1
|
Guo Y, Cheng S, Fang H, Geng J, Shi F, Wang H, Chen L, Pu H, Liu B, Zhou Y. Water regime alters microbial mechanisms of N 2O emission in metal-contaminated paddy soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118304. [PMID: 40367615 DOI: 10.1016/j.ecoenv.2025.118304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Microorganisms are essential for soil nitrous oxide (N2O) emissions through participating in key nitrogen (N)-related processes. However, the effect of water regimes on the interactions between N2O emissions and microbial processes in metal-contaminated soils is unclear. Here, we conducted a soil microcosm experiment with two water management strategies (non-flooding and flooding) and six metal addition treatments including low (2 and 200 mg kg-1) and high (10 and 1000 mg kg-1) levels of individual and combined Cd and Cu. The effects of high levels of individual Cd and Cu contamination on soil N2O emissions varied depending on water regimes, showing antagonistic effects under non-flooding conditions and synergistic effects under flooding conditions. High levels of co-contamination significantly inhibited nitrification under both water regimes, primarily due to reduced abundance of Nitrosospira. In contrast, this co-contamination decreased the abundance of Ramlibacter, thereby inhibiting denitrification and dissimilatory nitrate reduction to ammonium (DNRA) under flooding conditions. The inhibition of these key microorganisms and their mediated N-cycle processes reduced soil N2O emissions under both water regimes. This reduction was greater under flooding conditions because more N-related processes were inhibited. Metagenomic binning further indicated that Nitrosospira carried nitrifying genes, while Ramlibacter contained genes involved in denitrification, assimilatory nitrate reduction to ammonium (ANRA), and DNRA. These findings implied that both microorganisms had potential to produce N2O. Overall, water management strategies and metal contamination altered the microbial processes of N2O emissions, highlighting the importance of appropriate water management in mitigating greenhouse gas emissions from metal-contaminated paddy soils in southern China.
Collapse
Affiliation(s)
- Yifan Guo
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulan Cheng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huajun Fang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; The Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an 343000, China.
| | - Jing Geng
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China
| | - Fangying Shi
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiguang Pu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingqian Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhou
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Afzal M, Muhammad S, Tan D, Kaleem S, Khattak AA, Wang X, Chen X, Ma L, Mo J, Muhammad N, Jan M, Tan Z. The Effects of Heavy Metal Pollution on Soil Nitrogen Transformation and Rice Volatile Organic Compounds under Different Water Management Practices. PLANTS (BASEL, SWITZERLAND) 2024; 13:871. [PMID: 38592896 PMCID: PMC10976017 DOI: 10.3390/plants13060871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
One of the most concerning global environmental issues is the pollution of agricultural soils by heavy metals (HMs), especially cadmium, which not only affects human health through Cd-containing foods but also impacts the quality of rice. The soil's nitrification and denitrification processes, coupled with the release of volatile organic compounds by plants, raise substantial concerns. In this review, we summarize the recent literature related to the deleterious effects of Cd on both soil processes related to the N cycle and rice quality, particularly aroma, in different water management practices. Under both continuous flooding (CF) and alternate wetting and drying (AWD) conditions, cadmium has been observed to reduce both the nitrification and denitrification processes. The adverse effects are more pronounced in alternate wetting and drying (AWD) as compared to continuous flooding (CF). Similarly, the alteration in rice aroma is more significant in AWD than in CF. The precise modulation of volatile organic compounds (VOCs) by Cd remains unclear based on the available literature. Nevertheless, HM accumulation is higher in AWD conditions compared to CF, leading to a detrimental impact on volatile organic compounds (VOCs). The literature concludes that AWD practices should be avoided in Cd-contaminated fields to decrease accumulation and maintain the quality of the rice. In the future, rhizospheric engineering and plant biotechnology can be used to decrease the transport of HMs from the soil to the plant's edible parts.
