1
|
Erdil E, Becker AS, Schwyzer M, Martinez-Tellez B, Ruiz JR, Sartoretti T, Vargas HA, Burger AI, Chirindel A, Wild D, Zamboni N, Deplancke B, Gardeux V, Maushart CI, Betz MJ, Wolfrum C, Konukoglu E. Predicting standardized uptake value of brown adipose tissue from CT scans using convolutional neural networks. Nat Commun 2024; 15:8402. [PMID: 39333526 PMCID: PMC11436835 DOI: 10.1038/s41467-024-52622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
The standard method for identifying active Brown Adipose Tissue (BAT) is [18F]-Fluorodeoxyglucose ([18F]-FDG) PET/CT imaging, which is costly and exposes patients to radiation, making it impractical for population studies. These issues can be addressed with computational methods that predict [18F]-FDG uptake by BAT from CT; earlier population studies pave the way for developing such methods by showing some correlation between the Hounsfield Unit (HU) of BAT in CT and the corresponding [18F]-FDG uptake in PET. In this study, we propose training convolutional neural networks (CNNs) to predict [18F]-FDG uptake by BAT from unenhanced CT scans in the restricted regions that are likely to contain BAT. Using the Attention U-Net architecture, we perform experiments on datasets from four different cohorts, the largest study to date. We segment BAT regions using predicted [18F]-FDG uptake values, achieving 23% to 40% better accuracy than conventional CT thresholding. Additionally, BAT volumes computed from the segmentations distinguish the subjects with and without active BAT with an AUC of 0.8, compared to 0.6 for CT thresholding. These findings suggest CNNs can facilitate large-scale imaging studies more efficiently and cost-effectively using only CT.
Collapse
Affiliation(s)
- Ertunc Erdil
- Computer Vision Lab., ETH Zurich, Zurich, Switzerland.
| | - Anton S Becker
- Computer Vision Lab., ETH Zurich, Zurich, Switzerland
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Moritz Schwyzer
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Borja Martinez-Tellez
- Department of Nursing, Physiotherapy and Medicine and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jonatan R Ruiz
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Thomas Sartoretti
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - H Alberto Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Irene Burger
- Department of Nuclear Medicine, University Zurich Hospital, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Alin Chirindel
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Damian Wild
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Nicola Zamboni
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Claudia Irene Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Johannes Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Christian Wolfrum
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ender Konukoglu
- Computer Vision Lab., ETH Zurich, Zurich, Switzerland
- The LOOP Zürich - Medical Research Center, Zürich, Switzerland
| |
Collapse
|
2
|
Silva GDN, Amato AA. Thermogenic adipose tissue aging: Mechanisms and implications. Front Cell Dev Biol 2022; 10:955612. [PMID: 35979379 PMCID: PMC9376969 DOI: 10.3389/fcell.2022.955612] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 12/27/2022] Open
Abstract
Adipose tissue undergoes significant anatomical and functional changes with aging, leading to an increased risk of metabolic diseases. Age-related changes in adipose tissue include overall defective adipogenesis, dysfunctional adipokine secretion, inflammation, and impaired ability to produce heat by nonshivering thermogenesis. Thermogenesis in adipose tissue is accomplished by brown and beige adipocytes, which also play a role in regulating energy homeostasis. Brown adipocytes develop prenatally, are found in dedicated depots, and involute in early infancy in humans. In contrast, beige adipocytes arise postnatally in white adipose tissue and persist throughout life, despite being lost with aging. In recent years, there have been significant advances in the understanding of age-related reduction in thermogenic adipocyte mass and function. Mechanisms underlying such changes are beginning to be delineated. They comprise diminished adipose precursor cell pool size and adipogenic potential, mitochondrial dysfunction, decreased sympathetic signaling, and altered paracrine and endocrine signals. This review presents current evidence from animal models and human studies for the mechanisms underlying thermogenic adipocyte loss and discusses potential strategies targeting brown and beige adipocytes to increase health span and longevity.
