
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN, USA
| | - Caroline Seynaeve
- Erasmus MC Cancer Institute, Department of Medical Oncology, Family Cancer Clinic, Rotterdam, The Netherlands
| | - Mitul Shah
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Jacques Simard
- Centre Hospitalier Universitaire de Québec - Université Laval Research Centre, Genomics Centre, Québec City, QC, Canada
| | - Ann Smeets
- University Hospitals Leuven, Department of Surgical Oncology, Leuven, Belgium
| | - Christof Sohn
- University of Heidelberg, National Centre for Tumour Diseases, Heidelberg, Germany
| | - Melissa C Southey
- Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
- The University of Melbourne, Department of Clinical Pathology, Melbourne, VIC, Australia
| | - Anthony J Swerdlow
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
- The Institute of Cancer Research, Division of Breast Cancer Research, London, UK
| | - Aline Talhouk
- BC Cancer Agency and University of British Columbia, British Columbia's Ovarian Cancer Research (OVCARE) Program, Vancouver General Hospital, Vancouver, BC, Canada
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, BC, Canada
- University of British Columbia, Department of Obstetrics and Gynaecology, Vancouver, BC, Canada
| | - Rulla M Tamimi
- Harvard Medical School, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Program in Genetic Epidemiology and Statistical Genetics, Boston, MA, USA
| | | | - Manuel R Teixeira
- Portuguese Oncology Institute, Department of Genetics, Porto, Portugal
- University of Porto, Biomedical Sciences Institute (ICBAS), Porto, Portugal
| | - Maria Tengström
- University of Eastern Finland, Translational Cancer Research Area, Kuopio, Finland
- Kuopio University Hospital, Cancer Centre, Kuopio, Finland
- University of Eastern Finland, Institute of Clinical Medicine, Oncology, Kuopio, Finland
| | - Mary Beth Terry
- Columbia University, Department of Epidemiology, Mailman School of Public Health, New York, NY, USA
| | - Kathrin Thöne
- University Medical Center Hamburg-Eppendorf, Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), Hamburg, Germany
| | - Rob A E M Tollenaar
- Leiden University Medical Centre, Department of Surgery, Leiden, The Netherlands
| | - Ian Tomlinson
- University of Birmingham, Institute of Cancer and Genomic Sciences, Birmingham, UK
- University of Oxford, Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Diana Torres
- German Cancer Research Centre (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg, Germany
- Pontificia Universidad Javeriana, Institute of Human Genetics, Bogota, Colombia
| | - Thérèse Truong
- INSERM, University Paris-Sud, University Paris-Saclay, Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), Villejuif, France
| | - Constance Turman
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
| | - Clare Turnbull
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
| | | | - Michael Untch
- Helios Clinics Berlin-Buch, Department of Gynaecology and Obstetrics, Berlin, Germany
| | - Celine Vachon
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN, USA
| | - Christi J van Asperen
- Leiden University Medical Centre, Department of Clinical Genetics, Leiden, The Netherlands
| | | | - Elke M van Veen
- University of Manchester, Manchester Academic Health Science Centre, Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester, UK
- St Marys Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester Centre for Genomic Medicine, Manchester, UK
| | - Camilla Wendt
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Stockholm, Sweden
| | - Alice S Whittemore
- Stanford University School of Medicine, Department of Health Research and Policy - Epidemiology, Stanford, CA, USA
- Stanford University School of Medicine, Department of Biomedical Data Science, Stanford, CA, USA
| | - Walter Willett
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Department of Nutrition, Boston, MA, USA
- Brigham and Women's Hospital and Harvard Medical School, Channing Division of Network Medicine, Boston, MA, USA
| | - Robert Winqvist
- University of Oulu, Laboratory of Cancer Genetics and Tumour Biology, Cancer and Translational Medicine Research Unit, Biocentre Oulu, Oulu, Finland
- Northern Finland Laboratory Centre Oulu, Laboratory of Cancer Genetics and Tumour Biology, Oulu, Finland
| | - Alicja Wolk
- Karolinska Institutet, Department of Environmental Medicine, Division of Nutritional Epidemiology, Stockholm, Sweden
| | - Xiaohong R Yang
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
| | - Yan Zhang
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Douglas F Easton
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Peter A Fasching
- University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, Erlangen, Germany
- University of California at Los Angeles, David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, Los Angeles, CA, USA
| | - Heli Nevanlinna
- University of Helsinki, Department of Obstetrics and Gynaecology, Helsinki University Hospital, Helsinki, Finland
| | - Diana M Eccles
- University of Southampton, Cancer Sciences Academic Unit, Faculty of Medicine, Southampton, UK
| | - Paul D P Pharoah
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Marjanka K Schmidt
- The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam, The Netherlands
