1
|
Guss EJ, Akbergenova Y, Cunningham KL, Littleton JT. Loss of the extracellular matrix protein Perlecan disrupts axonal and synaptic stability during Drosophila development. eLife 2023; 12:RP88273. [PMID: 37368474 PMCID: PMC10328508 DOI: 10.7554/elife.88273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) form essential components of the extracellular matrix (ECM) and basement membrane (BM) and have both structural and signaling roles. Perlecan is a secreted ECM-localized HSPG that contributes to tissue integrity and cell-cell communication. Although a core component of the ECM, the role of Perlecan in neuronal structure and function is less understood. Here, we identify a role for Drosophila Perlecan in the maintenance of larval motoneuron axonal and synaptic stability. Loss of Perlecan causes alterations in the axonal cytoskeleton, followed by axonal breakage and synaptic retraction of neuromuscular junctions. These phenotypes are not prevented by blocking Wallerian degeneration and are independent of Perlecan's role in Wingless signaling. Expression of Perlecan solely in motoneurons cannot rescue synaptic retraction phenotypes. Similarly, removing Perlecan specifically from neurons, glia, or muscle does not cause synaptic retraction, indicating the protein is secreted from multiple cell types and functions non-cell autonomously. Within the peripheral nervous system, Perlecan predominantly localizes to the neural lamella, a specialized ECM surrounding nerve bundles. Indeed, the neural lamella is disrupted in the absence of Perlecan, with axons occasionally exiting their usual boundary in the nerve bundle. In addition, entire nerve bundles degenerate in a temporally coordinated manner across individual hemi-segments throughout larval development. These observations indicate disruption of neural lamella ECM function triggers axonal destabilization and synaptic retraction of motoneurons, revealing a role for Perlecan in axonal and synaptic integrity during nervous system development.
Collapse
Affiliation(s)
- Ellen J Guss
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Karen L Cunningham
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
2
|
Igreja C, Sommer RJ. The Role of Sulfation in Nematode Development and Phenotypic Plasticity. Front Mol Biosci 2022; 9:838148. [PMID: 35223994 PMCID: PMC8869759 DOI: 10.3389/fmolb.2022.838148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022] Open
Abstract
Sulfation is poorly understood in most invertebrates and a potential role of sulfation in the regulation of developmental and physiological processes of these organisms remains unclear. Also, animal model system approaches did not identify many sulfation-associated mechanisms, whereas phosphorylation and ubiquitination are regularly found in unbiased genetic and pharmacological studies. However, recent work in the two nematodes Caenorhabditis elegans and Pristionchus pacificus found a role of sulfatases and sulfotransferases in the regulation of development and phenotypic plasticity. Here, we summarize the current knowledge about the role of sulfation in nematodes and highlight future research opportunities made possible by the advanced experimental toolkit available in these organisms.
Collapse
Affiliation(s)
- Catia Igreja
- *Correspondence: Catia Igreja, ; Ralf J. Sommer,
| | | |
Collapse
|
3
|
DeGroot MS, Greer R, Liu J. GPN-1/glypican and UNC-52/perlecan do not appear to function in BMP signaling to pattern the C. elegans postembryonic mesoderm. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000437. [PMID: 34405137 PMCID: PMC8363907 DOI: 10.17912/micropub.biology.000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/12/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are diverse macromolecules consisting of a protein core modified with glycosaminoglycan (GAG) chains. HSPGs, including glypicans and perlecans, have been implicated in shaping the extracellular matrix (ECM) to affect growth factor signaling. Here, we tested if GPN-1/glypicanor UNC-52/perlecan plays a role in the bone morphogenetic protein (BMP) signaling pathway in patterning the C. elegans postembryonic mesoderm. Using the suppression of sma-9(0) (Susm)assay, we found that animals carrying mutant alleles of gpn-1 or unc-52 do not exhibit any Susm phenotype. We also tested and found that the two glypicans GPN-1 and LON-2 do not share functional redundancy in the BMP pathway. Our results suggest that GPN-1/glypican and UNC-52/perlecan do not play a major role in the C. elegans BMP pathway, at least in patterning of the postembryonic mesoderm.