Collapse
|
3
|
Cohen P, Kajimura S. The cellular and functional complexity of thermogenic fat. Nat Rev Mol Cell Biol 2021; 22:393-409. [PMID: 33758402 PMCID: PMC8159882 DOI: 10.1038/s41580-021-00350-0] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 02/01/2023]
Abstract
Brown and beige adipocytes are mitochondria-enriched cells capable of dissipating energy in the form of heat. These thermogenic fat cells were originally considered to function solely in heat generation through the action of the mitochondrial protein uncoupling protein 1 (UCP1). In recent years, significant advances have been made in our understanding of the ontogeny, bioenergetics and physiological functions of thermogenic fat. Distinct subtypes of thermogenic adipocytes have been identified with unique developmental origins, which have been increasingly dissected in cellular and molecular detail. Moreover, several UCP1-independent thermogenic mechanisms have been described, expanding the role of these cells in energy homeostasis. Recent studies have also delineated roles for these cells beyond the regulation of thermogenesis, including as dynamic secretory cells and as a metabolic sink. This Review presents our current understanding of thermogenic adipocytes with an emphasis on their development, biological functions and roles in systemic physiology.
Collapse
Affiliation(s)
- Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA.
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Cell and Tissue Biology, UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Bjørklund G, Tippairote T, Dadar M, Lizcano F, Aaseth J, Borisova O. The Roles of Dietary, Nutritional and Lifestyle Interventions in Adipose Tissue Adaptation and Obesity. Curr Med Chem 2021; 28:1683-1702. [PMID: 32368968 DOI: 10.2174/0929867327666200505090449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/03/2020] [Accepted: 03/28/2020] [Indexed: 11/22/2022]
Abstract
The obesity and the associated non-communicable diseases (NCDs) are globally increasing in their prevalence. While the modern-day lifestyle required less ventilation of metabolic energy through muscular activities, this lifestyle transition also provided the unlimited accession to foods around the clock, which prolong the daily eating period of foods that contained high calorie and high glycemic load. These situations promote the high continuous flux of carbon substrate availability in mitochondria and induce the indecisive bioenergetic switches. The disrupted bioenergetic milieu increases the uncoupling respiration due to the excess flow of the substrate-derived reducing equivalents and reduces ubiquinones into the respiratory chain. The diversion of the uncoupling proton gradient through adipocyte thermogenesis will then alleviate the damaging effects of free radicals to mitochondria and other organelles. The adaptive induction of white adipose tissues (WAT) to beige adipose tissues (beAT) has shown beneficial effects on glucose oxidation, ROS protection and mitochondrial function preservation through the uncoupling protein 1 (UCP1)-independent thermogenesis of beAT. However, the maladaptive stage can eventually initiate with the persistent unhealthy lifestyles. Under this metabolic gridlock, the low oxygen and pro-inflammatory environments promote the adipose breakdown with sequential metabolic dysregulation, including insulin resistance, systemic inflammation and clinical NCDs progression. It is unlikely that a single intervention can reverse all these complex interactions. A comprehensive protocol that includes dietary, nutritional and all modifiable lifestyle interventions, can be the preferable choice to decelerate, stop, or reverse the NCDs pathophysiologic processes.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Torsak Tippairote
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Olga Borisova
- Odesa I. I. Mechnikov National University, Odessa, Ukraine
| |
Collapse
|
5
|
Brendle C, Stefan N, Grams E, Soekler M, la Fougère C, Pfannenberg C. Determinants of activity of brown adipose tissue in lymphoma patients. Sci Rep 2020; 10:21802. [PMID: 33311572 PMCID: PMC7732986 DOI: 10.1038/s41598-020-78419-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/02/2020] [Indexed: 01/29/2023] Open
Abstract
The determinants of brown adipose tissue (BAT) activity are not yet known in detail but might serve as future therapeutic targets against obesity and the metabolic syndrome. We analyzed 235 datasets of lymphoma patients with two PET/CT examinations at different time points retrospectively. We assessed the anthropometric characteristics, features related to the metabolic syndrome, thyroid dysfunction, season of the PET/CT examination, weight change, prior cancer history, lymphoma subgroups, disease activity, and specific lymphoma-related therapies, and evaluated their association with BAT activity. We found BAT activity in 12% of all examinations, and the incidence of BAT activity after initially negative examinations was 10%. In multivariate regression analysis, the prevalence of BAT activity was associated with age, body mass index, sex, the season of the examination, diabetes mellitus, arterial hypertension, and medication on the beta-receptors. New BAT activity arose more often in patients without preceding lymphoma-related therapy. No specific medication was associated with BAT activity. In conclusion, this study confirms the potential connection of BAT with the metabolic syndrome. Preceding lymphoma-related therapy might have an inhibitory effect on the recruitment of BAT.