Collapse
Affiliation(s)
- Muhammad Afzal
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Sajid Muhammad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Dedong Tan
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China;
| | - Sidra Kaleem
- Riphah Institute of Pharmaceutical Sciences, Islamabad 44600, Pakistan;
| | - Arif Ali Khattak
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Xiaolin Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Xiaoyuan Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Liangfang Ma
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Jingzhi Mo
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Niaz Muhammad
- Department of Microbiology, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Mehmood Jan
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Zhiyuan Tan
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| |
Collapse
|
3
|
Hashmi MLUR, Hamid Y, Usman M, Luo J, Khan S, Sheng T, Bano N, Bhatti T, Li T. Assessing the effectiveness of 3, 4-dimethylpyrazole phosphate (DMPP) inhibitor in mitigating N 2O emissions from contrasting Cd-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169105. [PMID: 38070566 DOI: 10.1016/j.scitotenv.2023.169105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Improving nitrogen use efficiency of chemical fertilizers is essential to mitigate the negative environmental impacts of nitrogen. Nitrification, the conversion of ammonium to nitrate via nitrite by soil microbes, is a prominent source of nitrogen loss in soil systems. The effectiveness of nitrification inhibitors in reducing nitrogen loss through inhibition of nitrification is well-documented, however, their efficacy in heavy metals-contaminated soils needs thorough investigations. The current study assessed the efficacy of nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) in reducing nitrous oxide (N2O) emissions in cadmium (Cd) contaminated paddy and red soils under lab-controlled environment. Obtained results indicated the substantial reduction in N2O emissions with DMPP in paddy and red soil by 48 and 35 %, respectively. However, Cd contamination resulted in reduced efficacy of DMPP, thus decreased the N2O emissions by 36 and 25 % in paddy and red soil, respectively. It was found that addition of DMPP had a significant effect on the abundance of ammonia oxidizing bacteria (AOB) and archaea (AOA). Notably, the reduction in N2O emissions by DMPP varied with the abundance of AOB. Moreover, Cd pollution resulted in a significant (P < 0.05) reduction in the abundance of archaeal and bacterial amoA genes, as well as bacterial nirK, nirS, and nosZ genes. The combined treatment of Cd and DMPP had a detrimental impact on denitrifiers, thereby influencing the overall efficiency of DMPP. These findings provide novel insights into the application of DMPP to mitigate nitrification and its potential role in reducing N2O emissions in contaminated soils.
Collapse
Affiliation(s)
- Muhammad Laeeq Ur Rehman Hashmi
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yasir Hamid
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Usman
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sangar Khan
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China
| | - Tang Sheng
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nabila Bano
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Pakistan Tobacco Board, Ministry of National Food Security and Research, Islamabad, Pakistan
| | | | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Liu J, Li C, Ma W, Wu Z, Liu W, Wu W. Exploitation alters microbial community and its co-occurrence patterns in ionic rare earth mining sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165532. [PMID: 37454857 DOI: 10.1016/j.scitotenv.2023.165532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The exploitation of ion-adsorption rare earth elements (REEs) deposits results in serious ecological and environmental problems, which has attracted much attention. However, the influences of exploitation on the prokaryotic communities and their complex interactions remain poorly understood. In the present study, bacterial and archaeal communities, as well as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), in and around REEs mining area were investigated through high throughput sequencing and quantitative polymerase chain reaction (qPCR). Our results indicated that mining soil was characterized by poor soil structure, nutrient deficiency, and high concentrations of residual REEs. Oligotrophic bacteria (e.g., Chloroflexi and Acidobacteriota) were dominant in unexploited soil and mining soil, while copiotrophic bacteria (Proteobacteria and Actinobacteriota) were more abundant in surrounding soil. Nutrient was the key factor affecting microbial variation and abundance in mining soil. The bacterial community was more sensitive to REEs, while the archaeal communities were relatively stable. As the key members for ammonia oxidation, AOA outnumbered AOB in all the soil types, and the former was significantly influenced by pH, nutrients, and TREEs in mining soil. The microbial co-occurrence network analysis demonstrated that exploitation significantly influenced topological properties, decreased the complexity, and resulted in a much unstable network, leading to a more fragile microbial ecosystem in mining areas. Notably, the abundance of keystone taxa decreased after exploitation, and oligotrophic groups (Chloroflexi) replaced copiotrophic groups (Proteobacteria and Actinobacteriota) as the key to rebuilt a co-occurrence network, suggesting potentially important roles in maintaining network stability. The current results are of great significance to the ecological risk assessment of REEs exploitation.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China; Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Ganzhou 341099, China.