Collapse
Affiliation(s)
- Melisa S DeGroot
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY. USA
| | - Robert Greer
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY. USA
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY. USA,
Correspondence to: Jun Liu ()
| |
Collapse
|
4
|
Cizeron M, Granger L, Bülow HE, Bessereau JL. Specific heparan sulfate modifications stabilize the synaptic organizer MADD-4/Punctin at C. elegans neuromuscular junctions. Genetics 2021; 218:6275221. [PMID: 33983408 DOI: 10.1093/genetics/iyab073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023] Open
Abstract
Heparan sulfate proteoglycans contribute to the structural organization of various neurochemical synapses. Depending on the system, their role involves either the core protein or the glycosaminoglycan chains. These linear sugar chains are extensively modified by heparan sulfate modification enzymes, resulting in highly diverse molecules. Specific modifications of glycosaminoglycan chains may thus contribute to a sugar code involved in synapse specificity. Caenorhabditis elegans is particularly useful to address this question because of the low level of genomic redundancy of these enzymes, as opposed to mammals. Here, we systematically mutated the genes encoding heparan sulfate modification enzymes in C. elegans and analyzed their impact on excitatory and inhibitory neuromuscular junctions. Using single chain antibodies that recognize different heparan sulfate modification patterns, we show in vivo that these two heparan sulfate epitopes are carried by the SDN-1 core protein, the unique C. elegans syndecan orthologue, at neuromuscular junctions. Intriguingly, these antibodies differentially bind to excitatory and inhibitory synapses, implying unique heparan sulfate modification patterns at different neuromuscular junctions. Moreover, while most enzymes are individually dispensable for proper organization of neuromuscular junctions, we show that 3-O-sulfation of SDN-1 is required to maintain wild-type levels of the extracellular matrix protein MADD-4/Punctin, a central synaptic organizer that defines the identity of excitatory and inhibitory synaptic domains at the plasma membrane of muscle cells.
Collapse
Affiliation(s)
- Mélissa Cizeron
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, 69008 Lyon, France
| | - Laure Granger
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, 69008 Lyon, France
| | - Hannes E Bülow
- Department of Genetics & Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Jean-Louis Bessereau
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, 69008 Lyon, France
| |
Collapse
|
5
|
Amran A, Pigatto L, Pocock R, Gopal S. Functions of the extracellular matrix in development: Lessons from Caenorhabditis elegans. Cell Signal 2021; 84:110006. [PMID: 33857577 DOI: 10.1016/j.cellsig.2021.110006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022]
Abstract
Cell-extracellular matrix interactions are crucial for the development of an organism from the earliest stages of embryogenesis. The main constituents of the extracellular matrix are collagens, laminins, proteoglycans and glycosaminoglycans that form a network of interactions. The extracellular matrix and its associated molecules provide developmental cues and structural support from the outside of cells during development. The complex nature of the extracellular matrix and its ability for continuous remodeling poses challenges when investigating extracellular matrix-based signaling during development. One way to address these challenges is to employ invertebrate models such as Caenorhabditis elegans, which are easy to genetically manipulate and have an invariant developmental program. C. elegans also expresses fewer extracellular matrix protein isoforms and exhibits reduced redundancy compared to mammalian models, thus providing a simpler platform for exploring development. This review summarizes our current understanding of how the extracellular matrix controls the development of neurons, muscles and the germline in C. elegans.
Collapse
Affiliation(s)
- Aqilah Amran
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Lara Pigatto
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia; Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
Abstract
Establishment of neural circuits requires reproducible and precise interactions between growing axons, dendrites and their tissue environment. Cell adhesion molecules and guidance factors are involved in the process, but how specificity is achieved remains poorly understood. Glycans are the third major class of biopolymers besides nucleic acids and proteins, and are usually covalently linked to proteins to form glycoconjugates. Common to most glycans is an extraordinary level of molecular diversity, making them attractive candidates to contribute specificity during neural development. Indeed, many genes important for neural development encode glycoproteins, or enzymes involved in synthesizing or modifying glycans. Glycoconjugates are classified based on both the types of glycans and type of attachment that link them to proteins. Here I discuss progress in understanding the function of glycans, glycan modifications and glycoconjugates during neural development in Caenorhabditis elegans. I will also highlight relevance to human disease and known roles of glycoconjugates in regeneration.
