1
|
Li Y, Gundlach AE, Ellington AD, Lucks JB. Design Principles for Polymerase Strand Recycling Circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643471. [PMID: 40166139 PMCID: PMC11956940 DOI: 10.1101/2025.03.17.643471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cell-free biosensing systems are being engineered as versatile and programmable diagnostic technologies. A core component of cell-free biosensors are programmable molecular circuits that improve biosensor speed, sensitivity and specificity by performing molecular computations such as logic evaluation and signal amplification. In previous work, we developed one such circuit system called Polymerase Strand Recycling (PSR) which amplifies cell-free molecular circuits by using T7 RNA polymerase off-target transcription to recycle nucleic acid inputs. We showed that PSR circuits can be configured to detect RNA target inputs as well as be interfaced with allosteric transcription factor-based biosensors to amplify signal and enhance sensitivity. Here we expand the development of PSR circuit design principles to generalize the platform for detecting a diverse set of model microRNA inputs. We show that PSR circuit function can be enhanced through engineering T7 RNAP, and present troubleshooting strategies to optimize PSR circuit performance.
Collapse
Affiliation(s)
- Yueyi Li
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| | - Arno E. Gundlach
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712
| | - Andrew D. Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Interdiscipinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
2
|
Li X, Hallajzadeh J. Circulating microRNAs and physical activity: Impact in diabetes. Clin Chim Acta 2025; 569:120178. [PMID: 39900127 DOI: 10.1016/j.cca.2025.120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
The term "ci-miRNAs," or "circulating microRNAs," refers to extracellular microRNAs (miRNAs) that exist outside of cells and can be detected in various bodily fluids, including blood, saliva, urine, and breast milk. These ci-miRNAs play a role in regulating gene expression and are mainly recognized for their functions beyond the cell, serving as signaling molecules in the blood. Researchers have thoroughly investigated the roles of these circulating miRNAs in various diseases. The capacity to detect and quantify ci-miRNAs in bodily fluids suggests their potential as biomarkers for monitoring several health conditions, including cancer, heart disease, brain disorders, and metabolic disorders, where fluctuations in miRNA levels may correlate with different physiological and pathological states. Current methods enable researchers to identify and measure miRNAs in these fluids, facilitating the exploration of their roles in health maintenance and disease resistance. Although research on ci-miRNAs is ongoing, recent studies focus on uncovering their significance, assessing their viability as biomarkers, and clarifying their functions. However, our understanding of how various types, intensities, and durations of exercise influence the levels of these miRNAs in the bloodstream is still limited. This section seeks to provide an overview of the changes in ci-miRNAs in response to exercise.
Collapse
Affiliation(s)
- Xiu Li
- Shanghai Minyuan College, Shanghai 201210, China.
| | - Jamal Hallajzadeh
- Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
3
|
Vann CG, Zhang X, Khodabukus A, Orenduff MC, Chen YH, Corcoran DL, Truskey GA, Bursac N, Kraus VB. Differential microRNA profiles of intramuscular and secreted extracellular vesicles in human tissue-engineered muscle. Front Physiol 2022; 13:937899. [PMID: 36091396 PMCID: PMC9452896 DOI: 10.3389/fphys.2022.937899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Exercise affects the expression of microRNAs (miR/s) and muscle-derived extracellular vesicles (EVs). To evaluate sarcoplasmic and secreted miR expression in human skeletal muscle in response to exercise-mimetic contractile activity, we utilized a three-dimensional tissue-engineered model of human skeletal muscle ("myobundles"). Myobundles were subjected to three culture conditions: no electrical stimulation (CTL), chronic low frequency stimulation (CLFS), or intermittent high frequency stimulation (IHFS) for 7 days. RNA was isolated from myobundles and from extracellular vesicles (EVs) secreted by myobundles into culture media; miR abundance was analyzed by miRNA-sequencing. We used edgeR and a within-sample design to evaluate differential miR expression and Pearson correlation to evaluate correlations between myobundle and EV populations within treatments with statistical significance set at p < 0.05. Numerous miRs were differentially expressed between myobundles and EVs; 116 miRs were differentially expressed within CTL, 3 within CLFS, and 2 within IHFS. Additionally, 25 miRs were significantly correlated (18 in CTL, 5 in CLFS, 2 in IHFS) between myobundles and EVs. Electrical stimulation resulted in differential expression of 8 miRs in myobundles and only 1 miR in EVs. Several KEGG pathways, known to play a role in regulation of skeletal muscle, were enriched, with differentially overrepresented miRs between myobundle and EV populations identified using miEAA. Together, these results demonstrate that in vitro exercise-mimetic contractile activity of human engineered muscle affects both their expression of miRs and number of secreted EVs. These results also identify novel miRs of interest for future studies of the role of exercise in organ-organ interactions in vivo.