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Division of Psychosocial Research and Epidemiology, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Irvin MR, Sitlani CM, Noordam R, Avery CL, Bis JC, Floyd JS, Li J, Limdi NA, Srinivasasainagendra V, Stewart J, de Mutsert R, Mook-Kanamori DO, Lipovich L, Kleinbrink EL, Smith A, Bartz TM, Whitsel EA, Uitterlinden AG, Wiggins KL, Wilson JG, Zhi D, Stricker BH, Rotter JI, Arnett DK, Psaty BM, Lange LA. Genome-wide meta-analysis of SNP-by9-ACEI/ARB and SNP-by-thiazide diuretic and effect on serum potassium in cohorts of European and African ancestry. THE PHARMACOGENOMICS JOURNAL 2019; 19:97-108. [PMID: 29855607 PMCID: PMC6274589 DOI: 10.1038/s41397-018-0021-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 12/21/2017] [Accepted: 02/12/2018] [Indexed: 12/22/2022]
Abstract
We evaluated interactions of SNP-by-ACE-I/ARB and SNP-by-TD on serum potassium (K+) among users of antihypertensive treatments (anti-HTN). Our study included seven European-ancestry (EA) (N = 4835) and four African-ancestry (AA) cohorts (N = 2016). We performed race-stratified, fixed-effect, inverse-variance-weighted meta-analyses of 2.5 million SNP-by-drug interaction estimates; race-combined meta-analysis; and trans-ethnic fine-mapping. Among EAs, we identified 11 significant SNPs (P < 5 × 10-8) for SNP-ACE-I/ARB interactions on serum K+ that were located between NR2F1-AS1 and ARRDC3-AS1 on chromosome 5 (top SNP rs6878413 P = 1.7 × 10-8; ratio of serum K+ in ACE-I/ARB exposed compared to unexposed is 1.0476, 1.0280, 1.0088 for the TT, AT, and AA genotypes, respectively). Trans-ethnic fine mapping identified the same group of SNPs on chromosome 5 as genome-wide significant for the ACE-I/ARB analysis. In conclusion, SNP-by-ACE-I /ARB interaction analyses uncovered loci that, if replicated, could have future implications for the prevention of arrhythmias due to anti-HTN treatment-related hyperkalemia. Before these loci can be identified as clinically relevant, future validation studies of equal or greater size in comparison to our discovery effort are needed.
Collapse
Affiliation(s)
| | | | - Raymond Noordam
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Christie L Avery
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Joshua C Bis
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - James S Floyd
- Departments of Medicine and Epidemiology, University of Washington, Seattle, WA, USA
| | - Jin Li
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Nita A Limdi
- Department of Neurology, University of Alabama, Birmingham, AL, USA
| | | | - James Stewart
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, USA
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology and Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonard Lipovich
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Erica L Kleinbrink
- Center Molecular Medicine/Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Albert Smith
- Icelandic Heart Association, Kopavogur, Iceland, University of Iceland, Reykjavik, Iceland
| | - Traci M Bartz
- Departments of Biostatistics and Medicine, University of Washington, Seattle, WA, USA
| | - Eric A Whitsel
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, USA
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kerri L Wiggins
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Degui Zhi
- School of Biomedical Informatics, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
- Inspectorate of Health Care, Utrecht, The Netherlands
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences and Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, Health Services, University of Washington, Seattle, WA, USA
- Group Health Research Institute, Group Health Cooperatives, Seattle, WA, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
15
|
Zolotovskaia MA, Sorokin MI, Roumiantsev SA, Borisov NM, Buzdin AA. Pathway Instability Is an Effective New Mutation-Based Type of Cancer Biomarkers. Front Oncol 2019; 8:658. [PMID: 30662873 PMCID: PMC6328788 DOI: 10.3389/fonc.2018.00658] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/12/2018] [Indexed: 01/20/2023] Open
Abstract
DNA mutations play a crucial role in cancer development and progression. Mutation profiles vary dramatically in different cancer types and between individual tumors. Mutations of several individual genes are known as reliable cancer biomarkers, although the number of such genes is tiny and does not enable differential diagnostics for most of the cancers. We report here a technique enabling dramatically increased efficiency of cancer biomarkers development using DNA mutations data. It includes a quantitative metric termed Pathway instability (PI) based on mutations enrichment of intracellular molecular pathways. This method was tested on 5,956 tumor mutation profiles of 15 cancer types from The Cancer Genome Atlas (TCGA) project. Totally, we screened 2,316,670 mutations in 19,872 genes and 1,748 molecular pathways. Our results demonstrated considerable advantage of pathway-based mutation biomarkers over individual gene mutation profiles, as reflected by more than two orders of magnitude greater numbers by high-quality [ROC area-under-curve (AUC)>0.75] biomarkers. For example, the number of such high-quality mutational biomarkers distinguishing between different cancer types was only six for the individual gene mutations, and already 660 for the pathway-based biomarkers. These results evidence that PI value can be used as a new generation of complex cancer biomarkers significantly outperforming the existing gene mutation biomarkers.
