1
|
Ghahramani Almanghadim H, Karimi B, Poursalehi N, Sanavandi M, Atefi Pourfardin S, Ghaedi K. The biological role of lncRNAs in the acute lymphocytic leukemia: An updated review. Gene 2024; 898:148074. [PMID: 38104953 DOI: 10.1016/j.gene.2023.148074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The cause of leukemia, a common malignancy of the hematological system, is unknown. The structure of long non-coding RNAs (lncRNAs) is similar to mRNA but no ability to encode proteins. Numerous malignancies, including different forms of leukemia, are linked to Lnc-RNAs. It is verified that the carcinogenesis and growth of a variety of human malignancies are significantly influenced by aberrant lncRNA expression. The body of evidence linking various types of lncRNAs to the etiology of leukemia has dramatically increased during the past ten years. Some lncRNAs are therefore anticipated to function as novel therapeutic targets, diagnostic biomarkers, and clinical outcome predictions. Additionally, these lncRNAs may provide new therapeutic options and insight into the pathophysiology of diseases, particularly leukemia. Thus, this review outlines the present comprehension of leukemia-associated lncRNAs.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Negareh Poursalehi
- Department of Medical Biotechnology, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., 81746-73441 Isfahan, Iran.
| |
Collapse
|
2
|
Baghdadi H, Heidari R, Zavvar M, Ahmadi N, Shakouri Khomartash M, Vahidi M, Mohammadimehr M, Bashash D, Ghorbani M. Long Non-Coding RNA Signatures in Lymphopoiesis and Lymphoid Malignancies. Noncoding RNA 2023; 9:44. [PMID: 37624036 PMCID: PMC10458434 DOI: 10.3390/ncrna9040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Lymphoid cells play a critical role in the immune system, which includes three subgroups of T, B, and NK cells. Recognition of the complexity of the human genetics transcriptome in lymphopoiesis has revolutionized our understanding of the regulatory potential of RNA in normal lymphopoiesis and lymphoid malignancies. Long non-coding RNAs (lncRNAs) are a class of RNA molecules greater than 200 nucleotides in length. LncRNAs have recently attracted much attention due to their critical roles in various biological processes, including gene regulation, chromatin organization, and cell cycle control. LncRNAs can also be used for cell differentiation and cell fate, as their expression patterns are often specific to particular cell types or developmental stages. Additionally, lncRNAs have been implicated in lymphoid differentiation, such as regulating T-cell and B-cell development, and their expression has been linked to immune-associated diseases such as leukemia and lymphoma. In addition, lncRNAs have been investigated as potential biomarkers for diagnosis, prognosis, and therapeutic response to disease management. In this review, we provide an overview of the current knowledge about the regulatory role of lncRNAs in physiopathology processes during normal lymphopoiesis and lymphoid leukemia.
Collapse
Affiliation(s)
- Hamed Baghdadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
| | - Reza Heidari
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran 1411718541, Iran;
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran 443614177, Iran;
| | - Nazanin Ahmadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | | | - Mahmoud Vahidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Mojgan Mohammadimehr
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Mahdi Ghorbani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| |
Collapse
|
3
|
Luaibi AR, Al-Saffar M, Jalil AT, Rasol MA, Fedorovich EV, Saleh MM, Ahmed OS. Long non-coding RNAs: The modulators of innate and adaptive immune cells. Pathol Res Pract 2023; 241:154295. [PMID: 36608622 DOI: 10.1016/j.prp.2022.154295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Before very sensitive current genomics platforms were discovered, long non-coding RNAs (lncRNAs) as controllers of gene expression, were thought to be accumulated genetic garbage. The past few years have seen a lot of interest in a large classification of non-coding transcripts with an indeterminate length of more than 200 nucleotides [1]. lncRNAs' association with immunity and disease progression has been revealed by a growing body of experimental research. Only a limited subset of lncRNAs, however, has solid proof of their role. It is also clear that various immune cells express lncRNAs differently. In this review, we concentrated on the role of lncRNA expression in the regulation of immune cell function and response to pathological conditions in macrophages, dendritic cells, natural killer (NK) cells, neutrophils, Myeloid-derived suppressor cells (MDSCs), T cells, and B cells. The innate and adaptive immune response systems may be significantly regulated by lncRNAs, according to emerging research. To discover possible therapeutic targets for the therapy of different diseases, it may be helpful to have a better realization of the molecular mechanisms beyond the role of lncRNAs in the immune response. Therefore, it is crucial to investigate lncRNA expression and comprehend its significance for the immune system.
Collapse
Affiliation(s)
- Aseel Riyadh Luaibi
- Utbah bin Ghazwan High School for Girls, Al_Karkh first Directorate of Education, Ministry of Education, Baghdad, Iraq
| | - Montaha Al-Saffar
- Community Health Department, Institute of Medical Technology /Baghdad, Middle Technical University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | - Mustafa Asaad Rasol
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Eremin Vladimir Fedorovich
- Republican Scientific and Practical Center for Transfusiology and Medical, Biotechnologies, Minsk, Belarus
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq; Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | |
Collapse
|
4
|
Maimaitiyiming Y, Ye L, Yang T, Yu W, Naranmandura H. Linear and Circular Long Non-Coding RNAs in Acute Lymphoblastic Leukemia: From Pathogenesis to Classification and Treatment. Int J Mol Sci 2022; 23:ijms23084442. [PMID: 35457264 PMCID: PMC9033105 DOI: 10.3390/ijms23084442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The coding regions account for only a small part of the human genome, and the remaining vast majority of the regions generate large amounts of non-coding RNAs. Although non-coding RNAs do not code for any protein, they are suggested to work as either tumor suppressers or oncogenes through modulating the expression of genes and functions of proteins at transcriptional, posttranscriptional and post-translational levels. Acute Lymphoblastic Leukemia (ALL) originates from malignant transformed B/T-precursor-stage lymphoid progenitors in the bone marrow (BM). The pathogenesis of ALL is closely associated with aberrant genetic alterations that block lymphoid differentiation and drive abnormal cell proliferation as well as survival. While treatment of pediatric ALL represents a major success story in chemotherapy-based elimination of a malignancy, adult ALL remains a devastating disease with relatively poor prognosis. Thus, novel aspects in the pathogenesis and progression of ALL, especially in the adult population, need to be further explored. Accumulating evidence indicated that genetic changes alone are rarely sufficient for development of ALL. Recent advances in cytogenic and sequencing technologies revealed epigenetic alterations including that of non-coding RNAs as cooperating events in ALL etiology and progression. While the role of micro RNAs in ALL has been extensively reviewed, less attention, relatively, has been paid to other non-coding RNAs. Herein, we review the involvement of linear and circular long non-coding RNAs in the etiology, maintenance, and progression of ALL, highlighting the contribution of these non-coding RNAs in ALL classification and diagnosis, risk stratification as well as treatment.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Linyan Ye
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tao Yang
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Wenjuan Yu
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Correspondence: (W.Y.); (H.N.)