Collapse
Affiliation(s)
- Christopher G Vann
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Melissa C. Orenduff
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Yu-Hsiu Chen
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - David L. Corcoran
- Department of Genetics, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - George A. Truskey
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
4
|
Kumar Dev P, Gray AJ, Scott-Hamilton J, Hagstrom AD, Murphy A, Denham J. Co-expression analysis identifies networks of miRNAs implicated in biological ageing and modulated by short-term interval training. Mech Ageing Dev 2021; 199:111552. [PMID: 34363832 DOI: 10.1016/j.mad.2021.111552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023]
Abstract
Exercise training seems to promote healthy biological ageing partly by inducing telomere maintenance, yet the molecular mechanisms are not fully understood. Recent studies have emphasised the importance of microRNAs (miRNAs) in ageing and their ability to mirror pathophysiological alterations associated with age-related diseases. We examined the association between aerobic fitness and leukocyte telomere length before determining the influence of vigorous exercise training on the regulation of leukocyte miRNA networks. Telomere length was positively correlated to aerobic fitness (r = 0.32, p = 0.02). 104 miRNAs were differentially expressed after six weeks of thrice-weekly sprint interval training (SIT) in healthy men (q < 0.05). Gene co-expression analysis (WGCNA) detected biologically meaningful miRNA networks, five of which were significantly correlated with pre-SIT and post-SIT expression profiles (p < 0.001) and telomere length. Enrichment analysis revealed that the immune response, T cell differentiation and lipid metabolism associated miRNAs clusters were significantly down-regulated after SIT. Using data acquired from the Gene Expression Omnibus (GEO), we also identified two co-expressed miRNAs families that were modulated by exercise training in previous investigations. Collectively, our findings highlight the miRNA networks implicated in exercise adaptations and telomere regulation, and suggest that SIT may attenuate biological ageing through the control of the let-7 and miR-320 miRNA families.
Collapse
Affiliation(s)
- Prasun Kumar Dev
- Department of Bioinformatics, Central University of South Bihar, India
| | - Adrian J Gray
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | | | - Amanda D Hagstrom
- School of Medical Sciences, University of New South Wales, NSW, Australia
| | - Aron Murphy
- School of Science and Technology, University of New England, Armidale, NSW, Australia; School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Joshua Denham
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Alterations in Circulating MicroRNAs and the Relation of MicroRNAs to Maximal Oxygen Consumption and Intima-Media Thickness in Ultra-Marathon Runners. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147234. [PMID: 34299680 PMCID: PMC8307599 DOI: 10.3390/ijerph18147234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
The impact of long-term training on cardiovascular disease (CVD) is not clear. Carotid intima-media thickness (CIMT) test is recommended as a useful measure to diagnose the early stages of atherosclerosis. MicroRNAs (miRNAs) are altered due to endurance exercise and can be promising biomarkers of pathophysiological changes. We aimed to evaluate the association of circulating miRNAs with physical fitness and markers of atherosclerosis in ultra-marathon runners. Ultra-marathon runners had 28-fold upregulation of miR-125a-5p expressions compared to control individuals (p = 0.002), whereas let-7e and miR-126 did not differ statistically between ultra-marathon runners and controls. In the ultra-marathon runners' group, negative correlations were observed between VO2max/kg and relative expression of miR-125a-5p and miR-126 (r = -0.402, p = 0.028; r = -0.438, p = 0.032, respectively). Positive correlations were observed between CIMT and miR-125a-5p and miR-126 (r = 0.388, p = 0.050; r = 0.504, p = 0.023, respectively) in ultra-marathon runners. Individuals with the highest quartile of VO2max/kg had 23-fold lower miR-126 expression in comparison to subgroups with lower VO2max/kg (p = 0.017). Our results may indicate that both miRNAs may serve as a biomarker for early pathological changes leading to atherosclerosis burden in athletes. Furthermore, the association between miRNAs and traditional risk factors for CVD indicate a possible use of these molecules as early biomarkers of future cardiovascular health.
Collapse
|
6
|
Da Silva FC, Rode MP, Vietta GG, Iop RDR, Creczynski-Pasa TB, Martin AS, Da Silva R. Expression levels of specific microRNAs are increased after exercise and are associated with cognitive improvement in Parkinson's disease. Mol Med Rep 2021; 24:618. [PMID: 34184078 PMCID: PMC8258464 DOI: 10.3892/mmr.2021.12257] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
There is a consensus regarding the efficacy of physical exercise in maintaining or improving human health; however, there are few studies examining the effect of physical exercise on the expression levels of microRNAs (miRNA/miRs) in Parkinson's disease (PD). The aim of the present study was to investigate the effects of an interval training program on a cycle ergometer on the expression levels of miR‑106a‑5p, miR‑103a‑3p and miR‑29a‑3p in serum samples from men with PD. This was a quasi‑experimental study with pre‑ and post‑testing and with a non‑equivalent group design. The participants were selected based on the eligibility criteria and subsequently classified into two groups: Experimental group and control group. The evaluations were performed at the beginning of the study (week 0) and after 8 weeks of the intervention program (week 9). The interval training program was performed on a cycle ergometer for 30 min, three times a week during an 8‑week period. The expression levels of miR‑106a‑5p, miR‑103a‑3p and miR‑29a‑3p in the experimental group were increased after physical exercise and were associated with cognitive improvement in men with PD. However, further studies are required to clarify the potential use of these circulating miRNAs as markers of adaptation to physical exercise. Collectively, the present results indicated that these three miRNAs may be associated with the exercise response and cognitive improvement in men with PD.