Collapse
Affiliation(s)
- Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
7
|
Gopal S, Arokiasamy S, Pataki C, Whiteford JR, Couchman JR. Syndecan receptors: pericellular regulators in development and inflammatory disease. Open Biol 2021; 11:200377. [PMID: 33561383 PMCID: PMC8061687 DOI: 10.1098/rsob.200377] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
The syndecans are the major family of transmembrane proteoglycans, usually bearing multiple heparan sulfate chains. They are present on virtually all nucleated cells of vertebrates and are also present in invertebrates, indicative of a long evolutionary history. Genetic models in both vertebrates and invertebrates have shown that syndecans link to the actin cytoskeleton and can fine-tune cell adhesion, migration, junction formation, polarity and differentiation. Although often associated as co-receptors with other classes of receptors (e.g. integrins, growth factor and morphogen receptors), syndecans can nonetheless signal to the cytoplasm in discrete ways. Syndecan expression levels are upregulated in development, tissue repair and an array of human diseases, which has led to the increased appreciation that they may be important in pathogenesis not only as diagnostic or prognostic agents, but also as potential targets. Here, their functions in development and inflammatory diseases are summarized, including their potential roles as conduits for viral pathogen entry into cells.
Collapse
Affiliation(s)
- Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Samantha Arokiasamy
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Csilla Pataki
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - James R. Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - John R. Couchman
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
8
|
De Pasquale V, Pavone LM. Heparan sulfate proteoglycans: The sweet side of development turns sour in mucopolysaccharidoses. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165539. [PMID: 31465828 DOI: 10.1016/j.bbadis.2019.165539] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are complex carbohydrate-modified proteins ubiquitously expressed on cell surfaces, extracellular matrix and basement membrane of mammalian tissues. Beside to serve as structural constituents, they regulate multiple cellular activities. A critical involvement of HSPGs in development has been established, and perturbations of HSPG-dependent pathways are associated with many human diseases. Recent evidence suggest a role of HSPGs in the pathogenesis of mucopolysaccharidoses (MPSs) where the accumulation of undigested HS results in the loss of cellular functions, tissue damage and organ dysfunctions accounting for clinical manifestations which include central nervous system (CNS) involvement, degenerative joint disease and reduced bone growth. Current therapies are not curative but only ameliorate the disease symptoms. Here, we highlight the link between HSPG functions in the development of CNS and musculoskeletal structures and the etiology of some MPS phenotypes, suggesting that HSPGs may represent potential targets for the therapy of such incurable diseases.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, Via S. Pansini n. 5, 80131 Naples, Italy.
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, Via S. Pansini n. 5, 80131 Naples, Italy.
| |
Collapse
|
9
|
Smock RG, Meijers R. Roles of glycosaminoglycans as regulators of ligand/receptor complexes. Open Biol 2018; 8:rsob.180026. [PMID: 30282658 PMCID: PMC6223220 DOI: 10.1098/rsob.180026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
Glycosaminoglycans (GAGs) play a widespread role in embryonic development, as deletion of enzymes that contribute to GAG synthesis lead to deficiencies in cell migration and tissue modelling. Despite the biochemical and structural characterization of individual protein/GAG interactions, there is no concept available that links the molecular mechanisms of GAG/protein engagements to tissue development. Here, we focus on the role of GAG polymers in mediating interactions between cell surface receptors and their ligands. We categorize several switches that lead to ligand activation, inhibition, selection and addition, based on recent structural studies of select receptor/ligand complexes. Based on these principles, we propose that individual GAG polymers may affect several receptor pathways in parallel, orchestrating a cellular response to an environmental cue. We believe that it is worthwhile to study the role of GAGs as molecular switches, as this may lead to novel drug candidates to target processes such as angiogenesis, neuroregeneration and tumour metastasis.