Collapse
Affiliation(s)
- Marianna A Zolotovskaia
- Department of Oncology, Hematology and Radiotherapy of Pediatric Faculty, Pirogov Russian National Research Medical University, Moscow, Russia.,Oncobox Ltd., Moscow, Russia
| | - Maxim I Sorokin
- The Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Omicsway Corp., Walnut, CA, United States
| | - Sergey A Roumiantsev
- Department of Oncology, Hematology and Radiotherapy of Pediatric Faculty, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nikolay M Borisov
- Oncobox Ltd., Moscow, Russia.,The Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anton A Buzdin
- The Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Omicsway Corp., Walnut, CA, United States.,The Laboratory of Systems Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
16
|
Khan S, Fagerholm R, Kadalayil L, Tapper W, Aittomäki K, Liu J, Blomqvist C, Eccles D, Nevanlinna H. Meta-analysis of three genome-wide association studies identifies two loci that predict survival and treatment outcome in breast cancer. Oncotarget 2018; 9:4249-4257. [PMID: 29423119 PMCID: PMC5790536 DOI: 10.18632/oncotarget.22747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/09/2017] [Indexed: 11/25/2022] Open
Abstract
The majority of breast cancers are driven by the female hormone oestrogen via oestrogen receptor (ER) alpha. ER-positive patients are commonly treated with adjuvant endocrine therapy, however, resistance is a common occurrence and aside from ER-status, no unequivocal predictive biomarkers are currently in clinical use. In this study, we aimed to identify constitutional genetic variants influencing breast cancer survival among ER-positive patients and specifically, among endocrine-treated patients. We conducted a meta-analysis of three genome-wide association studies comprising in total 3,136 patients with ER-positive breast cancer of which 2,751 had received adjuvant endocrine therapy. We identified a novel locus (rs992531 at 8p21.2) associated with reduced survival among the patients with ER-positive breast cancer (P = 3.77 × 10-8). Another locus (rs7701292 at 5q21.3) was associated with reduced survival among the endocrine-treated patients (P = 2.13 × 10-8). Interaction analysis indicated that the survival association of rs7701292 is treatment-specific and independent of conventional prognostic markers. In silico functional studies suggest plausible biological mechanisms for the observed survival associations and a functional link between the putative target genes of the rs992531 and rs7701292 (RHOBTB2 and RAB9P1, respectively). We further explored the genetic interaction between rs992531 and rs7701292 and found a significant, treatment-specific interactive effect on survival among ER-positive, endocrine-treated patients (hazard ratio = 6.97; 95% confidence interval, 1.79-27.08, Pinteraction= 0.036). This is the first study to identify a genetic interaction that specifically predicts treatment outcome. These findings may provide predictive biomarkers based on germ line genotype informing more personalized treatment selection.
Collapse
Affiliation(s)
- Sofia Khan
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Biomedicum, Helsinki, Finland
| | - Rainer Fagerholm
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Biomedicum, Helsinki, Finland
| | - Latha Kadalayil
- Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - William Tapper
- Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital and Genome Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, Helsinki, Finland
- Department of Oncology, University of Örebro, Örebro, Sweden
| | - Diana Eccles
- Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK
| | - Heli Nevanlinna
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Biomedicum, Helsinki, Finland
| |
Collapse
|
17
|
Kadalayil L, Khan S, Nevanlinna H, Fasching PA, Couch FJ, Hopper JL, Liu J, Maishman T, Durcan L, Gerty S, Blomqvist C, Rack B, Janni W, Collins A, Eccles D, Tapper W. Germline variation in ADAMTSL1 is associated with prognosis following breast cancer treatment in young women. Nat Commun 2017; 8:1632. [PMID: 29158497 PMCID: PMC5696339 DOI: 10.1038/s41467-017-01775-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
To identify genetic variants associated with breast cancer prognosis we conduct a meta-analysis of overall survival (OS) and disease-free survival (DFS) in 6042 patients from four cohorts. In young women, breast cancer is characterized by a higher incidence of adverse pathological features, unique gene expression profiles and worse survival, which may relate to germline variation. To explore this hypothesis, we also perform survival analysis in 2315 patients aged ≤ 40 years at diagnosis. Here, we identify two SNPs associated with early-onset DFS, rs715212 (P meta = 3.54 × 10-5) and rs10963755 (P meta = 3.91 × 10-4) in ADAMTSL1. The effect of these SNPs is independent of classical prognostic factors and there is no heterogeneity between cohorts. Most importantly, the association with rs715212 is noteworthy (FPRP <0.2) and approaches genome-wide significance in multivariable analysis (P multivariable = 5.37 × 10-8). Expression quantitative trait analysis provides tentative evidence that rs715212 may influence AREG expression (P eQTL = 0.035), although further functional studies are needed to confirm this association and determine a mechanism.