| | - Hua Naranmandura
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Correspondence: (W.Y.); (H.N.)
| |
Collapse
|
5
|
Hidden Treasures: Macrophage Long Non-Coding RNAs in Lung Cancer Progression. Cancers (Basel) 2021; 13:cancers13164127. [PMID: 34439281 PMCID: PMC8392679 DOI: 10.3390/cancers13164127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Ever since RNA sequencing of whole genomes and transcriptomes became available, numerous RNA transcripts without having the classic function of encoding proteins have been discovered. Long non-coding RNAs (lncRNAs) with a length greater than 200 nucleotides were considered as "junk" in the beginning, but it has increasingly become clear that lncRNAs have crucial roles in regulating a variety of cellular mechanisms and are often deregulated in several diseases, such as cancer. Lung cancer is the leading cause of cancer-related deaths and has a survival rate of less than 10%. Immune cells infiltrating the tumor microenvironment (TME) have been shown to have a great effect on tumor development with macrophages being the major cell type within the TME. Macrophages can inherit an inflammatory M1 or an anti-inflammatory M2 phenotype. Tumor-associated macrophages, which are predominantly polarized to M2, favor tumor growth, angiogenesis, and metastasis. In this review, we aimed to describe the complex roles and functions of lncRNAs in macrophages and their influence on lung cancer development and progression through the TME.
Collapse
|
6
|
Chen W, Liu S, Wang F. Potential impact and mechanism of Long Non-coding RNAs on cancer and associated T cells. J Cancer 2021; 12:4873-4882. [PMID: 34234857 PMCID: PMC8247393 DOI: 10.7150/jca.58859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/30/2021] [Indexed: 01/01/2023] Open
Abstract
The discovery of many aberrant expressions of long non-coding RNAs (lncRNAs) in various cancers has focused attention on the effects of lncRNA on cancer cells themselves, including cell proliferation, growth inhibition, cell migration, cell immortality, vascular regeneration and cell viability. But with the increasing role of immunotherapy in cancer therapy, a large number of studies have revealed that the regulatory role of lncRNAs in immunity such as differentiation of immune cells can also influence the development and progression of cancer. In particular, recent publications have suggested that lncRNAs play critical roles in T-lymphocyte activation, proliferation, differentiation, function, apoptosis and metabolism. To elucidate the actual functions of lncRNAs at the molecular level of cancer pathogenesis, we summarize some of the current lncRNA regulatory mechanisms associated with T cell to discuss their effects in cancer in the hope of providing potential cancer therapeutic targets or cancer biomarkers. However, we all know that the differentiation and function of T cells is an extremely complex process that involves the expression and regulation of multiple lncRNAs. As a result, more regulatory mechanisms of lncRNAs need to be further studied.
Collapse
Affiliation(s)
- Wenxiu Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029.,National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| | - Shuna Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029.,National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| | - Fang Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029.,National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| |
Collapse
|
7
|
Bakker OB, Ramírez-Sánchez AD, Borek ZA, de Klein N, Li Y, Modderman R, Kooy-Winkelaar Y, Johannesen MK, Matarese F, Martens JHA, Kumar V, van Bergen J, Qiao SW, Lundin KEA, Sollid LM, Koning F, Wijmenga C, Withoff S, Jonkers IH. Potential impact of celiac disease genetic risk factors on T cell receptor signaling in gluten-specific CD4+ T cells. Sci Rep 2021; 11:9252. [PMID: 33927210 PMCID: PMC8085175 DOI: 10.1038/s41598-021-86612-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/18/2021] [Indexed: 02/08/2023] Open
Abstract
Celiac disease is an auto-immune disease in which an immune response to dietary gluten leads to inflammation and subsequent atrophy of small intestinal villi, causing severe bowel discomfort and malabsorption of nutrients. The major instigating factor for the immune response in celiac disease is the activation of gluten-specific CD4+ T cells expressing T cell receptors that recognize gluten peptides presented in the context of HLA-DQ2 and DQ8. Here we provide an in-depth characterization of 28 gluten-specific T cell clones. We assess their transcriptional and epigenetic response to T cell receptor stimulation and link this to genetic factors associated with celiac disease. Gluten-specific T cells have a distinct transcriptional profile that mostly resembles that of Th1 cells but also express cytokines characteristic of other types of T-helper cells. This transcriptional response appears not to be regulated by changes in chromatin state, but rather by early upregulation of transcription factors and non-coding RNAs that likely orchestrate the subsequent activation of genes that play a role in immune pathways. Finally, integration of chromatin and transcription factor binding profiles suggest that genes activated by T cell receptor stimulation of gluten‑specific T cells may be impacted by genetic variation at several genetic loci associated with celiac disease.