Collapse
Affiliation(s)
- Cornelia Brendle
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| | - Norbert Stefan
- Endocrinology and Diabetology, Department of Internal Medicine, Eberhard Karls University, Otfried-Mueller-Straße 10, 72076, Tübingen, Germany
| | - Eva Grams
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.,Diagnostic and Interventional Radiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Martin Soekler
- Oncology, Hematology, Clinical Immunology, Rheumatology and Pulmology, Department of Internal Medicine, Eberhard Karls University, Otfried-Mueller-Straße 10, 72076, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University, Otfried-Mueller-Straße 14, 72076, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), Partner Site, Tübingen, Germany
| | - Christina Pfannenberg
- Diagnostic and Interventional Radiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| |
Collapse
|
6
|
Bongers CCWG, Eijsvogels TMH, Thijssen DHJ, Hopman MTE. Thermoregulatory, metabolic, and cardiovascular responses during 88 min of full-body ice immersion - A case study. Physiol Rep 2019; 7:e14304. [PMID: 31883220 PMCID: PMC6934874 DOI: 10.14814/phy2.14304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 11/24/2022] Open
Abstract
Exposure to extreme cold environments is potentially life-threatening. However, the world record holder of full-body ice immersion has repeatedly demonstrated an extraordinary tolerance to extreme cold. We aimed to explore thermoregulatory, metabolic, and cardiovascular responses during 88 min of full-body ice immersion. We continuously measured gastrointestinal temperature (Tgi ), skin temperature (Tskin), blood pressure, and heart rate (HR). Oxygen consumption (VO2 ) was measured at rest, and after 45 and 88 min of ice immersion, in order to calculate the metabolic heat production. Tskin dropped significantly (28-34°C to 4-15°C) and VO2 doubled (5.7-11.3 ml kg-1 min-1 ), whereas Tgi (37.6°C), HR (72 bpm), and mean arterial pressure (106 mmHg) remained stable during the first 30 min of cold exposure. During the remaining of the trial, Tskin and VO2 remained stable, while Tgi gradually declined to 37.0°C and HR and mean arterial blood pressure increased to maximum values of 101 bpm and 115 mmHg, respectively. Metabolic heat production in rest was 169 W and increased to 321 W and 314 W after 45 and 80 min of ice immersion. Eighty-eight minutes of full-body ice immersion resulted in minor changes of Tgi and cardiovascular responses, while Tskin and VO2 changed markedly. These findings may suggest that our participant can optimize his thermoregulatory, metabolic, and cardiovascular responses to challenge extreme cold exposure.
Collapse
Affiliation(s)
- Coen C W G Bongers
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thijs M H Eijsvogels
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Maria T E Hopman
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Cheng Y, Jiang L, Keipert S, Zhang S, Hauser A, Graf E, Strom T, Tschöp M, Jastroch M, Perocchi F. Prediction of Adipose Browning Capacity by Systematic Integration of Transcriptional Profiles. Cell Rep 2019; 23:3112-3125. [PMID: 29874595 DOI: 10.1016/j.celrep.2018.05.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/06/2018] [Accepted: 05/02/2018] [Indexed: 01/30/2023] Open
Abstract
Activation and recruitment of thermogenic cells in human white adipose tissues ("browning") can counteract obesity and associated metabolic disorders. However, quantifying the effects of therapeutic interventions on browning remains enigmatic. Here, we devise a computational tool, named ProFAT (profiling of fat tissue types), for quantifying the thermogenic potential of heterogeneous fat biopsies based on prediction of white and brown adipocyte content from raw gene expression datasets. ProFAT systematically integrates 103 mouse-fat-derived transcriptomes to identify unbiased and robust gene signatures of brown and white adipocytes. We validate ProFAT on 80 mouse and 97 human transcriptional profiles from 14 independent studies and correctly predict browning capacity upon various physiological and pharmacological stimuli. Our study represents the most exhaustive comparative analysis of public data on adipose biology toward quantification of browning after personalized medical intervention. ProFAT is freely available and should become increasingly powerful with the growing wealth of transcriptomics data.