Collapse
Affiliation(s)
- Franciele Cascaes Da Silva
- Center for Health Sciences and Sports, Adapted Physical Activity Laboratory, Santa Catarina State University, Florianópolis, Santa Catarina 88080‑350, Brazil
| | - Michele Patrícia Rode
- Pharmaceutical Sciences Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88010‑970, Brazil
| | - Giovanna Grunewald Vietta
- Nucleus of Epidemiology, University of Southern Santa Catarina, Palhoça, Santa Catarina 88137‑270, Brazil
| | - Rodrigo Da Rosa Iop
- Center for Health Sciences and Sports, Adapted Physical Activity Laboratory, Santa Catarina State University, Florianópolis, Santa Catarina 88080‑350, Brazil
| | - Tânia Beatriz Creczynski-Pasa
- Pharmaceutical Sciences Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88010‑970, Brazil
| | - Alessandra Swarowsky Martin
- Center for Health and Sport Sciences, Physical Therapy Department, Santa Catarina State University, Florianópolis, Santa Catarina 88080‑350, Brazil
| | - Rudney Da Silva
- Center for Health Sciences and Sports, Adapted Physical Activity Laboratory, Santa Catarina State University, Florianópolis, Santa Catarina 88080‑350, Brazil
| |
Collapse
|
7
|
Foudi N, Legeay S. Effects of physical activity on cell-to-cell communication during type 2 diabetes: A focus on miRNA signaling. Fundam Clin Pharmacol 2021; 35:808-821. [PMID: 33675090 DOI: 10.1111/fcp.12665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 02/13/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (TD2) is a progressive disease characterized by hyperglycemia that results from alteration in insulin secretion, insulin resistance, or both. A number of alterations involving different tissues and organs have been reported to the development and the progression of T2D, and more relevantly, through cell-to-cell communication pathways. Recent studies demonstrated that miRNAs are considerably implicated to cell-to-cell communication during T2D. Physical activity (PA) is associated with decreasing risks of developing T2D and acts as insulin-like factor. Cumulative evidence suggests that this effect could be mediated in part through improving insulin sensitivity in T2D and obese patients and modulating miRNAs synthesis and release in healthy patients. Therefore, the practice of PA should ideally be established before the initiation of T2D. This review describes cell-to-cell communications involved in the pathophysiology of T2D during PA.
Collapse
Affiliation(s)
- Nabil Foudi
- Department of Pharmacy, UNIV Angers, Angers, France.,Faculty of Medicine, Department of Pharmacy, University Ferhat Abbas Setif 1, Setif, Algeria
| | - Samuel Legeay
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, Angers, France
| |
Collapse
|
8
|
Fernández-Sanjurjo M, Díaz-Martínez ÁE, Díez-Robles S, González-González F, de Gonzalo-Calvo D, Rabadán M, Dávalos A, Fernández-García B, Iglesias-Gutiérrez E. Circulating MicroRNA Profiling Reveals Specific Subsignatures in Response to a Maximal Incremental Exercise Test. J Strength Cond Res 2020; 35:287-291. [DOI: 10.1519/jsc.0000000000003930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Soplinska A, Zareba L, Wicik Z, Eyileten C, Jakubik D, Siller-Matula JM, De Rosa S, Malek LA, Postula M. MicroRNAs as Biomarkers of Systemic Changes in Response to Endurance Exercise-A Comprehensive Review. Diagnostics (Basel) 2020; 10:diagnostics10100813. [PMID: 33066215 PMCID: PMC7602033 DOI: 10.3390/diagnostics10100813] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022] Open
Abstract
Endurance sports have an unarguably beneficial influence on cardiovascular health and general fitness. Regular physical activity is considered one of the most powerful tools in the prevention of cardiovascular disease. MicroRNAs are small particles that regulate the post-transcription gene expression. Previous studies have shown that miRNAs might be promising biomarkers of the systemic changes in response to exercise, before they can be detected by standard imaging or laboratory methods. In this review, we focused on four important physiological processes involved in adaptive changes to various endurance exercises (namely, cardiac hypertrophy, cardiac myocyte damage, fibrosis, and inflammation). Moreover, we discussed miRNAs’ correlation with cardiopulmonary fitness parameter (VO2max). After a detailed literature search, we found that miR-1, miR-133, miR-21, and miR-155 are crucial in adaptive response to exercise.
Collapse
Affiliation(s)
- Aleksandra Soplinska
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.S.); (L.Z.); (Z.W.); (C.E.); (D.J.); (J.M.S.-M.)
| | - Lukasz Zareba
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.S.); (L.Z.); (Z.W.); (C.E.); (D.J.); (J.M.S.-M.)
| | - Zofia Wicik
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.S.); (L.Z.); (Z.W.); (C.E.); (D.J.); (J.M.S.-M.)