| | - Chun Li
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Wendan Ma
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Zengxue Wu
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Wei Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Weixiang Wu
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310030, China
| |
Collapse
|
5
|
Wang Y, Zeng X, Zhang Y, Zhang N, Xu L, Wu C. Responses of potential ammonia oxidation and ammonia oxidizers community to arsenic stress in seven types of soil. J Environ Sci (China) 2023; 127:15-29. [PMID: 36522049 DOI: 10.1016/j.jes.2022.02.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 06/17/2023]
Abstract
Soil arsenic contamination is of great concern because of its toxicity to human, crops, and soil microorganisms. However, the impacts of arsenic on soil ammonia oxidizers communities remain unclear. Seven types of soil spiked with 0 or 100 mg arsenic per kg soil were incubated for 180 days and sampled at days 1, 15, 30, 90 and 180. The changes in the community composition and abundance of ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) were analyzed by terminal restriction fragment length polymorphism (T-RFLP) analysis, clone library sequencing, and quantitative PCR (qPCR) targeting amoA gene. Results revealed considerable variations in the potential ammonia oxidation (PAO) rates in different soils, but soil PAO was not consistently significantly inhibited by arsenic, probably due to the low bioavailable arsenic contents or the existence of functional redundancy between AOB and AOA. The variations in AOB and AOA communities were closely associated with the changes in arsenic fractionations. The amoA gene abundances of AOA increased after arsenic addition, whereas AOB decreased, which corroborated the notion that AOA and AOB might occupy different niches in arsenic-contaminated soils. Phylogenetic analysis of amoA gene-encoded proteins revealed that all AOB clone sequences belonged to the genus Nitrosospira, among which those belonging to Nitrosospira cluster 3a were dominant. The main AOA sequence detected belonged to Thaumarchaeal Group 1.1b, which was considered to have a high ability to adapt to environmental changes. Our results provide new insights into the impacts of arsenic on the soil nitrogen cycling.
Collapse
Affiliation(s)
- Yanan Wang
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China
| | - Xibai Zeng
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China.
| | - Yang Zhang
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China
| | - Nan Zhang
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China
| | - Liyang Xu
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China
| | - Cuixia Wu
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China
| |
Collapse
|
6
|
Medriano CA, Chan A, De Sotto R, Bae S. Different types of land use influence soil physiochemical properties, the abundance of nitrifying bacteria, and microbial interactions in tropical urban soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161722. [PMID: 36690092 DOI: 10.1016/j.scitotenv.2023.161722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Anthropogenic activities have led to unexpected changes in microbial community composition and structure, resulting in an interruption of soil ecological roles in urban environments. We questioned the impact of the different land use (e.g., agricultural, industrial, recreational, coastal, and residential areas) on the distribution of nitrifying bacteria and microbial interaction in tropical soil. The dominant nitrifying bacteria were ammonia-oxidizing archaea (AOA) in tropical soils up to 107 copies/g of soil, while the abundance of ammonia-oxidizing bacteria (AOB) was significantly higher in agricultural soil only. Comammox (CMX) was ubiquitous up to 105 copies/g of tropical soil, indicating that CMX might share ecological niches with AOA and considerably contribute to nitrification in urban areas. The most abundant phylum is Actinobacteria, accounting for 27-34 % relative abundance among most land-use types, but Proteobacteria was observed as the most prevalent phylum in agricultural soil. The physicochemical properties (e.g., soil pH and nutrient contents) of different types of land use influenced microbial richness and diversities associated with nitrogen cycling. Multivariate analysis disclosed that agricultural soils were distinct from other land uses because of the concentrations of nutrients and heavy metals and the abundance of microorganisms associated with nitrogen cycles. Also, the microbial co-occurrence network revealed that agricultural soils were a highly interconnected network of the microbial community. In this study, C: N ratio might have a significant impact on ecological networks and the abundance of nitrogen-related taxa, which could influence microbial interactions and complexity in tropical soils. Thus, the impact of anthropogenic land use induced changes in microbial composition and diversity, co-occurrence network, and nitrifying bacteria, leading to potential transformation in ecological services of tropical soils and nitrogen cycling in urban environments.