Collapse
Affiliation(s)
- Latha Kadalayil
- Genetic Epidemiology and Bioinformatics Research Group, Human Development and Health Academic Unit, Faculty of Medicine, Duthie Building (MP 808), University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.,Faculty of Natural and Environmental Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Sofia Khan
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, P.O. BOX 700, 00029 HUS, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, P.O. BOX 700, 00029 HUS, Finland
| | - Peter A Fasching
- University Breast Center Franconia, Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, 55901, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, 12 Science Drive 2, Singapore, 117549, Singapore
| | - Tom Maishman
- Southampton Clinical Trials Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Lorraine Durcan
- Southampton Clinical Trials Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Sue Gerty
- Southampton Clinical Trials Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Central Hospital, P.O. Box 180, FIN-00029, Helsinki, Finland
| | - Brigitte Rack
- Department of Gynecology and Obstetrics, University Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, University Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Andrew Collins
- Genetic Epidemiology and Bioinformatics Research Group, Human Development and Health Academic Unit, Faculty of Medicine, Duthie Building (MP 808), University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Diana Eccles
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton University Hospitals NHS Trust, Southampton, SO16 6YD, UK
| | - William Tapper
- Genetic Epidemiology and Bioinformatics Research Group, Human Development and Health Academic Unit, Faculty of Medicine, Duthie Building (MP 808), University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
18
|
Sung H, Hu N, Yang HH, Giffen CA, Zhu B, Song L, Su H, Wang C, Parisi DM, Goldstein AM, Taylor PR, Hyland PL. Association of high-evidence gastric cancer susceptibility loci and somatic gene expression levels with survival. Carcinogenesis 2017; 38:1119-1128. [PMID: 29028942 DOI: 10.1093/carcin/bgx090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/17/2017] [Indexed: 12/17/2022] Open
Abstract
Eleven high-evidence single-nucleotide polymorphisms (SNPs) at nine loci for gastric cancer (GC) risk were reported, but their associations with survival remain unknown. In this study, we examined associations between SNP and GC survival by anatomic location and histology among 1147 incident cases from the Shanxi Upper Gastrointestinal Genetics Project. We further examined whether SNPs were expression quantitative trait loci in normal and tumor gastric tissues, and whether tumor versus normal somatic mRNA differences in 126 cases were associated with survival. No SNPs were associated with GC survival overall. However, subtype-specific associations were observed for gastric cardia adenocarcinomas at MUC1/TRIM46/1q22 rs2070803 [HRAA versus GA+GG = 2.16; 95% confidence interval (CI) = 1.24-3.78; P = 0.0068] and LTA/TNF/6p21.33 rs1799724 (HRTT+CT versus CC = 1.30; 95% CI = 1.07-1.57; P = 0.0077), and for diffuse-type GC at PSCA/8q24.3 rs2294008 (HRTT versus CT+CC = 1.99; 95% CI = 1.33-2.97; P = 7.8E-04). Rs2294008T was a cis-expression quantitative trait loci for PSCA, upregulating mRNA in normal gastric (β = 0.60; P = 5.7E-21) and GC (β = 0.30; P = 0.0089) tissues. Cases in the highest quartile (the smallest downregulation of tumor PSCA) had shortest survival than cases with the most downregulated PSCA (median survival of 0.47 years in the highest quartile versus 3.73 years in the lowest quartile; hazard ratio = 9.70; 95% CI = 2.46-38.4; P = 0.0012). Less striking effects for mRNA levels were observed for MTX1 at 1q22 in gastric cardia adenocarcinoma and for JRK at 8q24.3 in diffuse GC. Our results suggest three high-evidence GC risk loci have prognostic importance in GC subtypes. Future studies in well-characterized independent populations are warranted to validate our findings and further investigate the clinical utility of these variants in predicting GC prognosis.
Collapse
Affiliation(s)
- Hyuna Sung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nan Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Howard H Yang
- High-dimension Data Analysis Group, Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Carol A Giffen
- Information Management Services, Inc, Calverton, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hua Su
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Chaoyu Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Philip R Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Paula L Hyland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
19
|
Kumaran M, Cass CE, Graham K, Mackey JR, Hubaux R, Lam W, Yasui Y, Damaraju S. Germline copy number variations are associated with breast cancer risk and prognosis. Sci Rep 2017; 7:14621. [PMID: 29116104 PMCID: PMC5677082 DOI: 10.1038/s41598-017-14799-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most common cancers among women, and susceptibility is explained by genetic, lifestyle and environmental components. Copy Number Variants (CNVs) are structural DNA variations that contribute to diverse phenotypes via gene-dosage effects or cis-regulation. In this study, we aimed to identify germline CNVs associated with breast cancer susceptibility and their relevance to prognosis. We performed whole genome CNV genotyping in 422 cases and 348 controls using Human Affymetrix SNP 6 array. Principal component analysis for population stratification revealed 84 outliers leaving 366 cases and 320 controls of Caucasian ancestry for association analysis; CNVs with frequency > 10% and overlapping with protein coding genes were considered for breast cancer risk and prognostic relevance. Coding genes within the CNVs identified were interrogated for gene- dosage effects by correlating copy number status with gene expression profiles in breast tumor tissue. We identified 200 CNVs associated with breast cancer (q-value < 0.05). Of these, 21 CNV regions (overlapping with 22 genes) also showed association with prognosis. We validated representative CNVs overlapping with APOBEC3B and GSTM1 genes using the TaqMan assay. Germline CNVs conferred dosage effects on gene expression in breast tissue. The candidate CNVs identified in this study warrant independent replication.
Collapse
Affiliation(s)
- Mahalakshmi Kumaran
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Carol E Cass
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Kathryn Graham
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - John R Mackey
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Roland Hubaux
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Wan Lam
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Yutaka Yasui
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Sambasivarao Damaraju
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada. .,Cross Cancer Institute, Alberta Health Services, Edmonton, AB, Canada.