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo 055080-90, Brazil
| | - Ceren Eyileten
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.S.); (L.Z.); (Z.W.); (C.E.); (D.J.); (J.M.S.-M.)
| | - Daniel Jakubik
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.S.); (L.Z.); (Z.W.); (C.E.); (D.J.); (J.M.S.-M.)
| | - Jolanta M. Siller-Matula
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.S.); (L.Z.); (Z.W.); (C.E.); (D.J.); (J.M.S.-M.)
- Department of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy;
| | - Lukasz A. Malek
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, 04-635 Warsaw, Poland;
| | - Marek Postula
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.S.); (L.Z.); (Z.W.); (C.E.); (D.J.); (J.M.S.-M.)
- Longevity Center, 00-761 Warsaw, Poland
- Correspondence: ; Tel.: +48-221166160; Fax: +48-221166202
| |
Collapse
|
10
|
Silva FCD, Iop RDR, Andrade A, Costa VP, Gutierres Filho PJB, Silva RD. Effects of Physical Exercise on the Expression of MicroRNAs: A Systematic Review. J Strength Cond Res 2020; 34:270-280. [PMID: 31877120 DOI: 10.1519/jsc.0000000000003103] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Silva, FCd, Iop, RdR, Andrade, A, Costa, VP, Gutierres Filho, PJB, and Silva, Rd. Effects of physical exercise on the expression of microRNAs: A systematic review 34(1): 270-280, 2020-Studies have detected changes in the expression of miRNAs after physical exercise, which brings new insight into the molecular control of adaptation to exercise. Therefore, the objective of the current systematic review of experimental and quasiexperimental studies published in the past 10 years was to assess evidence related to acute effects, chronic effects, and both acute and chronic effects of physical exercise on miRNA expression in humans, as well as its functions, evaluated in serum, plasma, whole blood, saliva, or muscle biopsy. For this purpose, the following electronic databases were selected: MEDLINE by Pubmed, SCOPUS, Web of Science, and also a manual search in references of the selected articles to April 2017. Experimental and quasiexperimental studies were included. Results indicate that, of the 345 studies retrieved, 40 studies met the inclusion criteria and two articles were included as a result of the manual search. The 42 studies were analyzed, and it can be observed acute and chronic effects of physical exercises (aerobic and resistance) on the expression of several miRNAs in healthy subjects, athletes, young, elderly and in patients with congestive heart failure, chronic kidney disease, diabetes mellitus type 2 associated with morbid obesity, prediabetic, and patients with intermittent claudication. It is safe to assume that miRNA changes, both in muscle tissues and bodily fluids, are presumably associated with the benefits induced by acute and chronic physical exercise. Thus, a better understanding of changes in miRNAs as a response to physical exercise might contribute to the development of miRNAs as therapeutic targets for the improvement of exercise capacity in individuals with any given disease. However, additional studies are necessary to draw accurate conclusions.
Collapse
Affiliation(s)
- Franciele Cascaes da Silva
- Adapted Physical Activity Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| | - Rodrigo da Rosa Iop
- Adapted Physical Activity Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| | - Alexandro Andrade
- Laboratory of Psychology of Sport and Exercise, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| | - Vitor Pereira Costa
- Exercise Physiology Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil; and
| | | | - Rudney da Silva
- Adapted Physical Activity Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
11
|
Profiling microRNA expression in murine bone healing and non-union formation: Role of miR-140 during the early stage of bone healing. PLoS One 2019; 14:e0218395. [PMID: 31323027 PMCID: PMC6641081 DOI: 10.1371/journal.pone.0218395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/31/2019] [Indexed: 11/19/2022] Open
Abstract
Although cellular and molecular mechanisms during the course of bone healing have been thoroughly investigated, the regulation of gene expression by microRNA during bone regeneration is still poorly understood. We hypothesized that nonunion formation is associated with different microRNA expression patterns and that target proteins of these microRNAs are differently expressed in callus tissue of nonunions compared to physiologically healing bones. In a well-established femoral osteotomy model in CD-1 mice osteotomies were induced which result either in healing or in nonunion formation. MicroRNA and target protein expression was evaluated by microarray, quantitative real-time polymerase chain reaction (qrt-PCR) and Western blot. Microarray analyses demonstrated 44 microRNAs to be relevant for nonunion formation compared to physiological bone healing. In nonunions qrt-PCR could validate a higher expression of microRNA-140-3p and microRNA-140-5p. This was associated with a reduced expression of Dnpep and stromal cell-derived factor (SDF)-1α, which are both known to be target proteins of microRNA-140 and also to be involved in the process of bone healing. These data suggest that an increased expression of microRNA-140-3p and microRNA-140-5p markedly contributes to the development of nonunions, most probably by affecting bone morphogenetic protein (BMP)-2 function during the early stage of healing due to a reduced SDF-1α expression.