Collapse
Affiliation(s)
- Carl Angelo Medriano
- Civil and Environmental Engineering Department, National University of Singapore, 1 Engineering Drive 3, Singapore 117580, Singapore
| | - Amabel Chan
- Civil and Environmental Engineering Department, National University of Singapore, 1 Engineering Drive 3, Singapore 117580, Singapore
| | - Ryan De Sotto
- Civil and Environmental Engineering Department, National University of Singapore, 1 Engineering Drive 3, Singapore 117580, Singapore
| | - Sungwoo Bae
- Civil and Environmental Engineering Department, National University of Singapore, 1 Engineering Drive 3, Singapore 117580, Singapore.
| |
Collapse
|
7
|
Farooq MS, Wang X, Uzair M, Fatima H, Fiaz S, Maqbool Z, Rehman OU, Yousuf M, Khan MR. Recent trends in nitrogen cycle and eco-efficient nitrogen management strategies in aerobic rice system. FRONTIERS IN PLANT SCIENCE 2022; 13:960641. [PMID: 36092421 PMCID: PMC9453445 DOI: 10.3389/fpls.2022.960641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Rice (Oryza sativa L.) is considered as a staple food for more than half of the global population, and sustaining productivity under a scarcity of resources is challenging to meet the future food demands of the inflating global population. The aerobic rice system can be considered as a transformational replacement for traditional rice, but the widespread adaptation of this innovative approach has been challenged due to higher losses of nitrogen (N) and reduced N-use efficiency (NUE). For normal growth and developmental processes in crop plants, N is required in higher amounts. N is a mineral nutrient and an important constituent of amino acids, nucleic acids, and many photosynthetic metabolites, and hence is essential for normal plant growth and metabolism. Excessive application of N fertilizers improves aerobic rice growth and yield, but compromises economic and environmental sustainability. Irregular and uncontrolled use of N fertilizers have elevated several environmental issues linked to higher N losses in the form of nitrous oxide (N2O), ammonia (NH3), and nitrate (NO3 -), thereby threatening environmental sustainability due to higher warming potential, ozone depletion capacities, and abilities to eutrophicate the water resources. Hence, enhancing NUE in aerobic rice has become an urgent need for the development of a sustainable production system. This article was designed to investigate the major challenge of low NUE and evaluate recent advances in pathways of the N cycle under the aerobic rice system, and thereby suggest the agronomic management approaches to improve NUE. The major objective of this review is about optimizing the application of N inputs while sustaining rice productivity and ensuring environmental safety. This review elaborates that different soil conditions significantly shift the N dynamics via changes in major pathways of the N cycle and comprehensively reviews the facts why N losses are high under the aerobic rice system, which factors hinder in attaining high NUE, and how it can become an eco-efficient production system through agronomic managements. Moreover, it explores the interactive mechanisms of how proper management of N cycle pathways can be accomplished via optimized N fertilizer amendments. Meanwhile, this study suggests several agricultural and agronomic approaches, such as site-specific N management, integrated nutrient management (INM), and incorporation of N fertilizers with enhanced use efficiency that may interactively improve the NUE and thereby plant N uptake in the aerobic rice system. Additionally, resource conservation practices, such as plant residue management, green manuring, improved genetic breeding, and precision farming, are essential to enhance NUE. Deep insights into the recent advances in the pathways of the N cycle under the aerobic rice system necessarily suggest the incorporation of the suggested agronomic adjustments to reduce N losses and enhance NUE while sustaining rice productivity and environmental safety. Future research on N dynamics is encouraged under the aerobic rice system focusing on the interactive evaluation of shifts among activities and diversity in microbial communities, NUE, and plant demands while applying N management measures, which is necessary for its widespread adaptation in face of the projected climate change and scarcity of resources.