Collapse
Affiliation(s)
- Yiming Cheng
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, 81377 Munich, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München and German National Diabetes Center (DZD), 85764 Neuherberg, Germany
| | - Li Jiang
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, 81377 Munich, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München and German National Diabetes Center (DZD), 85764 Neuherberg, Germany
| | - Susanne Keipert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München and German National Diabetes Center (DZD), 85764 Neuherberg, Germany
| | - Shuyue Zhang
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, 81377 Munich, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München and German National Diabetes Center (DZD), 85764 Neuherberg, Germany
| | - Andreas Hauser
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tim Strom
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Matthias Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München and German National Diabetes Center (DZD), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany
| | - Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München and German National Diabetes Center (DZD), 85764 Neuherberg, Germany.
| | - Fabiana Perocchi
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, 81377 Munich, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München and German National Diabetes Center (DZD), 85764 Neuherberg, Germany.
| |
Collapse
|
8
|
Brendle C, Stefan N, Stef I, Ripkens S, Soekler M, la Fougère C, Nikolaou K, Pfannenberg C. Impact of diverse chemotherapeutic agents and external factors on activation of brown adipose tissue in a large patient collective. Sci Rep 2019; 9:1901. [PMID: 30760750 PMCID: PMC6374459 DOI: 10.1038/s41598-018-37924-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/18/2018] [Indexed: 11/21/2022] Open
Abstract
Increased activity of brown adipose tissue (BAT) activity in adults is thought to prevent obesity. Therefore, regulators of BAT activity might serve as anti-obesity therapy in future, but are not investigated thoroughly up to now. In our study, we assessed retrospectively the association of BAT activity with several external factors and diverse chemotherapeutic and immunosuppressive agents in a collective of 702 patients. The patients underwent at least two clinically indicated PET/CT examinations in the course of different oncological and inflammatory diseases. BAT activity was identified according to predefined PET/CT criteria in all examinations. In multivariate analysis, the type of disease, the disease activity and the therapeutic regimen did not influence BAT activity. In contrast, sex and age were confirmed as independent factors for BAT activity. For the association of therapeutic agents with BAT activity, we examined 53 different disease-related agents, which were applied to patients without initial BAT activity between their PET/CT examinations. Out of these, cytarabine therapy was significantly associated with increased new onset of BAT activity. Cytarabine is a therapeutic agent for lymphoma patients. Further targeted studies might investigate the usefulness of Cytarabine serving as possible therapeutic approach against obesity via BAT regulation.
Collapse
Affiliation(s)
- Cornelia Brendle
- Diagnostic and Interventional Radiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany. .,Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany.
| | - Norbert Stefan
- Endocrinology and Diabetology, Department of Internal Medicine, Eberhard Karls University, Otfried-Mueller-Straße 10, 72076, Tuebingen, Germany
| | - Irina Stef
- Diagnostic and Interventional Radiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Sabine Ripkens
- Diagnostic and Interventional Radiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Martin Soekler
- Oncology, Hematology, Clinical Immunology, Rheumatology and Pulmology, Department of Internal Medicine, Eberhard Karls University, Otfried-Mueller-Straße 10, 72076, Tuebingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University, Otfried-Mueller-Straße 14, 72076, Tuebingen, Germany
| | - Konstantin Nikolaou
- Diagnostic and Interventional Radiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Christina Pfannenberg
- Diagnostic and Interventional Radiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| |
Collapse
|
9
|
van Marken Lichtenbelt WD, Pallubinsky H, Te Kulve M. Modulation of thermogenesis and metabolic health: a built environment perspective. Obes Rev 2018; 19 Suppl 1:94-101. [PMID: 30511507 DOI: 10.1111/obr.12789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 01/21/2023]
Abstract
Lifestyle interventions, obviating the increasing prevalence of the metabolic syndrome, generally focus on nutrition and physical activity. Environmental factors are hardly covered. Because we spend on average more that 90% of our time indoors, it is, however, relevant to address these factors. In the built environment, the attention has been limited to the (assessment and optimization of) building performance and occupant thermal comfort for a long time. Only recently well-being and health of building occupants are also considered to some extent, but actual metabolic health aspects are not generally covered. In this review, we draw attention to the potential of the commonly neglected lifestyle factor 'indoor environment'. More specifically, we review current knowledge and the developments of new insights into the effects of ambient temperature, light and the interaction of the two on metabolic health. The literature shows that the effects of indoor environmental factors are important additional factors for a healthy lifestyle and have an impact on metabolic health.