Collapse
Affiliation(s)
- Olivier B Bakker
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aarón D Ramírez-Sánchez
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zuzanna A Borek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niek de Klein
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yang Li
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rutger Modderman
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yvonne Kooy-Winkelaar
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie K Johannesen
- K.G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Filomena Matarese
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Vinod Kumar
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Jeroen van Bergen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Shuo-Wang Qiao
- K.G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Knut E A Lundin
- K.G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- K.G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Frits Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- K.G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sebo Withoff
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Iris H Jonkers
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
8
|
Wu M, Fu P, Qu L, Liu J, Lin A. Long Noncoding RNAs, New Critical Regulators in Cancer Immunity. Front Oncol 2020; 10:550987. [PMID: 33194608 PMCID: PMC7662117 DOI: 10.3389/fonc.2020.550987] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in various aspects of cellular functions. Recent studies have revealed that lncRNAs are critical players in the immune system by modulating immune cell differentiation and functions, particularly in cancer immunity. Here we systematically summarize how lncRNAs are involved in different processes of the cancer immunity cycle, including immune cell differentiation, proliferation, trafficking, and infiltration. Moreover, the limitations of the current understanding of lncRNA’s functions in cancer immunity are described, such as the complexity of the cancer immunity system, the inclusive functions of lncRNAs in this system, and the associated immune response. In sum, the comprehensive investigation of the roles of lncRNAs in cancer immunity aids in cancer diagnosis and therapies.
Collapse
Affiliation(s)
- Minjie Wu
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Peifen Fu
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian Liu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Aifu Lin
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Commentary on: The potency of lncRNA MALAT1/miR-155 in altering asthmatic Th1/Th2 balance by modulation of CTLA4. Biosci Rep 2020; 40:222656. [PMID: 32292999 PMCID: PMC7199447 DOI: 10.1042/bsr20190768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 01/14/2023] Open
Abstract
Asthma is a common, allergic respiratory disorder affecting over 350 million people worldwide. One of the key features of asthma is skewing of CD4+ cells toward Th2 responses. This promotes the production of cytokines like IL-4 that induce IgE production resulting in the hypersecretion of mucus and airway smooth muscle contraction. Understanding the factors that favor Th2 expansion in asthma would provide important insights into the underlying pathogenesis of this disorder. Asthma research has focused on signaling pathways that control the transcription of key asthma-related genes. However, increasing evidence shows that post-transcriptional factors also determine CD4+ cell fate and the enhancement of allergic airway responses. A recent paper published by Liang et al. (Bioscience Reports (2020) 40, https://doi.org/10.1042/BSR20190397) highlights a novel role for the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in Th2 development in asthma. MALAT1 modulates several biological processes including alternative splicing, epigenetic modification and gene expression. It is one of the most highly expressed lncRNAs in normal tissues and MALAT1 levels correlate with poor clinical outcomes in cancer. The mechanisms of action of MALAT1 in tumor progression and metastasis remain unclear and even less is known about its effects in inflammatory disease states like asthma. The work of Liang et al. demonstrates heightened MALAT1 expression in asthma and further shows that this lncRNA targets miR-155 to promote Th2 differentiation in this disease. This insight sets the stage for future studies to examine how MALAT1 manipulation could deter allergic immune responses in asthmatic airways.
Collapse
|
10
|
Ghafouri-Fard S, Shoorei H, Taheri M, Sanak M. Emerging role of non-coding RNAs in allergic disorders. Biomed Pharmacother 2020; 130:110615. [PMID: 32777705 DOI: 10.1016/j.biopha.2020.110615] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/26/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
RNA transcripts that not undergo translation into polypeptides recently came into focus of research. Long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) comprise the most important groups of these transcripts. LncRNAs have a length over 200 nucleotides and like mRNAs, have regulated transcription in a tissue specific manner. Biogenesis and function of lncRNAs is related to cell differentiation, response to stimuli and regulation of immune responses. LncRNAs can interact with both miRNAs and mRNAs. MiRNAs are characterized by a length of 22-24 nucleotides. MiRNAs regulate expression of genes at the post-transcriptional level. LncRNAs together with miRNAs are considered as regulators of the immune system. Alterations in their biogenesis is an important mechanism in the development immune related disorders. CircRNAs are products of aberrant maturation of protein-coding transcripts in a process of back-splicing, in which a single strand RNA molecule attains a closed circle shape. Despite a low expression, some circRNA were found to titrate miRNAs and interfere with maturation of legitimate protein-coding transcripts. We summarize the current knowledge on the role of non-coding transcripts in allergic disorders: asthma, atopic dermatitis, allergic rhinitis and urticaria. The reviewed data suggest lncRNA and miRNAs as therapeutic targets and biomarkers of allergic disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
11
|
Chen J, Ao L, Yang J. Long non-coding RNAs in diseases related to inflammation and immunity. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:494. [PMID: 31700930 DOI: 10.21037/atm.2019.08.37] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been key regulators of gene expression in innate and adaptive immunity. Although lncRNAs have been reported to be associated with some diseases, its expression and function in diseases related to inflammation and immunity are still unknown. We reviewed how lncRNA regulated transcription and controlled the function and balance of the cells in the immune response. In addition, we discussed the impacts and challenges of lncRNAs on immunity in diseases.
Collapse
Affiliation(s)
- Jiao Chen
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430000, China.,Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430000, China
| | - Liangfei Ao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430000, China.,Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430000, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430000, China.,Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430000, China
| |
Collapse
|
12
|
Zhu Y, Mao D, Gao W, Han G, Hu H. Analysis of lncRNA Expression in Patients With Eosinophilic and Neutrophilic Asthma Focusing on LNC_000127. Front Genet 2019; 10:141. [PMID: 30941157 PMCID: PMC6433975 DOI: 10.3389/fgene.2019.00141] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNA (lncRNA) is important in many diseases. Some studies have shown that lncRNA affects the pathogenesis of systemic inflammation of asthma. lncRNA regulates gene transcription, protein expression, and epigenetic regulation. However, lncRNAs associated with different airway phenotypes, such as eosinophilic (Eos) and neutrophilic (Neu) asthma have not been identified. The goal of this study was to determine the differences in circulating lncRNA signatures in Eos and Neu samples. Using RNA-sequencing (RNA-seq), lncRNA expression was evaluated in peripheral whole blood samples among Eos patients, Neu patients, and healthy individuals (Control). Bioinformatic analysis was used to predict relevant biological pathways. Quantitative PCR (qPCR) was used to measure gene expression in whole blood samples, Jurkat cells, and human CD4+ T cells. Finally, a novel lncRNA, LNC_000127, was inhibited by transfection of Jurkat cells with a lentiviral vector, and the effect was examined by Human Asthma RT2 Profiler™ PCR Array and western blotting. Compared to control samples, Eos samples contained 190 unique lncRNAs and Neu samples had 166 unique lncRNAs (difference ≥2-fold). KEGG pathway annotation data and GO terms revealed that different lncRNAs are involved in different mechanisms. LNC_000127, was highly expressed in Eos samples before treatment; its expression was increased in Jurkat cells and human CD4+ T cells following stimulation with PMA/CD28. Subsequent analyses revealed that LNC_000127 functions in the Th2 inflammation pathway. The results suggest that lncRNAs are involved in different phenotypes of asthma. Whether the different phenotypes of asthma can be recognized based on these lncRNAs (as biomarkers) requires further analysis. Targeting LNC_000127 may be effective for reducing Th2 inflammation in Eos asthma.