Collapse
|
12
|
Feurer E, Kan C, Croset M, Sornay-Rendu E, Chapurlat R. Lack of Association Between Select Circulating miRNAs and Bone Mass, Turnover, and Fractures: Data From the OFELY Cohort. J Bone Miner Res 2019; 34:1074-1085. [PMID: 30830972 DOI: 10.1002/jbmr.3685] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 12/21/2022]
Abstract
Postmenopausal osteoporosis is characterized by the occurrence of fragility fracture with an increase in morbidity and mortality. Recently, microRNAs (miRNAs) have raised interest as regulators of translational repression, mediating a number of key processes, including bone tissue in both physiological and diseased states. The aim of this study was to examine the serum levels of 32 preselected miRNAs with reported function in bone and their association with osteoporotic fracture. We performed cross-sectional and longitudinal analyses from the OFELY Cohort. Serum levels of the miRNAs were quantified by qRT-PCR in 682 women: 99 premenopausal and 583 postmenopausal women, with 1 and 122 women with prevalent fragility fractures in each group, respectively. We have collected clinical variables (such as age, prevalent, and incident fractures), bone turnover markers (BTMs), BMD by dual X-ray absorptiometry, and bone microarchitecture with HRpQCT. We observed a number of miRNAs to be associated with fragility fractures (prevalent or incident), BTMs, BMD, and microarchitecture. This effect, however, was negated after age adjustment. This may be because age was also strongly associated with the serum levels of the 32 miRNAs (correlation coefficient up to 0.49), confirming previous findings. In conclusion, in a well-characterized prospective cohort with a sizeable sample size, we found no evidence that these 32 preselected miRNAs were not associated with BTMs, BMD, microarchitecture, and or fragility fractures. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Casina Kan
- INSERM UMR 1033, Université de Lyon, Lyon, France
| | | | | | | |
Collapse
|
13
|
Schmitz B, Rolfes F, Schelleckes K, Mewes M, Thorwesten L, Krüger M, Klose A, Brand SM. Longer Work/Rest Intervals During High-Intensity Interval Training (HIIT) Lead to Elevated Levels of miR-222 and miR-29c. Front Physiol 2018; 9:395. [PMID: 29719514 PMCID: PMC5913345 DOI: 10.3389/fphys.2018.00395] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
Aim: MicroRNA-222 (miR-222) and miR-29c have been identified as important modulators of cardiac growth and may protect against pathological cardiac remodeling. miR-222 and -29c may thus serve as functional biomarkers for exercise-induced cardiac adaptations. This investigation compared the effect of two workload-matched high-intensity interval training (HIIT) protocols with different recovery periods on miR-222 and -29c levels. Methods: Sixty-three moderately trained females and males (22.0 ± 1.7 years) fulfilled the eligibility criteria and were randomized into two HIIT groups using sex and exercise capacity. During a controlled 4-week intervention (two sessions/week) a 4 × 30 HIIT group performed 4 × 30 s runs (all-out, 30 s active recovery) and a 8 × 15 HIIT group performed 8 × 15 s runs (all-out, 15 s active recovery). miR-222 and -29c as well as transforming growth factor-beta1 (TGF-beta1) mRNA levels were determined during high-intensity running as well as aerobic exercise using capillary blood from earlobes. Performance parameters were assessed using an incremental continuous running test (ICRT) protocol with blood lactate diagnostic and heart rate (HR) monitoring to determine HR recovery and power output at individual anaerobic threshold (IAT). Results: At baseline, acute exercise miR-222 and -29c levels were increased only in the 4 × 30 HIIT group (both p < 0.01, pre- vs. post-exercise). After the intervention, acute exercise miR-222 levels were still increased in the 4 × 30 HIIT group (p < 0.01, pre- vs. post-exercise) while in the 8 × 15 HIIT group again no acute effect was observed. However, both HIIT interventions resulted in elevated resting miR-222 and -29c levels (all p < 0.001, pre- vs. post-intervention). Neither of the two miRNAs were elevated at any ICRT speed level at baseline nor follow-up. While HR recovery was improved by >24% in both HIIT groups (both p ≤ 0.0002) speed at IAT was improved by 3.6% only in the 4 × 30 HIIT group (p < 0.0132). Correlation analysis suggested an association between both miRNAs and TGF-beta1 mRNA (all p ≤ 0.006, r ≥ 0.74) as well as change in speed at IAT and change in miR-222 levels (p = 0.024, r = 0.46). Conclusions: HIIT can induce increased circulating levels of cardiac growth-associated miR-222 and -29c. miR-222 and miR-29c could be useful markers to monitor HIIT response in general and to identify optimal work/rest combinations.