Collapse
Affiliation(s)
- W D van Marken Lichtenbelt
- Department of Nutrition and Movement Sciences, NUTRIM Maastricht University Medical Center, Maastricht, The Netherlands
| | - H Pallubinsky
- Department of Nutrition and Movement Sciences, NUTRIM Maastricht University Medical Center, Maastricht, The Netherlands
| | - M Te Kulve
- Department of Nutrition and Movement Sciences, NUTRIM Maastricht University Medical Center, Maastricht, The Netherlands.,BBA Binnenmilieu, The Hague, The Netherlands
| |
Collapse
|
10
|
Muzik O, Reilly KT, Diwadkar VA. “Brain over body”–A study on the willful regulation of autonomic function during cold exposure. Neuroimage 2018; 172:632-641. [DOI: 10.1016/j.neuroimage.2018.01.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/03/2017] [Accepted: 01/26/2018] [Indexed: 12/30/2022] Open
|
11
|
Gumabay EMS, Ramirez RC, Dimaya JMM, Beltran MM. Adversity of prolonged extreme cold exposure among adult clients diagnosed with coronary artery diseases: a primer for recommending community health nursing intervention. Nurs Open 2018; 5:62-69. [PMID: 29344396 PMCID: PMC5762701 DOI: 10.1002/nop2.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/15/2017] [Indexed: 01/31/2023] Open
Abstract
Aim This research study explored the lived experiences of adults diagnosed with Coronary Artery Disease (CAD) when exposed to a prolonged period of extreme cold. Design This research study utilized descriptive qualitative research design. Methods Face-to-face interview sessions with audio recording were conducted. There were 30 informants who participated in the study. Descriptive phenomenology with Colaizzi's method of data analysis was used. Results Results revealed three themes, namely: (i) elucidating cold exposure; (ii) challenges of cold exposure; and (iii) translating adverse exposure to self-management. The results further revealed the significance of nursing health care especially to health promotion, disease prevention and health restoration especially in community setting. Conclusion In conclusion, manifestations of CAD are triggered when exposed to a prolonged period of extremely low environmental temperature.