Collapse
Affiliation(s)
- Yujin Zhu
- Respiratory Department, Chinese People's Liberation Army General Hospital, Beijing, China.,Respiratory Department, Tianjin Municipal Corps Hospital of CAPF, Tianjin, China
| | - Dan Mao
- Respiratory Department, Chinese People's Liberation Army General Hospital, Beijing, China.,No. 968 Hospital of Chinese People's Liberation Army, Jinzhou, China
| | - Wei Gao
- Respiratory Department, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Guojing Han
- Respiratory Department, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hong Hu
- Respiratory Department, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
13
|
Saadi W, Kermezli Y, Dao LTM, Mathieu E, Santiago-Algarra D, Manosalva I, Torres M, Belhocine M, Pradel L, Loriod B, Aribi M, Puthier D, Spicuglia S. A critical regulator of Bcl2 revealed by systematic transcript discovery of lncRNAs associated with T-cell differentiation. Sci Rep 2019; 9:4707. [PMID: 30886319 PMCID: PMC6423290 DOI: 10.1038/s41598-019-41247-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/01/2019] [Indexed: 12/30/2022] Open
Abstract
Normal T-cell differentiation requires a complex regulatory network which supports a series of maturation steps, including lineage commitment, T-cell receptor (TCR) gene rearrangement, and thymic positive and negative selection. However, the underlying molecular mechanisms are difficult to assess due to limited T-cell models. Here we explore the use of the pro-T-cell line P5424 to study early T-cell differentiation. Stimulation of P5424 cells by the calcium ionophore ionomycin together with PMA resulted in gene regulation of T-cell differentiation and activation markers, partially mimicking the CD4-CD8- double negative (DN) to double positive (DP) transition and some aspects of subsequent T-cell maturation and activation. Global analysis of gene expression, along with kinetic experiments, revealed a significant association between the dynamic expression of coding genes and neighbor lncRNAs including many newly-discovered transcripts, thus suggesting potential co-regulation. CRISPR/Cas9-mediated genetic deletion of Robnr, an inducible lncRNA located downstream of the anti-apoptotic gene Bcl2, demonstrated a critical role of the Robnr locus in the induction of Bcl2. Thus, the pro-T-cell line P5424 is a powerful model system to characterize regulatory networks involved in early T-cell differentiation and maturation.
Collapse
Affiliation(s)
- Wiam Saadi
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France.,Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Yasmina Kermezli
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France.,Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Lan T M Dao
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France.,Vinmec Research Institute of Stem cell and Gene technology (VRISG), Hanoi, Vietnam
| | - Evelyne Mathieu
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - David Santiago-Algarra
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Iris Manosalva
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Magali Torres
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Mohamed Belhocine
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France.,Molecular Biology and Genetics Laboratory, Dubai, United Arab Emirates
| | - Lydie Pradel
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Beatrice Loriod
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Denis Puthier
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France. .,Equipe Labélisée Ligue Contre le Cancer, Marseille, France.
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France. .,Equipe Labélisée Ligue Contre le Cancer, Marseille, France.
| |
Collapse
|
14
|
Long Non-Coding RNA and Acute Leukemia. Int J Mol Sci 2019; 20:ijms20030735. [PMID: 30744139 PMCID: PMC6387068 DOI: 10.3390/ijms20030735] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022] Open
Abstract
Acute leukemia (AL) is the main type of cancer in children worldwide. Mortality by this disease is high in developing countries and its etiology remains unanswered. Evidences showing the role of the long non-coding RNAs (lncRNAs) in the pathophysiology of hematological malignancies have increased drastically in the last decade. In addition to the contribution of these lncRNAs in leukemogenesis, recent studies have suggested that lncRNAs could be used as biomarkers in the diagnosis, prognosis, and therapeutic response in leukemia patients. The focus of this review is to describe the functional classification, biogenesis, and the role of lncRNAs in leukemogenesis, to summarize the evidence about the lncRNAs which are playing a role in AL, and how these genes could be useful as potential therapeutic targets.