Collapse
Affiliation(s)
- Muhammad Shahbaz Farooq
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Hira Fatima
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Zubaira Maqbool
- Institute of Soil Science, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Obaid Ur Rehman
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | | | | |
Collapse
|
8
|
Lv J, Niu Y, Yuan R, Wang S. Different Responses of Bacterial and Archaeal Communities in River Sediments to Water Diversion and Seasonal Changes. Microorganisms 2021; 9:microorganisms9040782. [PMID: 33917984 PMCID: PMC8068392 DOI: 10.3390/microorganisms9040782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, different responses of archaea and bacteria to environmental changes have attracted increasing scientific interest. In the mid-latitude region, Fen River receives water transferred from the Yellow River, electrical conductivity (EC), concentrations of Cl- and Na+ in water, total phosphorus (TP), and Olsen phosphorus (OP) in sediments were significantly affected by water transfer. Meanwhile, temperature and oxidation-reduction potential (ORP) of water showed significant seasonal variations. Based on 16S rRNA high-throughput sequencing technology, the composition of bacteria and archaea in sediments was determined in winter and summer, respectively. Results showed that the dominance of bacterial core flora decreased and that of archaeal core flora increased after water diversion. The abundance and diversity of bacterial communities in river sediments were more sensitive to anthropogenic and naturally induced environmental changes than that of archaeal communities. Bacterial communities showed greater resistance than archaeal communities under long-term external disturbances, such as seasonal changes, because of rich species composition and complex community structure. Archaea were more stable than bacteria, especially under short-term drastic environmental disturbances, such as water transfer, due to their insensitivity to environmental changes. These results have important implications for understanding the responses of bacterial and archaeal communities to environmental changes in river ecosystems affected by water diversion.
Collapse
Affiliation(s)
- Jiali Lv
- School of Environment and Natural Resources, Shanxi University, Taiyuan 030006, China; (J.L.); (Y.N.)
- Key Laboratory of Agricultural Water Resources Research, Innovation Academy for Seed Design, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China;
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yangdan Niu
- School of Environment and Natural Resources, Shanxi University, Taiyuan 030006, China; (J.L.); (Y.N.)
| | - Ruiqiang Yuan
- School of Environment and Natural Resources, Shanxi University, Taiyuan 030006, China; (J.L.); (Y.N.)
- Correspondence:
| | - Shiqin Wang
- Key Laboratory of Agricultural Water Resources Research, Innovation Academy for Seed Design, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China;
| |
Collapse
|
9
|
Securing of an Industrial Soil Using Turfgrass Assisted by Biostimulants and Compost Amendment. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work aimed to study the effects of compost (applied at two rates) and two commercial microbial biostimulants on the mobility and bioavailability of potentially toxic elements (PTEs) in an industrial soil phytostabilized by Dactylis glomerata L. or a mixed stand of grasses (Lolium perenne L., Poa pratensis L. and Festuca arundinacea Shreb.). The soil showed very high pseudototal and bioavailable concentrations of cadmium (Cd) and lead (Pb), due to improper lead-acid batteries storage. Compost amendment in combination with the two biostimulants produced the best outcomes in terms of plant growth and nutrient uptake. The same mix of beneficial microbes improved soil biological fertility enhancing soil nitrogen fixing and ammonia oxidizing bacteria, while reduced the pore water and NH4NO3 extractable concentrations of Cd and at lower extent of Pb in soil. Accordingly, the lower mobility and bioavailability of Cd in soil determined a lower uptake and accumulation of Cd in shoots of different grass species. Our results suggest that a green cap with turfgrass assisted by biostimulants and compost amendment in PTE-contaminated industrial sites could be a reliable and effective practice to protect and restore soil biological fertility and to reduce the risk of PTE dispersion in the surrounding environment.