Collapse
Affiliation(s)
- Eladio Martin S. Gumabay
- Center for Health Research and DevelopmentUniversity of Saint LouisTuguegarao CityCagayan ValleyPhilippines
| | | | | | - Mae M. Beltran
- University of Saint LouisTuguegarao CityCagayan ValleyPhilippines
| |
Collapse
|
12
|
Correlation of Brown Adipose Tissue with Other Body Fat Compartments and Patient Characteristics: A Retrospective Analysis in a Large Patient Cohort Using PET/CT. Acad Radiol 2018; 25:102-110. [PMID: 29108812 DOI: 10.1016/j.acra.2017.09.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
Abstract
RATIONALE AND OBJECTIVES The objective of this study was to assess the relationship of brown adipose tissue (BAT) activity with different fat compartments of the body, body mass index (BMI), outdoor temperature, thyroid-stimulating hormone (TSH) levels, blood glucose, age, and sex in a large patient population using F-18-fluordesoxyglucose positron emission tomography-computer tomography (FDG-PET/CT) scans obtained under thermoneutral conditions. MATERIALS AND METHODS FDG-PET/CT scans of 4852 patients were retrospectively analyzed for BAT activity. The volumes of the different fat compartments visceral adipose tissue (VAT), subcutaneous adipose tissue (SCAT), and liver fat, were assessed by computed tomography. Age, sex, TSH levels, blood glucose levels, BMI, primary disease, and the outdoor temperature were determined. Multiple linear regression analyses were performed to identify independent relationships between the parameters. RESULTS The VAT, SCAT, and liver fat content were lower in BAT-positive patients than in BAT-negative patients (each P < 0.0001). BAT-positive patients had a lower BMI (P < 0.0001) and were more often female (P < 0.0001), younger (P < 0.0001), and had higher TSH levels (P = 0.0002), whereas the outdoor temperature and the blood glucose level were not different compared to BAT-negative patients. Age, sex, VAT, and SCAT were independent factors related to BAT. CONCLUSIONS Age, sex, and VAT are the most important determinants of BAT activity under thermoneutral conditions. VAT reflects the association between BAT activity and body fat mass more clearly than BMI. The strength of the association between VAT and BAT decreases during aging in men, but increases in women. This may indicate a different importance of BAT activity for obesity in men and in women.
Collapse
|
13
|
Martinez-Tellez B, Sanchez-Delgado G, Garcia-Rivero Y, Alcantara JMA, Martinez-Avila WD, Muñoz-Hernandez MV, Olza J, Boon MR, Rensen PCN, Llamas-Elvira JM, Ruiz JR. A New Personalized Cooling Protocol to Activate Brown Adipose Tissue in Young Adults. Front Physiol 2017; 8:863. [PMID: 29163207 PMCID: PMC5673647 DOI: 10.3389/fphys.2017.00863] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/16/2017] [Indexed: 12/28/2022] Open
Abstract
Brown adipose tissue (BAT) activity is induced when humans are exposed to cold. Therefore, cold exposure prior to the 18F-FDG-PET/CT scan is used as a tool to quantify BAT. Several cooling protocols, including fixed and personalized ones are currently in use. The aim of the present study was to determine the effect of a new personalized cooling protocol where the shivering threshold was measured on a separate day, on BAT volume and activity in young adults. A total of 47 adults (n = 28 women) aged 22 ± 2 years participated in the study. We determined participants' shivering threshold (visually and self-reported) using a water perfused cooling vest in an air-conditioned cold room. 48–72 h later, participants wore the cooling vest set at ~4°C above the shivering threshold for 60 min prior to injection of 18F-FDG and ~5°C above the shivering threshold for ~60 min after injection, until PET/CT scan. We quantified BAT following BARCIST 1.0 recommendations. We identified 40 participants (85%, n = 25 women) as PET+ and 7 (n = 3 women) as PET–. The PET+ group presented significantly higher BAT volume and activity than PET– group (all P < 0.05). PET+ women had higher BAT mean activity than PET+ men (SUVmean: 5.0 ± 1.6 vs. 3.6 ± 0.9 g/ml respectively, P = 0.003), and there were no significant sex differences in BAT volume (P = 0.161). A total of 9 out of 47 participants did not shiver during the shivering threshold test. Our findings are similar to previous cold-stimulated human BAT studies; therefore, we conclude that our personalized cooling protocol is able to activate BAT in young adults.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Yolanda Garcia-Rivero
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Servicio de Medicina Nuclear, Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain
| | - Juan M A Alcantara
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Wendy D Martinez-Avila
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Maria V Muñoz-Hernandez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Josune Olza