Collapse
|
15
|
Abstract
Cytokines and long noncoding RNAs (lncRNAs) are intertwined in the regulatory circuit controlling immunity. lncRNA expression levels are altered following cytokine stimulation in a cell-type-specific fashion. lncRNAs, in turn, regulate the inducible expression of cytokines following immune activation. These studies position lncRNAs as important regulators of gene expression within the complex pathways of the immune system. Our understanding of the functions of lncRNAs is just beginning. Current methodologies for functionally understanding how these transcripts mediate their effects are unable to keep up with the speed of genomic outputs cataloging thousands of these novel genes. In this review, we highlight the interplay between cytokines and lncRNAs and speculate on the future utility of these genes as potential biomarkers and therapeutic targets for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts 01655
- Centre for Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, NTNU, 7491 Trondheim, Norway
| |
Collapse
|
16
|
Yu WD, Wang H, He QF, Xu Y, Wang XC. Long noncoding RNAs in cancer-immunity cycle. J Cell Physiol 2018; 233:6518-6523. [PMID: 29574911 DOI: 10.1002/jcp.26568] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/27/2018] [Indexed: 12/29/2022]
Abstract
The imbalance of immune status in cancer microenvironment plays an important role in the development and progression of cancer. Immunotherapy based on this has become an important field of cancer research in recent years. Many studies on long noncoding RNA (lncRNA) in cancer have focus on its regulation in cancer development and metastasis. Recent studies have suggested that lncRNAs play crucial roles in different phases of cancer immunity, including antigen releasing, antigen presentation, immune activation, immune cells migration, infiltrating into cancer tissues, and killing cancer cells. The functional studies of lncRNAs in cancer immuntity revealed the complicated molecular mechanisms in cancer immunity from a new point of view, which may provide novel potential targets for cancer immunotherapies. Based on the classical cancer-immunity cycle theory, we review the recent studies on the functions and mechanisms of immune-related lncRNAs in different stages of cancer immunity, to summarize the relationship between lncRNAs, and cancer immunity and to provide a framework for further research.
Collapse
Affiliation(s)
- Wei-Di Yu
- Liver Transplantation Center of The First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P. R. China
| | - Huanhuan Wang
- Nursing Department, Dongnan University Affiliated Xuzhou Center Hospital, Xuzhou, Jiangsu Province, P. R. China
| | - Qi-Feng He
- Liver Transplantation Center of The First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P. R. China
| | - Yong Xu
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu Province, P. R. China
| | - Xiao-Chen Wang
- Liver Transplantation Center of The First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P. R. China
| |
Collapse
|
17
|
Abstract
Long noncoding RNA (lncRNA) plays roles in many diseases including asthma. Several lncRNAs function in the early differentiation of T-helper cells. lncRNA controls gene transcription, protein expression, and epigenetic regulation. Of the 4 asthma phenotypes, eosinophilic asthma (EA) is the most common. However, the lncRNAs associated with eosinophilic asthma have yet to be identified.We designed a study to identify the circulating lncRNA signature in EA samples. We tested whether significant differences in lncRNA expression were observed between blood samples from patients with EA and healthy individuals (control). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for the lncRNA-mRNA (messenger RNA) co-expression network. lncRNA expression was measured using quantitative real-time PCR (polymerase chain reaction).A total of 41 dysregulated lncRNAs and 762 dysregulated mRNAs (difference ≥ 2-fold) were found in EA compared to control samples. GO terms and KEGG pathway annotation data revealed that several lncRNAs are significantly associated with EA. KEGG pathway annotation indicated that the pathways most enriched in EA were measles, T cell receptor signaling pathway, peroxisome proliferator activated-receptors (PPAR) signaling pathway, Fc gamma R-mediated phagocytosis, NF (nuclear factor) kappa B signaling pathway, chemokine signaling pathway, and primary immunodeficiency. Using qRT-PCR, lncRNA was confirmed to differ significantly between EA and control samples.The results presented here show that several lncRNAs may take part in the immune regulation of EA. Whether these lncRNAs can be used as biomarkers needs further study.
Collapse
Affiliation(s)
- Yu-Jin Zhu
- Respiratory Department, Chinese PLA General Hospital, FuXing Road, Haidian District, Beijing, China
- Tianjin Municipal Corps Hospital of CAPF, WeiGuo, DongLi, Tianjin, China
| | - Dan Mao
- Respiratory Department, Chinese PLA General Hospital, FuXing Road, Haidian District, Beijing, China
| | - Wei Gao
- Respiratory Department, Chinese PLA General Hospital, FuXing Road, Haidian District, Beijing, China
| | - Hong Hu
- Respiratory Department, Chinese PLA General Hospital, FuXing Road, Haidian District, Beijing, China
| |
Collapse
|
18
|
Salviano-Silva A, Lobo-Alves SC, Almeida RCD, Malheiros D, Petzl-Erler ML. Besides Pathology: Long Non-Coding RNA in Cell and Tissue Homeostasis. Noncoding RNA 2018; 4:ncrna4010003. [PMID: 29657300 PMCID: PMC5890390 DOI: 10.3390/ncrna4010003] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/12/2022] Open
Abstract
A significant proportion of mammalian genomes corresponds to genes that transcribe long non-coding RNAs (lncRNAs). Throughout the last decade, the number of studies concerning the roles played by lncRNAs in different biological processes has increased considerably. This intense interest in lncRNAs has produced a major shift in our understanding of gene and genome regulation and structure. It became apparent that lncRNAs regulate gene expression through several mechanisms. These RNAs function as transcriptional or post-transcriptional regulators through binding to histone-modifying complexes, to DNA, to transcription factors and other DNA binding proteins, to RNA polymerase II, to mRNA, or through the modulation of microRNA or enzyme function. Often, the lncRNA transcription itself rather than the lncRNA product appears to be regulatory. In this review, we highlight studies identifying lncRNAs in the homeostasis of various cell and tissue types or demonstrating their effects in the expression of protein-coding or other non-coding RNA genes.
Collapse
Affiliation(s)
- Amanda Salviano-Silva
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba 81531-980, Caixa Postal 19071, Brazil.
| | - Sara Cristina Lobo-Alves
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba 81531-980, Caixa Postal 19071, Brazil.
| | - Rodrigo Coutinho de Almeida
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba 81531-980, Caixa Postal 19071, Brazil.
| | - Danielle Malheiros
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba 81531-980, Caixa Postal 19071, Brazil.
| | - Maria Luiza Petzl-Erler
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba 81531-980, Caixa Postal 19071, Brazil.