Collapse
|
10
|
Touceda-González M, Prieto-Fernández Á, Renella G, Giagnoni L, Sessitsch A, Brader G, Kumpiene J, Dimitriou I, Eriksson J, Friesl-Hanl W, Galazka R, Janssen J, Mench M, Müller I, Neu S, Puschenreiter M, Siebielec G, Vangronsveld J, Kidd PS. Microbial community structure and activity in trace element-contaminated soils phytomanaged by Gentle Remediation Options (GRO). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:237-251. [PMID: 28802993 DOI: 10.1016/j.envpol.2017.07.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Gentle remediation options (GRO) are based on the combined use of plants, associated microorganisms and soil amendments, which can potentially restore soil functions and quality. We studied the effects of three GRO (aided-phytostabilisation, in situ stabilisation and phytoexclusion, and aided-phytoextraction) on the soil microbial biomass and respiration, the activities of hydrolase enzymes involved in the biogeochemical cycles of C, N, P, and S, and bacterial community structure of trace element contaminated soils (TECS) from six field trials across Europe. Community structure was studied using denaturing gradient gel electrophoresis (DGGE) fingerprinting of Bacteria, α- and β-Proteobacteria, Actinobacteria and Streptomycetaceae, and sequencing of DGGE bands characteristic of specific treatments. The number of copies of genes involved in ammonia oxidation and denitrification were determined by qPCR. Phytomanagement increased soil microbial biomass at three sites and respiration at the Biogeco site (France). Enzyme activities were consistently higher in treated soils compared to untreated soils at the Biogeco site. At this site, microbial biomass increased from 696 to 2352 mg ATP kg-1 soil, respiration increased from 7.4 to 40.1 mg C-CO2 kg-1 soil d-1, and enzyme activities were 2-11-fold higher in treated soils compared to untreated soil. Phytomanagement induced shifts in the bacterial community structure at both, the total community and functional group levels, and generally increased the number of copies of genes involved in the N cycle (nirK, nirS, nosZ, and amoA). The influence of the main soil physico-chemical properties and trace element availability were assessed and eventual site-specific effects elucidated. Overall, our results demonstrate that phytomanagement of TECS influences soil biological activity in the long term.
Collapse
Affiliation(s)
- M Touceda-González
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Aptdo. 122, Santiago de Compostela 15780, Spain.
| | - Á Prieto-Fernández
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Aptdo. 122, Santiago de Compostela 15780, Spain
| | - G Renella
- University of Florence, Department of Agrifood Production and Environmental Sciences, P.le delle Cascine 18, I-50144 Florence, Italy
| | - L Giagnoni
- University of Florence, Department of Agrifood Production and Environmental Sciences, P.le delle Cascine 18, I-50144 Florence, Italy
| | - A Sessitsch
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, 3430 Tulln, Austria
| | - G Brader
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, 3430 Tulln, Austria
| | - J Kumpiene
- Luleå University of Technology, Waste Science & Technology, SE-97187 Luleå, Sweden
| | - I Dimitriou
- Swedish University of Agriculture Sciences, Department of Crop Production Ecology, SE-750 07 Uppsala, Sweden
| | - J Eriksson
- Swedish University of Agriculture Sciences, Department of Soil and Environment, SE-750 07 Uppsala, 17, Sweden
| | - W Friesl-Hanl
- AIT Austrian Institute of Technology GmbH, Center for Energy, 3430 Tulln, Austria
| | - R Galazka
- Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - J Janssen
- Hasselt University, Centre for Environmental Sciences, 23 Agoralaan building D, B-3590 Diepenbeek, Belgium
| | - M Mench
- BIOGECO, INRA, Univ. Bordeaux, 33615 Pessac, France
| | - I Müller
- Saxon State Office for Environment, Agriculture and Geology, Pillnitzer Platz 3, 01326 Dresden Pillnitz, Germany
| | - S Neu
- Saxon State Office for Environment, Agriculture and Geology, Pillnitzer Platz 3, 01326 Dresden Pillnitz, Germany
| | - M Puschenreiter