Collapse
Affiliation(s)
- Robert G Smock
- European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
10
|
Townley RA, Bülow HE. Deciphering functional glycosaminoglycan motifs in development. Curr Opin Struct Biol 2018; 50:144-154. [PMID: 29579579 PMCID: PMC6078790 DOI: 10.1016/j.sbi.2018.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 01/12/2023]
Abstract
Glycosaminoglycans (GAGs) such as heparan sulfate, chondroitin/dermatan sulfate, and keratan sulfate are linear glycans, which when attached to protein backbones form proteoglycans. GAGs are essential components of the extracellular space in metazoans. Extensive modifications of the glycans such as sulfation, deacetylation and epimerization create structural GAG motifs. These motifs regulate protein-protein interactions and are thereby repsonsible for many of the essential functions of GAGs. This review focusses on recent genetic approaches to characterize GAG motifs and their function in defined signaling pathways during development. We discuss a coding approach for GAGs that would enable computational analyses of GAG sequences such as alignments and the computation of position weight matrices to describe GAG motifs.
Collapse
Affiliation(s)
- Robert A Townley
- Department of Biological Sciences, Columbia University, New York, NY 10027, United States
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, United States; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
11
|
Synaptogenesis Is Modulated by Heparan Sulfate in Caenorhabditis elegans. Genetics 2018; 209:195-208. [PMID: 29559501 PMCID: PMC5937176 DOI: 10.1534/genetics.118.300837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 03/06/2018] [Indexed: 01/06/2023] Open
Abstract
The nervous system regulates complex behaviors through a network of neurons interconnected by synapses. How specific synaptic connections are genetically determined is still unclear. Male mating is the most complex behavior in Caenorhabditis elegans It is composed of sequential steps that are governed by > 3000 chemical connections. Here, we show that heparan sulfates (HS) play a role in the formation and function of the male neural network. HS, sulfated in position 3 by the HS modification enzyme HST-3.1/HS 3-O-sulfotransferase and attached to the HS proteoglycan glypicans LON-2/glypican and GPN-1/glypican, functions cell-autonomously and nonautonomously for response to hermaphrodite contact during mating. Loss of 3-O sulfation resulted in the presynaptic accumulation of RAB-3, a molecule that localizes to synaptic vesicles, and disrupted the formation of synapses in a component of the mating circuits. We also show that the neural cell adhesion protein NRX-1/neurexin promotes and the neural cell adhesion protein NLG-1/neuroligin inhibits the formation of the same set of synapses in a parallel pathway. Thus, neural cell adhesion proteins and extracellular matrix components act together in the formation of synaptic connections.
Collapse
|
12
|
Saied-Santiago K, Bülow HE. Diverse roles for glycosaminoglycans in neural patterning. Dev Dyn 2018; 247:54-74. [PMID: 28736980 PMCID: PMC5866094 DOI: 10.1002/dvdy.24555] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/11/2023] Open
Abstract
The nervous system coordinates the functions of most multicellular organisms and their response to the surrounding environment. Its development involves concerted cellular interactions, including migration, axon guidance, and synapse formation. These processes depend on the molecular constituents and structure of the extracellular matrices (ECM). An essential component of ECMs are proteoglycans, i.e., proteins containing unbranched glycan chains known as glycosaminoglycans (GAGs). A defining characteristic of GAGs is their enormous molecular diversity, created by extensive modifications of the glycans during their biosynthesis. GAGs are widely expressed, and their loss can lead to catastrophic neuronal defects. Despite their importance, we are just beginning to understand the function and mechanisms of GAGs in neuronal development. In this review, we discuss recent evidence suggesting GAGs have specific roles in neuronal patterning and synaptogenesis. We examine the function played by the complex modifications present on GAG glycans and their roles in regulating different aspects of neuronal patterning. Moreover, the review considers the function of proteoglycan core proteins in these processes, stressing their likely role as co-receptors of different signaling pathways in a redundant and context-dependent manner. We conclude by discussing challenges and future directions toward a better understanding of these fascinating molecules during neuronal development. Developmental Dynamics 247:54-74, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| |