| |
Collapse
|
19
|
Yuan M, Wang S, Yu L, Qu B, Xu L, Liu L, Sun H, Li C, Shi Y, Liu H. Long noncoding RNA profiling revealed differentially expressed lncRNAs associated with disease activity in PBMCs from patients with rheumatoid arthritis. PLoS One 2017; 12:e0186795. [PMID: 29140972 PMCID: PMC5687725 DOI: 10.1371/journal.pone.0186795] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/07/2017] [Indexed: 11/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have recently emerged as important biological regulators, and the aberrant expression of lncRNAs has been reported in numerous diseases. However, the expression of lncRNAs in peripheral blood mononuclear cells (PBMCs) in rheumatoid arthritis (RA) has not been well documented. We applied a microarray analysis to profile the lncRNA and mRNA expression in 3 pairs of samples. Each sample was mixed with equivalent PBMCs from 9 female RA patients and 9 corresponding healthy controls, and the data were validated via qPCR using another cohort that comprised 36 RA patients and 24 healthy controls. A bioinformatic analysis was performed to investigate the potential functions of differentially expressed genes. Overall, 2,099 lncRNAs and 2,307 mRNAs were differentially expressed between the RA patients and healthy controls. The bioinformatic analysis indicated that the differentially expressed lncRNAs regulated the abnormally expressed mRNAs, which were involved in the pathogenesis of RA through several different pathways. The qPCR results showed that the expression levels of ENST00000456270 and NR_002838 were significantly increased in the RA patients, whereas the expression levels of NR_026812 and uc001zwf.1 were significantly decreased. Furthermore, the expression level of ENST00000456270 was strongly associated with the serum levels of IL-6 and TNF-a and the Simplified Disease Activity Index (SDAI) of the RA patients. Our data provided comprehensive evidence regarding the differential expression of lncRNAs in PBMCs of RA patients, which shed light on the understanding of the molecular mechanisms of lncRNAs in the pathogenesis of RA.
Collapse
Affiliation(s)
- Min Yuan
- Department of Rheumatology, Shandong University Qilu Hospital, Jinan, China
- Department of Rheumatology, Liaocheng People’s Hospital, Liaocheng, China
| | - Shujun Wang
- Department of Rheumatology, Shandong University Qilu Hospital, Jinan, China
- Department of Rheumatology, Central Hospital of Zibo, Zibo, China
| | - Lijie Yu
- Department of Rheumatology, Shandong University Qilu Hospital, Jinan, China
- Department of Rheumatology, Dong’e People’s Hospital, Liaocheng, China
| | - Bo Qu
- Shanghai Institute of Rheumatology, Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liming Xu
- Department of Rheumatology, Liaocheng People’s Hospital, Liaocheng, China
| | - Lining Liu
- Department of Rheumatology, Liaocheng People’s Hospital, Liaocheng, China
| | - Huanxia Sun
- Department of Rheumatology, Liaocheng People’s Hospital, Liaocheng, China
| | - Chunxian Li
- Department of Rheumatology, Liaocheng People’s Hospital, Liaocheng, China
| | - Yanjun Shi
- Department of Rheumatology, Liaocheng People’s Hospital, Liaocheng, China
| | - Huaxiang Liu
- Department of Rheumatology, Shandong University Qilu Hospital, Jinan, China
- * E-mail:
| |
Collapse
|
20
|
Dynamic gene expression response to altered gravity in human T cells. Sci Rep 2017; 7:5204. [PMID: 28701719 PMCID: PMC5507981 DOI: 10.1038/s41598-017-05580-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/31/2017] [Indexed: 01/02/2023] Open
Abstract
We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.
Collapse
|
21
|
Coelho-Lima J, Spyridopoulos I. Non-coding RNA regulation of T cell biology: Implications for age-associated cardiovascular diseases. Exp Gerontol 2017; 109:38-46. [PMID: 28652179 DOI: 10.1016/j.exger.2017.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/26/2023]
Abstract
Prevalence of age-associated cardiovascular diseases (CVD) has dramatically increased as a result of improvements in life expectancy. Chronic inflammation is a shared pathophysiological feature of age-associated CVDs, indicating a role for the immune system in the onset and development of CVDs. Indeed, ageing elicits profound changes in both the cardiovascular and immune system, especially in the T cell compartment. Although such changes have been well described at the cellular level, the molecular mechanisms underlying immune-mediated cardiovascular ageing remain largely unexplored. Non-coding RNAs (ncRNAs) comprise a heterogeneous family of RNA transcripts that regulate gene expression at the epigenetic, transcriptional, post-transcriptional, and post-translational levels. Non-coding RNAs have recently emerged as master modulators of T cell immunity. In this review, the state-of-the-art knowledge on ncRNA regulatory effects over T cell differentiation, function, and ageing in the context of age-associated CVDs, such as atherosclerosis, acute coronary syndromes, and heart failure, is discussed.
Collapse
Affiliation(s)
- Jose Coelho-Lima
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Ioakim Spyridopoulos
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom; Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Freeman Road, High Heaton, Newcastle upon Tyne NE7 7DN, United Kingdom.