- Servicio de Medicina Nuclear, Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain.,Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Sciences, University of Granada, Granada, Spain.,CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, Madrid, Spain
| | - Mariëtte R Boon
- Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jose M Llamas-Elvira
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Servicio de Medicina Nuclear, Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
14
|
van Marken Lichtenbelt W. Who is the Iceman? Temperature (Austin) 2017; 4:202-205. [PMID: 28944263 DOI: 10.1080/23328940.2017.1329001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Wouter van Marken Lichtenbelt
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical CenterPO box 616, 6200MD, Maastricht, The Netherlands
| |
Collapse
|
15
|
Martinez-Tellez B, Sanchez-Delgado G, Acosta FM, Alcantara JMA, Boon MR, Rensen PCN, Ruiz JR. Differences between the most used equations in BAT-human studies to estimate parameters of skin temperature in young lean men. Sci Rep 2017; 7:10530. [PMID: 28874709 PMCID: PMC5585347 DOI: 10.1038/s41598-017-10444-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/09/2017] [Indexed: 11/12/2022] Open
Abstract
Cold exposure is necessary to activate human brown adipose tissue (BAT), resulting in heat production. Skin temperature is an indirect measure to monitor the body's reaction to cold. The aim of this research was to study whether the most used equations to estimate parameters of skin temperature in BAT-human studies measure the same values of temperature in young lean men (n = 11: 23.4 ± 0.5 years, fat mass: 19.9 ± 1.2%). Skin temperature was measured with 26 ibuttons at 1-minute intervals in warm and cold room conditions. We used 12 equations to estimate parameters of mean, proximal, and distal skin temperature as well as skin temperature gradients. Data were analysed with Temperatus software. Significant differences were found across equations to measure the same parameters of skin temperature in warm and cold room conditions, hampering comparison across studies. Based on these findings, we suggest to use a set of 14 ibuttons at anatomical positions reported by ISO STANDARD 9886:2004 plus five ibuttons placed on the right supraclavicular fossa, right middle clavicular bone, right middle upper forearm, right top of forefinger, and right upper chest.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- PROFITH "PROmoting FITness and Health through physical activity" research group. Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Guillermo Sanchez-Delgado
- PROFITH "PROmoting FITness and Health through physical activity" research group. Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco M Acosta
- PROFITH "PROmoting FITness and Health through physical activity" research group. Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Juan M A Alcantara
- PROFITH "PROmoting FITness and Health through physical activity" research group. Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through physical activity" research group. Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
16
|
Schrauwen P, van Marken Lichtenbelt WD. Combatting type 2 diabetes by turning up the heat. Diabetologia 2016; 59:2269-2279. [PMID: 27591854 PMCID: PMC5506100 DOI: 10.1007/s00125-016-4068-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
Abstract
In our westernised society, the level of physical activity is low. Interventions that increase energy expenditure are generally associated with an improvement in metabolic health. Exercise and exercise training increase energy metabolism and are considered to be among the best strategies for prevention of type 2 diabetes mellitus. More recently, cold exposure has been suggested to have a therapeutic value in type 2 diabetes. At a cellular level, there is evidence that increasing the turnover of cellular substrates such as fatty acids is associated with preventive effects against lipid-induced insulin resistance. Cellular energy sensors may underlie the effects linking energy turnover with metabolic health effects. Here we review data supporting the hypothesis that increasing energy and substrate turnover has beneficial effects on insulin sensitivity and should be considered a target for the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Patrick Schrauwen
- Department of Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. BOX 616, 6200MD, Maastricht, the Netherlands.
| | - Wouter D van Marken Lichtenbelt
- Department of Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. BOX 616, 6200MD, Maastricht, the Netherlands
| |
Collapse
|
17
|
Daanen HAM, Van Marken Lichtenbelt WD. Human whole body cold adaptation. Temperature (Austin) 2016; 3:104-18. [PMID: 27227100 PMCID: PMC4861193 DOI: 10.1080/23328940.2015.1135688] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 11/05/2022] Open
Abstract
Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.