Collapse
Affiliation(s)
- Boris Schmitz
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Florian Rolfes
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Katrin Schelleckes
- Internal Medicine D, Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Mirja Mewes
- Internal Medicine D, Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Lothar Thorwesten
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Michael Krüger
- Department of Physical Education and Sports History, University of Muenster, Muenster, Germany
| | - Andreas Klose
- Department of Physical Education and Sports History, University of Muenster, Muenster, Germany
| | - Stefan-Martin Brand
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
14
|
Circulating MiRNAs as biomarkers of gait speed responses to aerobic exercise training in obese older adults. Aging (Albany NY) 2017; 9:900-913. [PMID: 28301325 PMCID: PMC5391238 DOI: 10.18632/aging.101199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/03/2017] [Indexed: 01/01/2023]
Abstract
Gait speed is a useful predictor of adverse outcomes, including incident mobility disability and mortality in older adults. While aerobic exercise training (AEX) is generally an effective therapy to improve gait speed, individual responses are highly variable. Circulating microRNAs (miRNAs) may contribute to inter-individual changes in gait speed with AEX. We examined whether plasma miRNAs are associated with gait speed changes (dGaitSp) in 33 obese older adults (age: 69.3±3.6 years, BMI: 34.0±3.1 kg/m2, 85% white, 73% women) who performed treadmill walking, 4 days/week for 5 months. Gait speed (baseline: 1.02±0.19 m/s; range of response: −0.2 to 0.35 m/s) was assessed using a 400 meter-fast-paced walk test. Using Nanostring technology, 120 out of 800 miRNAs were found to be abundantly expressed in plasma and 4 of these were significantly changed after AEX: miR-376a-5p increased, while miR-16-5p, miR-27a-3p, and miR-28-3p all decreased. In addition, baseline miR-181a-5p levels (r=-0.40, p=0.02) and percent changes in miR-92a-3p (r=-0.44, p=0.009) associated negatively with dGaitSp. Linear regression combined baseline miR-181a-5p and miR-92a-3p levels showed even stronger associations with dGaitSp (r=-0.48, p=0.005). These results suggest that circulating miR-181a-5p and miR-92a-3p may predict and/or regulate AEX-induced gait speed changes in obese older adults.
Collapse
|
15
|
Sapp RM, Shill DD, Roth SM, Hagberg JM. Circulating microRNAs in acute and chronic exercise: more than mere biomarkers. J Appl Physiol (1985) 2016; 122:702-717. [PMID: 28035018 DOI: 10.1152/japplphysiol.00982.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/14/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that influence biological processes by regulating gene expression after transcription. It was recently discovered that miRNAs are released into the circulation (ci-miRNAs) where they are highly stable and can act as intercellular messengers to affect physiological processes. This review provides a comprehensive summary of the studies to date that have investigated the effects of acute exercise and exercise training on ci-miRNAs in humans. Findings indicate that specific ci-miRNAs are altered in response to different protocols of acute and chronic exercise in both healthy and diseased populations. In some cases, altered ci-miRNAs correlate with fitness and health parameters, suggesting causal mechanisms by which ci-miRNAs may facilitate adaptations to exercise training. However, strong data supporting such mechanisms are lacking. Thus, a purpose of this review is to guide future studies by discussing current and novel proposed roles for ci-miRNAs in adaptations to exercise training. In addition, substantial, fundamental gaps in the field need to be addressed. The ultimate goal of this research is that an understanding of the roles of ci-miRNAs in physiological adaptations to exercise training will one day translate to therapeutic interventions.
Collapse
Affiliation(s)
- Ryan M Sapp
- Department of Kinesiology, University of Maryland, College Park, Maryland
| | - Daniel D Shill
- Department of Kinesiology, University of Maryland, College Park, Maryland
| | - Stephen M Roth
- Department of Kinesiology, University of Maryland, College Park, Maryland
| | - James M Hagberg
- Department of Kinesiology, University of Maryland, College Park, Maryland
| |
Collapse
|
16
|
Denham J, Prestes PR. Muscle-Enriched MicroRNAs Isolated from Whole Blood Are Regulated by Exercise and Are Potential Biomarkers of Cardiorespiratory Fitness. Front Genet 2016; 7:196. [PMID: 27895662 PMCID: PMC5108773 DOI: 10.3389/fgene.2016.00196] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/27/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally. Evidence indicating miRNAs influence exercise-induced health and performance adaptations is mounting. Circulating miRNAs are responsible for intercellular communication and could serve as biomarkers for disease and exercise-related traits. Such biomarkers would contribute to exercise screening, monitoring, and the development of personalized exercise prescription. Accordingly, we investigated the impact of long-term strenuous aerobic exercise training and a single bout of maximal aerobic exercise on five muscle-enriched miRNAs implicated in exercise adaptations (miR-1, miR-133a, miR-181a, miR-486, and miR-494). We also determined linear correlations between miRNAs, resting heart rate, and maximum oxygen uptake (O2 max). We used TaqMan assay quantitative polymerase chain reaction to analyze the abundance of miR-1, miR-133a, miR-181a, miR-486, and miR-494 in resting whole blood of 67 endurance athletes and 61 healthy controls. Relative to controls, endurance athletes exhibited increased miR-1, miR-486, and miR-494 content (1.26- to 1.58-fold change, all p < 0.05). miR-1, miR-133a, and miR-486 were decreased immediately after maximal aerobic exercise (0.64- to 0.76-fold change, all p < 0.01) performed by 19 healthy, young men (20.7 ± 2.4 years). Finally, we observed positive correlations between miRNA abundance and O2 max (miR-1 and miR-486) and an inverse correlation between miR-486 and resting heart rate. Therefore, muscle-enriched miRNAs isolated from whole blood are regulated by acute and long-term aerobic exercise training and could serve as biomarkers of cardiorespiratory fitness.