Collapse
|
13
|
Saied-Santiago K, Townley RA, Attonito JD, da Cunha DS, Díaz-Balzac CA, Tecle E, Bülow HE. Coordination of Heparan Sulfate Proteoglycans with Wnt Signaling To Control Cellular Migrations and Positioning in Caenorhabditis elegans. Genetics 2017; 206:1951-1967. [PMID: 28576860 PMCID: PMC5560800 DOI: 10.1534/genetics.116.198739] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/20/2017] [Indexed: 11/18/2022] Open
Abstract
Heparan sulfates (HS) are linear polysaccharides with complex modification patterns, which are covalently bound via conserved attachment sites to core proteins to form heparan sulfate proteoglycans (HSPGs). HSPGs regulate many aspects of the development and function of the nervous system, including cell migration, morphology, and network connectivity. HSPGs function as cofactors for multiple signaling pathways, including the Wnt-signaling molecules and their Frizzled receptors. To investigate the functional interactions among the HSPG and Wnt networks, we conducted genetic analyses of each, and also between these networks using five cellular migrations in the nematode Caenorhabditis elegans We find that HSPG core proteins act genetically in a combinatorial fashion dependent on the cellular contexts. Double mutant analyses reveal distinct redundancies among HSPGs for different migration events, and different cellular migrations require distinct heparan sulfate modification patterns. Our studies reveal that the transmembrane HSPG SDN-1/Syndecan functions within the migrating cell to promote cellular migrations, while the GPI-linked LON-2/Glypican functions cell nonautonomously to establish the final cellular position. Genetic analyses with the Wnt-signaling system show that (1) a given HSPG can act with different Wnts and Frizzled receptors, and that (2) a given Wnt/Frizzled pair acts with different HSPGs in a context-dependent manner. Lastly, we find that distinct HSPG and Wnt/Frizzled combinations serve separate functions to promote cellular migration and establish position of specific neurons. Our studies suggest that HSPGs use structurally diverse glycans in coordination with Wnt-signaling pathways to control multiple cellular behaviors, including cellular and axonal migrations and, cellular positioning.
Collapse
Affiliation(s)
| | - Robert A Townley
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - John D Attonito
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Dayse S da Cunha
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Carlos A Díaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Eillen Tecle
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
14
|
Neural Glycosylphosphatidylinositol-Anchored Proteins in Synaptic Specification. Trends Cell Biol 2017; 27:931-945. [PMID: 28743494 DOI: 10.1016/j.tcb.2017.06.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are a specialized class of lipid-associated neuronal membrane proteins that perform diverse functions in the dynamic control of axon guidance, synaptic adhesion, cytoskeletal remodeling, and localized signal transduction, particularly at lipid raft domains. Recent studies have demonstrated that a subset of GPI-anchored proteins act as critical regulators of synapse development by modulating specific synaptic adhesion pathways via direct interactions with key synapse-organizing proteins. Additional studies have revealed that alteration of these regulatory mechanisms may underlie various brain disorders. In this review, we highlight the emerging role of GPI-anchored proteins as key synapse organizers that aid in shaping the properties of various types of synapses and circuits in mammals.