| |
Collapse
|
20
|
Curtit E, Pivot X, Henriques J, Paget-Bailly S, Fumoleau P, Rios M, Bonnefoi H, Bachelot T, Soulié P, Jouannaud C, Bourgeois H, Petit T, Tennevet I, Assouline D, Mathieu MC, Jacquin JP, Lavau-Denes S, Darut-Jouve A, Ferrero JM, Tarpin C, Lévy C, Delecroix V, Trillet-Lenoir V, Cojocarasu O, Meunier J, Pierga JY, Kerbrat P, Faure-Mercier C, Blanché H, Sahbatou M, Boland A, Bacq D, Besse C, Thomas G, Deleuze JF, Pauporté I, Romieu G, Cox DG. Assessment of the prognostic role of a 94-single nucleotide polymorphisms risk score in early breast cancer in the SIGNAL/PHARE prospective cohort: no correlation with clinico-pathological characteristics and outcomes. Breast Cancer Res 2017; 19:98. [PMID: 28830573 PMCID: PMC5568360 DOI: 10.1186/s13058-017-0888-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/04/2017] [Indexed: 12/17/2022] Open
Abstract
Background Genome-wide association studies (GWAS) have to date identified 94 genetic variants (single nucleotide polymorphisms (SNPs)) associated with risk of developing breast cancer. A score based on the combined effect of the 94 risk alleles can be calculated to measure the global risk of breast cancer. We aimed to test the hypothesis that the 94-SNP-based risk score is associated with clinico-pathological characteristics, breast cancer subtypes and outcomes in early breast cancer. Methods A 94-SNP risk score was calculated in 8703 patients in the PHARE and SIGNAL prospective case cohorts. This score is the total number of inherited risk alleles based on 94 selected SNPs. Clinical data and outcomes were prospectively registered. Genotyping was obtained from a GWAS. Results The median 94-SNP risk score in 8703 patients with early breast cancer was 77.5 (range: 58.1–97.6). The risk score was not associated with usual prognostic and predictive factors (age; tumor, node, metastasis (TNM) status; Scarff-Bloom-Richardson grade; inflammatory features; estrogen receptor status; progesterone receptor status; human epidermal growth factor receptor 2 (HER2) status) and did not correlate with breast cancer subtypes. The 94-SNP risk score did not predict outcomes represented by overall survival or disease-free survival. Conclusions In a prospective case cohort of 8703 patients, a risk score based on 94 SNPs was not associated with breast cancer characteristics, cancer subtypes, or patients’ outcomes. If we hypothesize that prognosis and subtypes of breast cancer are determined by constitutional genetic factors, our results suggest that a score based on breast cancer risk-associated SNPs is not associated with prognosis. Trial registration PHARE cohort: NCT00381901, Sept. 26, 2006 – SIGNAL cohort: INCa RECF1098, Jan. 28, 2009 Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0888-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elsa Curtit
- Hôpital Jean-Minjoz, Centre Hospitalier Universitaire, UMR 1098 INSERM-EFS-Université de Bourgogne Franche-Comté, Boulevard Fleming, 25000, Besançon, France. .,Department of Medical Oncology, University Hospital Jean Minjoz, 3, boulevard Alexandre Fleming, 25030, Besancon Cedex, France.
| | - Xavier Pivot
- Hôpital Jean-Minjoz, Centre Hospitalier Universitaire, UMR 1098 INSERM-EFS-Université de Bourgogne Franche-Comté, Boulevard Fleming, 25000, Besançon, France
| | - Julie Henriques
- Centre Hospitalier Universitaire, Unité de Méthodologie et de Qualité de Vie en Cancérologie, 2 place St Jacques, 25000, Besançon, France
| | - Sophie Paget-Bailly
- Centre Hospitalier Universitaire, Unité de Méthodologie et de Qualité de Vie en Cancérologie, 2 place St Jacques, 25000, Besançon, France
| | - Pierre Fumoleau
- Georges-François Leclerc, 1 Rue du Professeur Marion, 21000, Dijon, France
| | - Maria Rios
- Institut de Cancérologie de Lorraine - Alexis Vautrin, département d'Oncologie Médicale, 6, avenue de Bourgogne, 54511, Vandoeuvre Les Nancy Cedex, France
| | - Hervé Bonnefoi
- Institut Bergonié, Département d'Oncologie Médicale, 229 Cours de l'Argonne, 33000, Bordeaux, France
| | - Thomas Bachelot
- Centre Léon Bérard, Département de Cancérologie Médicale, 28 rue Laënnec, Lyon Cedex 08, France
| | - Patrick Soulié
- Institut de Cancérologie de l'Ouest, Service Oncologie Médicale, 2 rue Moll, 49993, Angers Cedex 09, France
| | - Christelle Jouannaud
- Institut Jean Godinot, Service Oncologie Médicale, 1 rue du Général Koenig, 51056, Reims cedex, France
| | - Hugues Bourgeois
- Clinique Victor Hugo-Centre Jean Bernard, 18 rue Victor Hugo, 72015, Le Mans Cedex 2, France
| | - Thierry Petit
- Centre Paul Strauss, Service d'Oncologie Médicale, 3 rue de la Porte de l'Hôpital, 67065, Strasbourg Cedex, France
| | | | - David Assouline
- Institut Daniel Hollard, Service Oncologie Médicale, 8 rue du Docteur Calmette, 38028, Grenoble Cedex 01, France
| | - Marie-Christine Mathieu
- Institut Gustave Roussy, Comité de Pathologie mammaire, 39 rue Camille Desmoulins, 94805, Villejuif Cedex, France
| | - Jean-Philippe Jacquin
- Institut de Cancérologie Lucien Neuwirth, Service Oncologie Médicale, 108 bis avenue Albert Raimond, 42270, Saint Priest en Jarez, France