- University of Natural Resources and Life Sciences Vienna - BOKU, Department of Forest and Soil Sciences, 3430 Tulln, Austria
| | - G Siebielec
- Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - J Vangronsveld
- Hasselt University, Centre for Environmental Sciences, 23 Agoralaan building D, B-3590 Diepenbeek, Belgium
| | - P S Kidd
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Aptdo. 122, Santiago de Compostela 15780, Spain
| |
Collapse
|
11
|
Araújo ASF, Lima LM, Santos VM, Schmidt R. Repeated application of composted tannery sludge affects differently soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19193-19200. [PMID: 27351878 DOI: 10.1007/s11356-016-7115-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Repeated application of composted tannery sludge (CTS) changes the soil chemical properties and, consequently, can affect the soil microbial properties. The aim of this study was to evaluate the responses of soil microbial biomass and ammonia-oxidizing organisms to repeated application of CTS. CTS was applied repeatedly during 6 years, and, at the sixth year, the soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms were determined in the soil. The treatments consisted of 0 (without CTS application), 2.5, 5, 10, and 20 t ha(-1) of CTS (dry basis). Soil pH, EC, SOC, total N, and Cr concentration increased with the increase in CTS rate. Soil microbial biomass did not change significantly with the amendment of 2.5 Mg ha(-1), while it decreased at the higher rates. Total and specific enzymes activity responded differently after CTS application. The abundance of bacteria did not change with the 2.5-Mg ha(-1) CTS treatment and decreased after this rate, while the abundance of archaea increased significantly with the 2.5-Mg ha(-1) CTS treatment. Repeated application of different CTS rates for 6 years had different effects on the soil microbial biomass and ammonia-oxidizing organisms as a response to changes in soil chemical properties.
Collapse
Affiliation(s)
| | - Luciano Moura Lima
- Soil Quality Laboratory Agricultural Science Center, Federal University of Piauí, Teresina, PI, Brazil
| | - Vilma Maria Santos
- Soil Quality Laboratory Agricultural Science Center, Federal University of Piauí, Teresina, PI, Brazil
| | - Radomir Schmidt
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| |
Collapse
|
12
|
Wang H, Guo C, Yang C, Lu G, Chen M, Dang Z. Distribution and diversity of bacterial communities and sulphate-reducing bacteria in a paddy soil irrigated with acid mine drainage. J Appl Microbiol 2016; 121:196-206. [DOI: 10.1111/jam.13143] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/13/2016] [Accepted: 03/16/2016] [Indexed: 11/28/2022]
Affiliation(s)
- H. Wang
- School of Environment and Energy; South China University of Technology; Guangzhou China
| | - C.L. Guo
- School of Environment and Energy; South China University of Technology; Guangzhou China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters; Ministry of Education; South China University of Technology; Guangzhou China
| | - C.F. Yang
- School of Environment and Energy; South China University of Technology; Guangzhou China
| | - G.N. Lu
- School of Environment and Energy; South China University of Technology; Guangzhou China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters; Ministry of Education; South China University of Technology; Guangzhou China
| | - M.Q. Chen
- School of Environment and Energy; South China University of Technology; Guangzhou China
- School of Environmental and Biological Engineering; Guangdong University of Petrochemical Technology; Maoming China
| | - Z. Dang
- School of Environment and Energy; South China University of Technology; Guangzhou China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters; Ministry of Education; South China University of Technology; Guangzhou China
| |
Collapse
|
13
|
Liu Y, Liu Y, Zhou H, Li L, Zheng J, Zhang X, Zheng J, Pan G. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils. Sci Rep 2016; 6:19086. [PMID: 26739424 PMCID: PMC4703955 DOI: 10.1038/srep19086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 12/04/2015] [Indexed: 11/09/2022] Open
Abstract
Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils.