Collapse
|
15
|
Blanchette CR, Thackeray A, Perrat PN, Hekimi S, Bénard CY. Functional Requirements for Heparan Sulfate Biosynthesis in Morphogenesis and Nervous System Development in C. elegans. PLoS Genet 2017; 13:e1006525. [PMID: 28068429 PMCID: PMC5221758 DOI: 10.1371/journal.pgen.1006525] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/06/2016] [Indexed: 12/28/2022] Open
Abstract
The regulation of cell migration is essential to animal development and physiology. Heparan sulfate proteoglycans shape the interactions of morphogens and guidance cues with their respective receptors to elicit appropriate cellular responses. Heparan sulfate proteoglycans consist of a protein core with attached heparan sulfate glycosaminoglycan chains, which are synthesized by glycosyltransferases of the exostosin (EXT) family. Abnormal HS chain synthesis results in pleiotropic consequences, including abnormal development and tumor formation. In humans, mutations in either of the exostosin genes EXT1 and EXT2 lead to osteosarcomas or multiple exostoses. Complete loss of any of the exostosin glycosyltransferases in mouse, fish, flies and worms leads to drastic morphogenetic defects and embryonic lethality. Here we identify and study previously unavailable viable hypomorphic mutations in the two C. elegans exostosin glycosyltransferases genes, rib-1 and rib-2. These partial loss-of-function mutations lead to a severe reduction of HS levels and result in profound but specific developmental defects, including abnormal cell and axonal migrations. We find that the expression pattern of the HS copolymerase is dynamic during embryonic and larval morphogenesis, and is sustained throughout life in specific cell types, consistent with HSPGs playing both developmental and post-developmental roles. Cell-type specific expression of the HS copolymerase shows that HS elongation is required in both the migrating neuron and neighboring cells to coordinate migration guidance. Our findings provide insights into general principles underlying HSPG function in development. During animal development, cells and neurons navigate long distances to reach their final target destinations. Migrating cells are guided by extracellular molecular cues, and cellular responses to these cues are regulated by heparan sulfate proteoglycans. Heparan sulfate proteoglycans are proteins with long heparan sulfate polysaccharide chains attached. Here we identify and study previously unavailable viable mutants that disrupt the elongation of the heparan sulfate chains in the nematode C. elegans. Our analysis shows that these HS-chain-elongation mutations affect the development of the nervous system as they result in misguided migrations of neurons and axons. Furthermore, we find that heparan sulfate chain elongation occurs in numerous cell types during development and that the coordinated production of heparan sulfate proteoglycans, in both the migrating cell and neighboring tissues, ensures proper migration. Our findings highlight the critical roles of heparan sulfate proteoglycans in nervous system development and the evolutionary conservation of the molecular mechanisms driving guided migrations.
Collapse
Affiliation(s)
- Cassandra R. Blanchette
- Department of Neurobiology, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Andrea Thackeray
- Department of Neurobiology, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Paola N. Perrat
- Department of Neurobiology, UMass Medical School, Worcester, Massachusetts, United States of America
| | | | - Claire Y. Bénard
- Department of Neurobiology, UMass Medical School, Worcester, Massachusetts, United States of America
- Department of Biological Sciences, University of Quebec at Montreal, Montreal, Canada
- * E-mail: ,
| |
Collapse
|
16
|
Dierker T, Shao C, Haitina T, Zaia J, Hinas A, Kjellén L. Nematodes join the family of chondroitin sulfate-synthesizing organisms: Identification of an active chondroitin sulfotransferase in Caenorhabditis elegans. Sci Rep 2016; 6:34662. [PMID: 27703236 PMCID: PMC5050403 DOI: 10.1038/srep34662] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/13/2016] [Indexed: 11/09/2022] Open
Abstract
Proteoglycans are proteins that carry sulfated glycosaminoglycans (GAGs). They help form and maintain morphogen gradients, guiding cell migration and differentiation during animal development. While no sulfated GAGs have been found in marine sponges, chondroitin sulfate (CS) and heparan sulfate (HS) have been identified in Cnidarians, Lophotrocozoans and Ecdysozoans. The general view that nematodes such as Caenorhabditis elegans, which belong to Ecdysozoa, produce HS but only chondroitin without sulfation has therefore been puzzling. We have analyzed GAGs in C. elegans using reversed-phase ion-pairing HPLC, mass spectrometry and immunohistochemistry. Our analyses included wild type C. elegans but also a mutant lacking two HS sulfotransferases (hst-6 hst-2), as we suspected that the altered HS structure could boost CS sulfation. We could indeed detect sulfated CS in both wild type and mutant nematodes. While 4-O-sulfation of galactosamine dominated, we also detected 6-O-sulfated galactosamine residues. Finally, we identified the product of the gene C41C4.1 as a C. elegans CS-sulfotransferase and renamed it chst-1 (CarboHydrate SulfoTransferase) based on loss of CS-4-O-sulfation in a C41C4.1 mutant and in vitro sulfotransferase activity of recombinant C41C4.1 protein. We conclude that C. elegans indeed manufactures CS, making this widely used nematode an interesting model for developmental studies involving CS.