Collapse
Affiliation(s)
- Joshua Denham
- School of Science and Technology, University of New England, ArmidaleNSW, Australia; Faculty of Science and Technology, Federation University Australia, Mount HelenVIC, Australia
| | - Priscilla R Prestes
- Faculty of Science and Technology, Federation University Australia, Mount Helen VIC, Australia
| |
Collapse
|
17
|
Circulating MicroRNAs as Potential Biomarkers of Exercise Response. Int J Mol Sci 2016; 17:ijms17101553. [PMID: 27782053 PMCID: PMC5085619 DOI: 10.3390/ijms17101553] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 02/08/2023] Open
Abstract
Systematic physical activity increases physical fitness and exercise capacity that lead to the improvement of health status and athletic performance. Considerable effort is devoted to identifying new biomarkers capable of evaluating exercise performance capacity and progress in training, early detection of overtraining, and monitoring health-related adaptation changes. Recent advances in OMICS technologies have opened new opportunities in the detection of genetic, epigenetic and transcriptomic biomarkers. Very promising are mainly small non-coding microRNAs (miRNAs). miRNAs post-transcriptionally regulate gene expression by binding to mRNA and causing its degradation or inhibiting translation. A growing body of evidence suggests that miRNAs affect many processes and play a crucial role not only in cell differentiation, proliferation and apoptosis, but also affect extracellular matrix composition and maintaining processes of homeostasis. A number of studies have shown changes in distribution profiles of circulating miRNAs (c-miRNAs) associated with various diseases and disorders as well as in samples taken under physiological conditions such as pregnancy or physical exercise. This overview aims to summarize the current knowledge related to the response of blood c-miRNAs profiles to different modes of exercise and to highlight their potential application as a novel class of biomarkers of physical performance capacity and training adaptation.
Collapse
|
18
|
Hecksteden A, Leidinger P, Backes C, Rheinheimer S, Pfeiffer M, Ferrauti A, Kellmann M, Sedaghat-Hamedani F, Meder B, Meese E, Meyer T, Keller A. miRNAs and sports: tracking training status and potentially confounding diagnoses. J Transl Med 2016; 14:219. [PMID: 27456854 PMCID: PMC4960671 DOI: 10.1186/s12967-016-0974-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/11/2016] [Indexed: 11/27/2022] Open
Abstract
Background The dependency of miRNA abundance from physiological processes such as exercises remains partially understood. We set out to analyze the effect of physical exercises on miRNA profiles in blood and plasma of endurance and strength athletes in a systematic manner and correlated differentially abundant miRNAs in athletes to disease miRNAs biomarkers towards a better understanding of how physical exercise may confound disease diagnosis by miRNAs. Methods We profiled blood and plasma of 29 athletes before and after exercise. With four samples analyzed for each individual we analyzed 116 full miRNomes. The study set-up enabled paired analyses of individuals. Affected miRNAs were investigated for known disease associations using network analysis. Results MiRNA patterns in blood and plasma of endurance and strength athletes vary significantly with differences in blood outreaching variations in plasma. We found only moderate differences between the miRNA levels before training and the RNA levels after training as compared to the more obvious variations found between strength athletes and endurance athletes. We observed significant variations in the abundance of miR-140-3p that is a known circulating disease markers (raw and adjusted p value of 5 × 10−12 and 4 × 10−7). Similarly, the levels of miR-140-5p and miR-650, both of which have been reported as makers for a wide range of human pathologies significantly depend on the training mode. Among the most affected disease categories we found acute myocardial infarction. MiRNAs, which are up-regulated in endurance athletes inhibit VEGFA as shown by systems biology analysis of experimentally validated target genes. Conclusion We provide evidence that the mode and the extent of training are important confounding factors for a miRNA based disease diagnosis. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0974-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Hecksteden
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | - Petra Leidinger
- Department of Human Genetics, Saarland University, Saarbrücken, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Medical Department, Saarland University, Building E2.1, 66125, Saarbrücken, Germany
| | | | - Mark Pfeiffer
- Department of Theory and Practice of Sports, Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | - Michael Kellmann
- Faculty of Sport Science, Ruhr-University Bochum, Bochum, Germany.,School of Human Movement Studies, The University of Queensland, St Lucia, Australia
| | | | - Benjamin Meder
- Internal Medicine, Heidelberg University, Heidelberg, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, Saarbrücken, Germany
| | - Tim Meyer
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Medical Department, Saarland University, Building E2.1, 66125, Saarbrücken, Germany.