Collapse
Affiliation(s)
- Yuan Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.,Department of Bioengineering, College of Life Sciences, Huaibei Normal University, 235000, Huaibei, Anhui Province, China
| | - Yongzhuo Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.,College of Resource and Environment Sciences, Henan Institute of Science and Technology, Xinxiang City, Henan 453003, China
| | - Huimin Zhou
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Lianqing Li
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jinwei Zheng
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xuhui Zhang
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jufeng Zheng
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Genxing Pan
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
14
|
Reis MP, Ávila MP, Keijzer RM, Barbosa FAR, Chartone-Souza E, Nascimento AMA, Laanbroek HJ. The effect of human settlement on the abundance and community structure of ammonia oxidizers in tropical stream sediments. Front Microbiol 2015; 6:898. [PMID: 26379659 PMCID: PMC4553384 DOI: 10.3389/fmicb.2015.00898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/17/2015] [Indexed: 12/24/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) are a diverse and functionally important group in the nitrogen cycle. Nevertheless, AOA and AOB communities driving this process remain uncharacterized in tropical freshwater sediment. Here, the effect of human settlement on the AOA and AOB diversity and abundance have been assessed by phylogenetic and quantitative PCR analyses, using archaeal and bacterial amoA and 16S rRNA genes. Overall, each environment contained specific clades of amoA and 16S rRNA genes sequences, suggesting that selective pressures lead to AOA and AOB inhabiting distinct ecological niches. Human settlement activities, as derived from increased metal and mineral nitrogen contents, appear to cause a response among the AOB community, with Nitrosomonas taking advantage over Nitrosospira in impacted environments. We also observed a dominance of AOB over AOA in mining-impacted sediments, suggesting that AOB might be the primary drivers of ammonia oxidation in these sediments. In addition, ammonia concentrations demonstrated to be the driver for the abundance of AOA, with an inversely proportional correlation between them. Our findings also revealed the presence of novel ecotypes of Thaumarchaeota, such as those related to the obligate acidophilic Nitrosotalea devanaterra at ammonia-rich places of circumneutral pH. These data add significant new information regarding AOA and AOB from tropical freshwater sediments, albeit future studies would be required to provide additional insights into the niche differentiation among these microorganisms.
Collapse
Affiliation(s)
- Mariana P Reis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil ; Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| | - Marcelo P Ávila
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Rosalinde M Keijzer
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| | - Francisco A R Barbosa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Edmar Chartone-Souza
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Andréa M A Nascimento
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Hendrikus J Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands ; Institute of Environmental Biology, Utrecht University Utrecht, Netherlands
| |
Collapse
|
15
|
Xing Y, Si YX, Hong C, Li Y. Multiple factors affect diversity and abundance of ammonia-oxidizing microorganisms in iron mine soil. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 69:20-31. [PMID: 25860433 DOI: 10.1007/s00244-015-0144-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 02/28/2015] [Indexed: 06/04/2023]
Abstract
Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. In this study, four soil samples collected from a desert zone in an iron-exploration area and others from farmland and planted forest soil in an iron mine surrounding area. We analyzed the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in iron-mining area near the Miyun reservoir using ammonia monooxygenase. A subunit gene (amoA) as molecular biomarker. Quantitative polymerase chain reaction was applied to explore the relationships between the abundance of AOA and AOB and soil physicochemical parameters. The results showed that AOA were more abundant than AOB and may play a more dominant role in the ammonia-oxidizing process in the whole region. PCR-denaturing gradient gel electrophoresis was used to analyze the structural changes of AOA and AOB. The results showed that AOB were much more diverse than AOA. Nitrosospira cluster three constitute the majority of AOB, and AOA were dominated by group 1.1b in the soil. Redundancy analysis was performed to explore the physicochemical parameters potentially important to AOA and AOB. Soil characteristics (i.e. water, ammonia, organic carbon, total nitrogen, available phosphorus, and soil type) were proposed to potentially contribute to the distributions of AOB, whereas Cd was also closely correlated to the distributions of AOB. The community of AOA correlated with ammonium and water contents. These results highlight the importance of multiple drivers in microbial niche formation as well as their affect on ammonia oxidizer composition, both which have significant consequences for ecosystem nitrogen functioning.
Collapse
Affiliation(s)
- Yi Xing
- School of Civil and Environmental Engineering, and Key Laboratory of Metal and Mine Efficiently Exploiting and Safety, Ministry of Education, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing, 100083, China,
| | | | | | | |
Collapse
|