| | - Sandrine Lavau-Denes
- Centre Hospitalier de Limoges, Service d'Oncologie Médicale, 2 avenue Martin Luther King, 87042, Limoges Cedex, France
| | - Ariane Darut-Jouve
- Clinique Drévon, Centre d'oncologie et de radiothérapie du Parc, 18 cours du général de Gaulle, 21000, Dijon, France
| | - Jean-Marc Ferrero
- Centre Antoine Lacassagne, Département Oncologie Médicale, 33 avenue de Valombrose, 06189, Nice Cedex 02, France
| | - Carole Tarpin
- Institut Paoli-Calmettes, Département d'Oncologie Médicale, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Christelle Lévy
- Centre François Baclesse, 3 avenue du Général Harris, 14076, Caen Cedex 5, France
| | - Valérie Delecroix
- Centre Etienne Dolet, Pôle Mutualiste, Service Oncologie Médicale, 11 boulevard Georges Charpak, 44606, Saint Nazaire, France
| | - Véronique Trillet-Lenoir
- Centre Hospitalier Lyon Sud, Service d'Oncologie Médicale, 165 chemin du Grand Revoyet, 69495, Pierre-Benite Cedex, France
| | - Oana Cojocarasu
- Centre Hospitalier Le Mans, Service d'Onco-Hématologie et Médecine interne, 194 avenue Rubillard, 72037, Le Mans Cedex, France
| | - Jérôme Meunier
- Centre Hospitalier Régional d'Orléans, Service d'Oncologie médicale, 1 rue Porte Madeleine, 45032, Orleans Cedex 1, France
| | - Jean-Yves Pierga
- Institut Curie, Department of Medical Oncology, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Pierre Kerbrat
- Centre Eugène Marquis, Service Oncologie médicale, Rue de la Bataille Flandres-Dunkerque, CS 44229, 35042, Rennes Cedex, France
| | - Céline Faure-Mercier
- Institut National du Cancer, Direction de la Recherche, 52 avenue Morizet, 92513, Boulogne-Billancourt, France
| | - Hélène Blanché
- Centre d'Etudes du Polymorphisme Humain, 27 rue Juliette Dodu, 75010, Paris, France
| | - Mourad Sahbatou
- Centre d'Etudes du Polymorphisme Humain, 27 rue Juliette Dodu, 75010, Paris, France
| | - Anne Boland
- Centre National du Génotypage, 2 rue Gaston Crémieux, CP 5721, 91057, Evry Cedex, France
| | - Delphine Bacq
- Centre National du Génotypage, 2 rue Gaston Crémieux, CP 5721, 91057, Evry Cedex, France
| | - Céline Besse
- Centre National du Génotypage, 2 rue Gaston Crémieux, CP 5721, 91057, Evry Cedex, France
| | - Gilles Thomas
- Synergie Lyon Cancer, Centre Léon Bérard, 28 rue Laënnec, Lyon Cedex 08, France
| | - Jean-François Deleuze
- Centre d'Etudes du Polymorphisme Humain, 27 rue Juliette Dodu, 75010, Paris, France.,Centre National du Génotypage, 2 rue Gaston Crémieux, CP 5721, 91057, Evry Cedex, France
| | - Iris Pauporté
- Institut National du Cancer, Direction de la Recherche, 52 avenue Morizet, 92513, Boulogne-Billancourt, France
| | - Gilles Romieu
- Oncologie Sénologie, ICM Institut Régional du Cancer, 34298, Montpellier Cedex, France
| | - David G Cox
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052 - Centre Léon Bérard, 28 rue Laennec, 69373, Lyon, France
| |
Collapse
|
21
|
Johnson N, De Ieso P, Migliorini G, Orr N, Broderick P, Catovsky D, Matakidou A, Eisen T, Goldsmith C, Dudbridge F, Peto J, dos-Santos-Silva I, Ashworth A, Ross G, Houlston RS, Fletcher O. Cytochrome P450 Allele CYP3A7*1C Associates with Adverse Outcomes in Chronic Lymphocytic Leukemia, Breast, and Lung Cancer. Cancer Res 2016; 76:1485-1493. [PMID: 26964624 PMCID: PMC4795533 DOI: 10.1158/0008-5472.can-15-1410] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CYP3A enzymes metabolize endogenous hormones and chemotherapeutic agents used to treat cancer, thereby potentially affecting drug effectiveness. Here, we refined the genetic basis underlying the functional effects of a CYP3A haplotype on urinary estrone glucuronide (E1G) levels and tested for an association between CYP3A genotype and outcome in patients with chronic lymphocytic leukemia (CLL), breast, or lung cancers. The most significantly associated SNP was rs45446698, an SNP that tags the CYP3A7*1C allele; this SNP was associated with a 54% decrease in urinary E1G levels. Genotyping this SNP in 1,008 breast cancer, 1,128 lung cancer, and 347 CLL patients, we found that rs45446698 was associated with breast cancer mortality (HR, 1.74; P = 0.03), all-cause mortality in lung cancer patients (HR, 1.43; P = 0.009), and CLL progression (HR, 1.62; P = 0.03). We also found borderline evidence of a statistical interaction between the CYP3A7*1C allele, treatment of patients with a cytotoxic agent that is a CYP3A substrate, and clinical outcome (Pinteraction = 0.06). The CYP3A7*1C allele, which results in adult expression of the fetal CYP3A7 gene, is likely to be the functional allele influencing levels of circulating endogenous sex hormones and outcome in these various malignancies. Further studies confirming these associations and determining the mechanism by which CYP3A7*1C influences outcome are required. One possibility is that standard chemotherapy regimens that include CYP3A substrates may not be optimal for the approximately 8% of cancer patients who are CYP3A7*1C carriers.