| |
Collapse
|
19
|
Specific miRNA Disease Biomarkers in Blood, Serum and Plasma: Challenges and Prospects. Mol Diagn Ther 2016; 20:509-518. [DOI: 10.1007/s40291-016-0221-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Shao G, Ji S, Wu A, Liu C, Wang M, Zhang P, Jiao Q, Kang Y. DNAzyme-based probe for circulating microRNA detection in peripheral blood. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:6109-17. [PMID: 26604698 PMCID: PMC4655907 DOI: 10.2147/dddt.s89560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The recent discovery of microRNAs (miRNAs) and their extracellular presence suggest a potential role of these regulatory molecules in defining the metastatic potential of cancer cells and mediating the cancer-host communication. This study aims to improve the sensitivity of miRNA detection via DNAzyme-based method and enhance the selectivity by using the DNAzyme-based probe to reduce nonspecific amplification. METHODS The miRNA probes were chemically synthesized with a phosphate at the 5' end and purified by polyacrylamide gel electrophoresis. Exosomal RNA from peripheral blood was isolated. Carboxylated magnetic microsphere beads (MBs) were functionalized with streptavidin (SA) according to a previously reported method with some modification. T capture probe-coated SA-MBs (DNA-MBs) were also prepared. The fluorescent spectra were measured using a spectrofluorophotometer. RESULTS We designed an incomplete DNAzyme probe with two stems and one bubble structure as a recognition element for the specific detection of miRNA with high sensitivity. The background effects were decreased with increase of the added of DNA-MBs and capturing times. Therefore, 20 minutes was selected as the optimal concentration in the current study. The fluorescence intensity increases as the hybridization time changed and reached a constant level at 40 minutes, and 1 μM is the optimum signal probe concentration for self-assembled DNA concatemers formation. In the presence of miRNA, the fluorescence of the solution increased with increasing miRNA concentration. There is no obvious fluorescence in the presence of 10 mM of other nontarget DNA. CONCLUSION A simple, rapid method with high performance has been constructed based on identified circulating miRNA signatures using miRNA-induced DNAzyme. This assay is simple, inexpensive, and sensitive, enabling quantitative detection of as low as 10 fM miRNA.
Collapse
Affiliation(s)
- Guoli Shao
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Shufeng Ji
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Aiguo Wu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Cuiping Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Mengchuan Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Pusheng Zhang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Qingli Jiao
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yuzhan Kang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
21
|
Gomes CPC, Kim TK, Wang K, He Y. The implications on clinical diagnostics of using microRNA-based biomarkers in exercise. Expert Rev Mol Diagn 2015; 15:761-72. [DOI: 10.1586/14737159.2015.1039517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Taek-Kyun Kim
- 2Institute for Systems Biology, Seattle, WA 98109, USA
| | - Kai Wang
- 2Institute for Systems Biology, Seattle, WA 98109, USA
| | - Yuqing He
- 3Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, Guangdong 523808, China
| |
Collapse
|
22
|
Langhe R, Norris L, Saadeh FA, Blackshields G, Varley R, Harrison A, Gleeson N, Spillane C, Martin C, O'Donnell DM, D'Arcy T, O'Leary J, O'Toole S. A novel serum microRNA panel to discriminate benign from malignant ovarian disease. Cancer Lett 2014; 356:628-36. [PMID: 25451316 DOI: 10.1016/j.canlet.2014.10.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/08/2014] [Accepted: 10/08/2014] [Indexed: 12/19/2022]
Abstract
Ovarian cancer is the seventh most common cancer in women and the most frequent cause of gynaecological malignancy-related mortality in women. Currently, no standardized reliable screening test exists. MicroRNA profiling has allowed the identification of signatures associated with diagnosis, prognosis and response to treatment of human tumours. The aim of this study was to determine if a microRNA signature could distinguish between malignant and benign ovarian disease. A training set of 5 serous ovarian carcinomas and 5 benign serous cystadenomas were selected for the initial experiments. The validation set included 20 serous ovarian carcinomas and 20 benign serous cystadenomas. The serum/plasma focus microRNA Exiqon panel was used for the training set. For the validation set a pick and mix Exiqon panel, which focuses on microRNAs of interest was used. A panel of 4 microRNAs (let-7i-5p, miR-122, miR-152-5p and miR-25-3p) was significantly down regulated in cancer patients. These microRNAs target WNT signalling, AKT/mTOR and TLR-4/MyD88, which have previously been found to play a role in ovarian carcinogenesis and chemoresistance. let-7i-5p, miR-122, miR-152-5p and miR-25-3p could act as diagnostic biomarkers in ovarian cancer.
Collapse
Affiliation(s)
- Ream Langhe
- Department of Obstetrics and Gynaecology, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland; Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Lucy Norris
- Department of Obstetrics and Gynaecology, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Feras Abu Saadeh
- Department of Gynaecological-Oncology, St. James's Hospital, Dublin 8, Ireland
| | - Gordon Blackshields
- Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Rachel Varley
- Department of Obstetrics and Gynaecology, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Ashling Harrison
- Department of Obstetrics and Gynaecology, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Noreen Gleeson
- Department of Gynaecological-Oncology, St. James's Hospital, Dublin 8, Ireland
| | - Cathy Spillane
- Department of Histopathology, Trinity College Dublin, Coombe Women's and Infants University Hospital, Dublin 8, Ireland
| | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Coombe Women's and Infants University Hospital, Dublin 8, Ireland
| | | | - Tom D'Arcy
- Department of Gynaecological-Oncology, St. James's Hospital, Dublin 8, Ireland
| | - John O'Leary
- Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland; Department of Histopathology, Trinity College Dublin, Coombe Women's and Infants University Hospital, Dublin 8, Ireland
| | - Sharon O'Toole
- Department of Obstetrics and Gynaecology, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland; Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| |
Collapse
|