Collapse
Affiliation(s)
- Hein A M Daanen
- MOVE Research Institute, Faculty of Behavioral and Movement Sciences, VU University Amsterdam, The Netherlands; TNO, Soesterberg, The Netherlands; Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - Wouter D Van Marken Lichtenbelt
- Department of Human Biology/Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University , The Netherlands
| |
Collapse
|
18
|
McMillan AC, White MD. Induction of thermogenesis in brown and beige adipose tissues: molecular markers, mild cold exposure and novel therapies. Curr Opin Endocrinol Diabetes Obes 2015; 22:347-52. [PMID: 26313896 DOI: 10.1097/med.0000000000000191] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The purpose of this short review paper is to summarize recent developments in the understanding of the activation, growth and function of brown adipose tissue (BAT). RECENT FINDINGS Transcriptional markers for increased BAT activity and differentiation of white adipocytes to 'beige' or 'brite' adipocytes include amongst others peroxisome proliferator-activated receptor γ, cytosine-enhancer-binding protein, positive regulatory domain 16 and bone morphogenetic proteins. These markers induce uncoupling protein 1 expression in brown and 'beige' or 'brite' adipocytes which allows energy from macronutrients to be expended as heat. Acute and repeated mild cold exposures of 17-19 °C in adult humans increase BAT volume and activity and this is a novel method for increasing their energy expenditure. Emerging evidence suggests that irisin and melatonin hormones may be involved in BAT activation. Additionally, brown adipocyte stem cell therapy transplantation is a means to stimulate this increased thermogenesis from brown and 'beige' or 'brite' adipocytes. SUMMARY Markers for increased BAT activation and for white adipocyte differentiation into beige/brite adipocytes have been identified, and these lead to an uncoupling protein 1-mediated increase in metabolic rate. Mild cold exposure and brown adipocyte stem cell transplantation are two potential strategies for inducing activation and growth of BAT for the treatment of human obesity.
Collapse
Affiliation(s)
- Andrew C McMillan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | | |
Collapse
|
19
|
Abstract
In mammals, a thermogenic mechanism exists that increases heat production and consumes energy. Recent work has shed light on the cellular and physiological mechanisms that control this thermogenic circuit. Thermogenically active adipocytes, namely brown and closely related beige adipocytes, differentiate from progenitor cells that commit to the thermogenic lineage but can arise from different cellular origins. Thermogenic differentiation shares some features with general adipogenesis, highlighting the critical role that common transcription factors may play in progenitors with divergent fates. However, thermogenic differentiation is also discrete from the common adipogenic program and, excitingly, cells with distinct origins possess thermogenic competency that allows them to differentiate into thermogenically active mature adipocytes. An understanding of this thermogenic differentiation program and the factors that can activate it has led to the development of assays that are able to measure thermogenic activity both indirectly and directly. By combining these assays with appropriate cell models, novel therapeutic approaches to combat obesity and its related metabolic disorders by enhancing the thermogenic circuit can be developed.
Collapse
Affiliation(s)
- Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Payne P, Levine PA, Crane-Godreau MA. Somatic experiencing: using interoception and proprioception as core elements of trauma therapy. Front Psychol 2015; 6:93. [PMID: 25699005 PMCID: PMC4316402 DOI: 10.3389/fpsyg.2015.00093] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/17/2015] [Indexed: 12/16/2022] Open
Abstract
Here we present a theory of human trauma and chronic stress, based on the practice of Somatic Experiencing(®) (SE), a form of trauma therapy that emphasizes guiding the client's attention to interoceptive, kinesthetic, and proprioceptive experience. SE™ claims that this style of inner attention, in addition to the use of kinesthetic and interoceptive imagery, can lead to the resolution of symptoms resulting from chronic and traumatic stress. This is accomplished through the completion of thwarted, biologically based, self-protective and defensive responses, and the discharge and regulation of excess autonomic arousal. We present this theory through a composite case study of SE treatment; based on this example, we offer a possible neurophysiological rationale for the mechanisms involved, including a theory of trauma and chronic stress as a functional dysregulation of the complex dynamical system formed by the subcortical autonomic, limbic, motor and arousal systems, which we term the core response network (CRN). We demonstrate how the methods of SE help restore functionality to the CRN, and we emphasize the importance of taking into account the instinctive, bodily based protective reactions when dealing with stress and trauma, as well as the effectiveness of using attention to interoceptive, proprioceptive and kinesthetic sensation as a therapeutic tool. Finally, we point out that SE and similar somatic approaches offer a supplement to cognitive and exposure therapies, and that mechanisms similar to those discussed in the paper may also be involved in the benefits of meditation and other somatic practices.
Collapse
Affiliation(s)
- Peter Payne
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthLebanon, NH, USA
| | | | - Mardi A. Crane-Godreau
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthLebanon, NH, USA
| |
Collapse
|