Collapse
Affiliation(s)
- Nichola Johnson
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK and Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | | | - Gabriele Migliorini
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Nick Orr
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK and Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Daniel Catovsky
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Athena Matakidou
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Timothy Eisen
- Department of Oncology, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
- Addenbrooke’s Hospital, Cambridge Biomedical Campus, Cambridge, UK
| | - Christy Goldsmith
- Imperial College, London, UK and The Harley Street Clinic, London, UK
| | - Frank Dudbridge
- Non-communicable Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Julian Peto
- Non-communicable Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Isabel dos-Santos-Silva
- Non-communicable Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Alan Ashworth
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK and Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Gillian Ross
- The Royal Marsden NHS Foundation Trust, Fulham Road, London UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Olivia Fletcher
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK and Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| |
Collapse
|
22
|
DeLorenze GN, Nelson CL, Scott WK, Allen AS, Ray GT, Tsai AL, Quesenberry CP, Fowler VG. Polymorphisms in HLA Class II Genes Are Associated With Susceptibility to Staphylococcus aureus Infection in a White Population. J Infect Dis 2016; 213:816-23. [PMID: 26450422 PMCID: PMC4747615 DOI: 10.1093/infdis/jiv483] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Staphylococcus aureus can cause life-threatening infections. Human susceptibility to S. aureus infection may be influenced by host genetic variation. METHODS A genome-wide association study (GWAS) in a large health plan-based cohort included biologic specimens from 4701 culture-confirmed S. aureus cases and 45 344 matched controls; 584 535 single-nucleotide polymorphisms (SNPs) were genotyped on an array specific to individuals of European ancestry. Coverage was increased by imputation of >25 million common SNPs, using the 1000 Genomes Reference panel. In addition, human leukocyte antigen (HLA) serotypes were also imputed. RESULTS Logistic regression analysis, performed under the assumption of an additive genetic model, revealed several imputed SNPs (eg, rs115231074: odds ratio [OR], 1.22 [P = 1.3 × 10(-10)]; rs35079132: OR, 1.24 [P = 3.8 × 10(-8)]) achieving genome-wide significance on chromosome 6 in the HLA class II region. One adjacent genotyped SNP was nearly genome-wide significant (rs4321864: OR, 1.13; P = 8.8 × 10(-8)). These polymorphisms are located near the genes encoding HLA-DRA and HLA-DRB1. Results of further logistic regression analysis, in which the most significant GWAS SNPs were conditioned on HLA-DRB1*04 serotype, showed additional support for the strength of association between HLA class II genetic variants and S. aureus infection. CONCLUSIONS Our study results are the first reported evidence of human genetic susceptibility to S. aureus infection.
Collapse
Affiliation(s)
| | | | - William K Scott
- John P. Hussman Institute for Human Genomics Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Florida
| | - Andrew S Allen
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - G Thomas Ray
- Division of Research, Kaiser Permanente Northern California, Oakland
| | - Ai-Lin Tsai
- Division of Research, Kaiser Permanente Northern California, Oakland
| | | | - Vance G Fowler
- Duke Clinical Research Institute Division of Infectious Diseases, Duke University Medical Center
| |
Collapse
|
23
|
Kaabi B, Belaaloui G, Benbrahim W, Hamizi K, Sadelaoud M, Toumi W, Bounecer H. ADRA2A Germline Gene Polymorphism is Associated to the Severity, but not to the Risk, of Breast Cancer. Pathol Oncol Res 2015; 22:357-65. [PMID: 26563278 DOI: 10.1007/s12253-015-0010-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/04/2015] [Indexed: 01/20/2023]
Abstract
Breast cancer (BC) prognosis and risk were associated to obesity, metabolic syndrome and type 2 diabetes mellitus. Two Single Nucleotide Polymorphisms (SNPs) of the adrenergic receptor-2a gene (ADRA2A): rs1800544 and rs553668, have been associated to these metabolic disorders. We investigated these SNPs in BC risk and prognosis. A total of 102 BC patients and 102 healthy controls were included. The rs1800544 and rs553668 were determined by real-time PCR. Genotypes and haplotypes frequencies between patients and controls, and for different clinico-pathologic parameters were compared. We found a significant association of rs1800544 GG genotype with young age at diagnosis, premenopausal status, higher tumor size, metastasis in lymph nodes, advanced TNM stages and higher Nottingham Prognosis Indicator (NPI) (p < 0.05). There was no association between rs1800544 and SBR stages, Her2, ER and PR statuses and the molecular classification. The rs553668 AA genotype was associated to young age at diagnosis and premenopausal status (p < 0.05). The haplotype GA was associated to the early age of diagnosis (p = 0.03), and the haplotype GG to higher tumor size, lymph node involvement, advanced TNM stages and Her2 positive status (p < 0.05). There was no polymorphism or haplotype association with BC risk (p > 0.05). ADRA2A polymorphism is associated with indicators BC poor prognosis but not with BC susceptibility. This is the first report suggesting that ADRA2A germline gene polymorphism could represent a predictor factor for BC outcome. Further investigation of other ADRA2A polymorphisms in BC risk or prognosis are needed and may lead to a genotype-based therapy.