| |
Collapse
|
22
|
Wang SY, Fan XL, Yu QN, Deng MX, Sun YQ, Gao WX, Li CL, Shi JB, Fu QL. The lncRNAs involved in mouse airway allergic inflammation following induced pluripotent stem cell-mesenchymal stem cell treatment. Stem Cell Res Ther 2017; 8:2. [PMID: 28057064 PMCID: PMC5216550 DOI: 10.1186/s13287-016-0456-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 12/24/2022] Open
Abstract
Background We have previously reported that induced pluripotent stem cell (iPSC)-mesenchymal stem cells (MSCs) alleviated asthma inflammation in mice. Long noncoding RNAs (lncRNAs) were recently reported as being involved in the immune responses. However, whether lncRNAs are associated with iPSC-MSC immunomodulation in allergic inflammation is still unclear. Methods Mice were induced into an asthmatic state and received treatment consisting of iPSC-MSCs. Memory T cells isolated from sensitized mice were challenged and co-cultured with iPSC-MSCs in vitro. Total RNA from the lungs and separated T cells were processed with an lncRNA/mRNA microarray. A series of bioinformatics technologies were used to screen the target lncRNAs. Results iPSC-MSCs significantly prevented asthma inflammation and decreased the Th2 cytokine levels. Over 1300 lncRNAs were differentially expressed after the induction of asthma, and 846 or 4176 lncRNAs were differentially expressed with iPSC-MSC treatment in mice or in vitro, respectively. After overlapping the differentially expressed lncRNAs produced in a similar manner in mice and in vitro, 23 lncRNAs and 96 mRNAs were selected, in which 58 protein-coding genes were predicted to be potential targets of the 23 lncRNAs. Furthermore, using a series of bioinformatics technologies, 9 lncRNAs co-expressed with the most differentially expressed mRNAs, which were enriched in terms of the immune response, were screened out via Pearson’s correlation coefficient with mRNAs that were involved with inflammatory cytokines and receptors. lncRNAs MM9LINCRNAEXON12105+ and AK089315 were finally emphasized via quantitative real-time PCR validation. Conclusions Our results suggested that aberrant lncRNA profiles were present after asthma induction and iPSC-MSC treatment, suggesting potential targets of allergic inflammation and iPSC-MSC-mediated immunomodulation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0456-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shu-Yue Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xing-Liang Fan
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Centre for Stem Cell Clinical Research and Application, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiu-Ning Yu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Meng-Xia Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yue-Qi Sun
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Xiang Gao
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Cheng-Lin Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Centre for Stem Cell Clinical Research and Application, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian-Bo Shi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,Centre for Stem Cell Clinical Research and Application, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
23
|
Paneru B, Al-Tobasei R, Palti Y, Wiens GD, Salem M. Differential expression of long non-coding RNAs in three genetic lines of rainbow trout in response to infection with Flavobacterium psychrophilum. Sci Rep 2016; 6:36032. [PMID: 27786264 PMCID: PMC5081542 DOI: 10.1038/srep36032] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022] Open
Abstract
Bacterial cold-water disease caused by Flavobacterium psychrophilum is one of the major causes of mortality of salmonids. Three genetic lines of rainbow trout designated as ARS-Fp-R (resistant), ARS-Fp-C (control) and ARS-Fp-S (susceptible) have significant differences in survival rate following F. psychrophilum infection. Previous study identified transcriptome differences of immune-relevant protein-coding genes at basal and post infection levels among these genetic lines. Using RNA-Seq approach, we quantified differentially expressed (DE) long non-coding RNAs (lncRNAs) in response to F. psychrophilum challenge in these genetic lines. Pairwise comparison between genetic lines and different infection statuses identified 556 DE lncRNAs. A positive correlation existed between the number of the differentially regulated lncRNAs and that of the protein-coding genes. Several lncRNAs showed strong positive and negative expression correlation with their overlapped, neighboring and distant immune related protein-coding genes including complement components, cytokines, chemokines and several signaling molecules involved in immunity. The correlated expressions and genome-wide co-localization suggested that some lncRNAs may be involved in regulating immune-relevant protein-coding genes. This study provides the first evidence of lncRNA-mediated regulation of the anti-bacterial immune response in a commercially important aquaculture species and will likely help developing new genetic markers for rainbow trout disease resistance.
Collapse
Affiliation(s)
- Bam Paneru
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, U.S
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN 37132, U.S
| | - Yniv Palti
- The National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV 25430, U.S
| | - Gregory D Wiens
- The National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV 25430, U.S
| | - Mohamed Salem
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, U.S.,Computational Science Program, Middle Tennessee State University, Murfreesboro, TN 37132, U.S
| |
Collapse
|
24
|
Zhou T, Ding JW, Wang XA, Zheng XX. Long noncoding RNAs and atherosclerosis. Atherosclerosis 2016; 248:51-61. [PMID: 26987066 DOI: 10.1016/j.atherosclerosis.2016.02.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 01/13/2023]
Abstract
Atherosclerosis is universally recognized as a chronic lipid-induced inflammation of the vessel wall in response to dyslipidemia and haemodynamic stress involving dysfunction and activation of resident vascular cells as well as infiltration of leukocytes. As members of nonprotein-coding RNAs, the long noncoding RNAs (lncRNAs) are implicated in various biological processes. Accumulating evidences suggest that lncRNAs regulate the function of vascular wall, activation of macrophages, lipid metabolism and immune response. Here, we review the effects of lncRNAs on the progress of atherosclerosis.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Jia-wang Ding
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China.
| | - Xin-an Wang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Xia-xia Zheng
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| |
Collapse
|
25
|
Rodríguez-Malavé NI, Fernando TR, Patel PC, Contreras JR, Palanichamy JK, Tran TM, Anguiano J, Davoren MJ, Alberti MO, Pioli KT, Sandoval S, Crooks GM, Rao DS. BALR-6 regulates cell growth and cell survival in B-lymphoblastic leukemia. Mol Cancer 2015; 14:214. [PMID: 26694754 PMCID: PMC4688921 DOI: 10.1186/s12943-015-0485-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022] Open
Abstract
Background A new class of non-coding RNAs, known as long non-coding RNAs (lncRNAs), has been recently described. These lncRNAs are implicated to play pivotal roles in various molecular processes, including development and oncogenesis. Gene expression profiling of human B-ALL samples showed differential lncRNA expression in samples with particular cytogenetic abnormalities. One of the most promising lncRNAs identified, designated B-ALL associated long RNA-6 (BALR-6), had the highest expression in patient samples carrying the MLL rearrangement, and is the focus of this study. Results Here, we performed a series of experiments to define the function of BALR-6, including several novel splice forms that we identified. Functionally, siRNA-mediated knockdown of BALR-6 in human B-ALL cell lines caused reduced cell proliferation and increased cell death. Conversely, overexpression of BALR-6 isoforms in both human and mouse cell lines caused increased proliferation and decreased apoptosis. Overexpression of BALR-6 in murine bone marrow transplantation experiments caused a significant increase in early hematopoietic progenitor populations, suggesting that its dysregulation may cause developmental changes. Notably, the knockdown of BALR-6 resulted in global dysregulation of gene expression. The gene set was enriched for leukemia-associated genes, as well as for the transcriptome regulated by Specificity Protein 1 (SP1). We confirmed changes in the expression of SP1, as well as its known interactor and downstream target CREB1. Luciferase reporter assays demonstrated an enhancement of SP1-mediated transcription in the presence of BALR-6. These data provide a putative mechanism for regulation by BALR-6 in B-ALL. Conclusions Our findings support a role for the novel lncRNA BALR-6 in promoting cell survival in B-ALL. Furthermore, this lncRNA influences gene expression in B-ALL in a manner consistent with a function in transcriptional regulation. Specifically, our findings suggest that BALR-6 expression regulates the transcriptome downstream of SP1, and that this may underlie the function of BALR-6 in B-ALL. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0485-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Norma I Rodríguez-Malavé
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, USA. .,Cellular and Molecular Pathology Ph.D. Program, UCLA, Los Angeles, USA.