Collapse
Affiliation(s)
- Tabea Dierker
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Chun Shao
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University Medical Campus, Boston, USA
| | - Tatjana Haitina
- Department of Organismal Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University Medical Campus, Boston, USA
| | - Andrea Hinas
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
The Caenorhabditis elegans Ephrin EFN-4 Functions Non-cell Autonomously with Heparan Sulfate Proteoglycans to Promote Axon Outgrowth and Branching. Genetics 2015; 202:639-60. [PMID: 26645816 DOI: 10.1534/genetics.115.185298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/02/2015] [Indexed: 01/21/2023] Open
Abstract
The Eph receptors and their cognate ephrin ligands play key roles in many aspects of nervous system development. These interactions typically occur within an individual tissue type, serving either to guide axons to their terminal targets or to define boundaries between the rhombomeres of the hindbrain. We have identified a novel role for the Caenorhabditis elegans ephrin EFN-4 in promoting primary neurite outgrowth in AIY interneurons and D-class motor neurons. Rescue experiments reveal that EFN-4 functions non-cell autonomously in the epidermis to promote primary neurite outgrowth. We also find that EFN-4 plays a role in promoting ectopic axon branching in a C. elegans model of X-linked Kallmann syndrome. In this context, EFN-4 functions non-cell autonomously in the body-wall muscle and in parallel with HS modification genes and HSPG core proteins. This is the first report of an epidermal ephrin providing a developmental cue to the nervous system.
Collapse
|
18
|
SDN-1/Syndecan Acts in Parallel to the Transmembrane Molecule MIG-13 to Promote Anterior Neuroblast Migration. G3-GENES GENOMES GENETICS 2015; 5:1567-74. [PMID: 26022293 PMCID: PMC4528313 DOI: 10.1534/g3.115.018770] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Q neuroblasts in Caenorhabditis elegans display left-right asymmetry in their migration, with QR and descendants on the right migrating anteriorly, and QL and descendants on the left migrating posteriorly. Initial QR and QL migration is controlled by the transmembrane receptors UNC-40/DCC, PTP-3/LAR, and the Fat-like cadherin CDH-4. After initial migration, QL responds to an EGL-20/Wnt signal that drives continued posterior migration by activating MAB-5/Hox activity in QL but not QR. QR expresses the transmembrane protein MIG-13, which is repressed by MAB-5 in QL and which drives anterior migration of QR descendants. A screen for new Q descendant AQR and PQR migration mutations identified mig-13 as well as hse-5, the gene encoding the glucuronyl C5-epimerase enzyme, which catalyzes epimerization of glucuronic acid to iduronic acid in the heparan sulfate side chains of heparan sulfate proteoglycans (HSPGs). Of five C. elegans HSPGs, we found that only SDN-1/Syndecan affected Q migrations. sdn-1 mutants showed QR descendant AQR anterior migration defects, and weaker QL descendant PQR migration defects. hse-5 affected initial Q migration, whereas sdn-1 did not. sdn-1 and hse-5 acted redundantly in AQR and PQR migration, but not initial Q migration, suggesting the involvement of other HSPGs in Q migration. Cell-specific expression studies indicated that SDN-1 can act in QR to promote anterior migration. Genetic interactions between sdn-1, mig-13, and mab-5 suggest that MIG-13 and SDN-1 act in parallel to promote anterior AQR migration and that SDN-1 also controls posterior migration. Together, our results indicate previously unappreciated complexity in the role of multiple signaling pathways and inherent left-right asymmetry in the control of Q neuroblast descendant migration.
Collapse
|