Collapse
Affiliation(s)
- Batoul Kaabi
- Faculty of Sciences, Batna 1 University, Batna, Algeria
| | - Ghania Belaaloui
- Faculty of Medicine, Batna 2 University, 05000, Citée Ezzouhour, Batna, Algeria.
| | - Wassila Benbrahim
- Faculty of Medicine, Batna 2 University, 05000, Citée Ezzouhour, Batna, Algeria.,Anti-Cancer Center, Batna, Algeria
| | - Kamel Hamizi
- Faculty of Medicine, Batna 2 University, 05000, Citée Ezzouhour, Batna, Algeria.,Anti-Cancer Center, Batna, Algeria
| | | | | | - Hocine Bounecer
- Faculty of Medicine, Batna 2 University, 05000, Citée Ezzouhour, Batna, Algeria.,Epidemiology Unit, University Hospital Center, Batna, Algeria
| |
Collapse
|
24
|
Khan S, Fagerholm R, Rafiq S, Tapper W, Aittomäki K, Liu J, Blomqvist C, Eccles D, Nevanlinna H. Polymorphism at 19q13.41 Predicts Breast Cancer Survival Specifically after Endocrine Therapy. Clin Cancer Res 2015; 21:4086-4096. [PMID: 25964295 PMCID: PMC4574404 DOI: 10.1158/1078-0432.ccr-15-0296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE Although most patients with estrogen receptor (ER)-positive breast cancer benefit from endocrine therapies, a significant proportion do not. Our aim was to identify inherited genetic variations that might predict survival among patients receiving adjuvant endocrine therapies. EXPERIMENTAL DESIGN We performed a meta-analysis of two genome-wide studies; Helsinki Breast Cancer Study, 805 patients, with 240 receiving endocrine therapy and Prospective study of Outcomes in Sporadic versus Hereditary breast cancer, 536 patients, with 155 endocrine therapy patients, evaluating 486,478 single-nucleotide polymorphisms (SNP). The top four associations from the endocrine treatment subgroup were further investigated in two independent datasets totaling 5,011 patients, with 3,485 receiving endocrine therapy. RESULTS A meta-analysis identified a common SNP rs8113308, mapped to 19q13.41, associating with reduced survival among endocrine-treated patients [hazard ratio (HR), 1.69; 95% confidence interval (CI), 1.37-2.07; P = 6.34 × 10(-7)] and improved survival among ER-negative patients, with a similar trend in ER-positive cases not receiving endocrine therapy. In a multivariate analysis adjusted for conventional prognostic factors, we found a significant interaction between the rs8113308 and endocrine treatment, indicating a predictive, treatment-specific effect of the SNP rs8113308 on breast cancer survival, with the per-allele HR for interaction 2.16 (95% CI, 1.30-3.60; Pinteraction = 0.003) and HR = 7.77 (95% CI, 0.93-64.71) for the homozygous genotype carriers. A biologic rationale is suggested by in silico functional analyses. CONCLUSIONS Our findings suggest carrying the rs8113308 rare allele may identify patients who will not benefit from adjuvant endocrine treatment.
Collapse
Affiliation(s)
- Sofia Khan
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Rainer Fagerholm
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sajjad Rafiq
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Hants, UK
| | - William Tapper
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Hants, UK
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital and Genome Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, 60 Biopolis St, Singapore
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, Helsinki, Finland
| | - Diana Eccles
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Hants, UK
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
25
|
Dharmadhikari AV, Szafranski P, Kalinichenko VV, Stankiewicz P. Genomic and Epigenetic Complexity of the FOXF1 Locus in 16q24.1: Implications for Development and Disease. Curr Genomics 2015; 16:107-16. [PMID: 26085809 PMCID: PMC4467301 DOI: 10.2174/1389202916666150122223252] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/09/2015] [Accepted: 01/21/2015] [Indexed: 01/01/2023] Open
Abstract
The FOXF1 (Forkhead box F1) gene, located on chromosome 16q24.1 encodes a member of the FOX family of transcription factors characterized by a distinct forkhead DNA binding domain. FOXF1 plays an important role in epithelium-mesenchyme signaling, as a downstream target of Sonic hedgehog pathway. Heterozygous point mutations and genomic deletions involving FOXF1 have been reported in newborns with a lethal lung developmental disorder, Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACDMPV). In addition, genomic deletions upstream to FOXF1 identified in ACDMPV patients have revealed that FOXF1 expression is tightly regulated by distal tissue-specific enhancers. Interestingly, FOXF1 has been found to be incompletely paternally imprinted in human lungs; characterized genomic deletions arose de novo exclusively on maternal chromosome 16, with most of them being Alu-Alu mediated. Regulation of FOXF1 expression likely utilizes a combination of chromosomal looping, differential methylation of an upstream CpG island overlapping GLI transcription factor binding sites, and the function of lung-specific long non-coding RNAs (lncRNAs). FOXF1 knock-out mouse models demonstrated its critical role in mesoderm differentiation and in the development of pulmonary vasculature. Additionally, epigenetic inactivation of FOXF1 has been reported in breast and colorectal cancers, whereas overexpression of FOXF1 has been associated with a number of other human cancers, e.g. medulloblastoma and rhabdomyosarcoma. Constitutional duplications of FOXF1 have recently been reported in congenital intestinal malformations. Thus, understanding the genomic and epigenetic complexity at the FOXF1 locus will improve diagnosis, prognosis, and treatment of ACDMPV and other human disorders associated with FOXF1 alterations.
Collapse
Affiliation(s)
- Avinash V Dharmadhikari
- Department of Molecular and Human Genetics; ; Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Vladimir V Kalinichenko
- Divisions of Pulmonary Biology and Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics; ; Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|