| | - Thilini R Fernando
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, USA.
| | - Parth C Patel
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, USA.
| | - Jorge R Contreras
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, USA. .,Cellular and Molecular Pathology Ph.D. Program, UCLA, Los Angeles, USA.
| | - Jayanth Kumar Palanichamy
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, USA. .,All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| | - Tiffany M Tran
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, USA.
| | - Jaime Anguiano
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, USA.
| | - Michael J Davoren
- Department of Environmental Health Sciences, UCLA, Los Angeles, USA. .,Molecular Toxicology Interdepartmental Ph.D. Program, UCLA, Los Angeles, USA.
| | - Michael O Alberti
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, USA.
| | - Kimanh T Pioli
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, USA.
| | - Salemiz Sandoval
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, USA.
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, USA. .,Cellular and Molecular Pathology Ph.D. Program, UCLA, Los Angeles, USA. .,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, USA. .,Broad Stem Cell Research Center, UCLA, 650 Charles E. Young Drive, Factor 12-272, Los Angeles, CA, 90095, USA.
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, USA. .,Cellular and Molecular Pathology Ph.D. Program, UCLA, Los Angeles, USA. .,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, USA. .,Broad Stem Cell Research Center, UCLA, 650 Charles E. Young Drive, Factor 12-272, Los Angeles, CA, 90095, USA.
| |
Collapse
|
26
|
Zhang Y, Cao X. Long noncoding RNAs in innate immunity. Cell Mol Immunol 2015; 13:138-47. [PMID: 26277893 PMCID: PMC4786632 DOI: 10.1038/cmi.2015.68] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play important roles in immune cell development and immune responses through different mechanisms, such as dosage compensation, imprinting, enhancer function, and transcriptional regulation. Although the functions of most lncRNAs are unclear, some lncRNAs have been found to control transcriptional or post-transcriptional regulation of the innate and adaptive immune responses via new methods of protein–protein interactions or pairing with DNA and RNA. Interestingly, increasing evidence has elucidated the importance of lncRNAs in the interaction between hosts and pathogens. In this review, an overview of the lncRNAs modes of action, as well as the important and diversified roles of lncRNAs in immunity, are provided, and an emerging paradigm of lncRNAs in regulating innate immune responses is highlighted.
Collapse
|
27
|
Melo CPDS, Campos CB, Rodrigues JDO, Aguirre-Neto JC, Atalla Â, Pianovski MAD, Carbone EK, Lares LBQ, Moraes-Souza H, Octacílio-Silva S, Pais FSM, Ferreira ACDS, Assumpção JG. Long non-coding RNAs: biomarkers for acute leukaemia subtypes. Br J Haematol 2015. [PMID: 26204929 DOI: 10.1111/bjh.13588] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | - Ângelo Atalla
- Hospital Universitário da Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | | | | | | | - Hélio Moraes-Souza
- Hospital de Clínicas da Universidade Federal do Triângulo Mineiro, Uberlândia, Brazil
| | | | - Fabiano S M Pais
- Grupo de Genômica e Biologia Computacional, Fundação Oswaldo Cruz/Minas, Belo Horizonte, Brazil
| | | | - Juliana G Assumpção
- Laboratório BIOCOD Biotecnologia Ltda, Vespasiano, Brazil. .,Setor de Pesquisa e Desenvolvimento - Instituto Hermes Pardini, Vespasiano, Brazil.
| |
Collapse
|
28
|
Panzeri I, Rossetti G, Abrignani S, Pagani M. Long Intergenic Non-Coding RNAs: Novel Drivers of Human Lymphocyte Differentiation. Front Immunol 2015; 6:175. [PMID: 25926836 PMCID: PMC4397839 DOI: 10.3389/fimmu.2015.00175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/28/2015] [Indexed: 12/29/2022] Open
Abstract
Upon recognition of a foreign antigen, CD4(+) naïve T lymphocytes proliferate and differentiate into subsets with distinct functions. This process is fundamental for the effective immune system function, as CD4(+) T cells orchestrate both the innate and adaptive immune response. Traditionally, this differentiation event has been regarded as the acquisition of an irreversible cell fate so that memory and effector CD4(+) T subsets were considered terminally differentiated cells or lineages. Consequently, these lineages are conventionally defined thanks to their prototypical set of cytokines and transcription factors. However, recent findings suggest that CD4(+) T lymphocytes possess a remarkable phenotypic plasticity, as they can often re-direct their functional program depending on the milieu they encounter. Therefore, new questions are now compelling such as which are the molecular determinants underlying plasticity and stability and how the balance between these two opposite forces drives the cell fate. As already mentioned, in some cases, the mere expression of cytokines and master regulators could not fully explain lymphocytes plasticity. We should consider other layers of regulation, including epigenetic factors such as the modulation of chromatin state or the transcription of non-coding RNAs, whose high cell-specificity give a hint on their involvement in cell fate determination. In this review, we will focus on the recent advances in understanding CD4(+) T lymphocytes subsets specification from an epigenetic point of view. In particular, we will emphasize the emerging importance of non-coding RNAs as key players in these differentiation events. We will also present here new data from our laboratory highlighting the contribution of long non-coding RNAs in driving human CD4(+) T lymphocytes differentiation.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Grazisa Rossetti
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Sergio Abrignani
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Massimiliano Pagani
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy ; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milano , Italy
| |
Collapse
|