1
|
Dendooven L, Pérez-Hernández V, Gómez-Acata S, Verhulst N, Govaerts B, Luna-Guido ML, Navarro-Noya YE. The Fungal and Protist Community as Affected by Tillage, Crop Residue Burning and N Fertilizer Application. Curr Microbiol 2025; 82:144. [PMID: 39969625 PMCID: PMC11839885 DOI: 10.1007/s00284-025-04112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
The bacterial community in soil is often affected by agricultural practices, but how they affect protists and fungi is less documented. Soil from treatments that combined different N fertilizer application rates, tillage and crop residue management was sampled from a field trial started by the International Maize and Wheat Improvement Center (CIMMYT) at the 'Campo Experimental Norman E. Borlaug' (CENEB) in the Yaqui Valley in the northwest of Mexico in the early 1990s, and the fungal and protist community determined. Tillage, residue burning, and N fertilizer application had no significant effect on the fungal and protists alpha diversity expressed as Hill numbers and no significant effect on the fungal and protist community structure considering all species. The relative abundance of plant pathogens and undefined saprotrophs as determined with FUNGuildR increased significantly with tillage, while that of dung-plant and dung-soil saprotroph, and plant pathogens by burning (P < 0.05). It was found that the protists and fungal community structures were not altered by different agricultural practices, but some fungal guilds were, i.e., plant pathogens and saprotrophs, which might affect soil organic matter decomposition, nutrient cycling and crop growth.
Collapse
Affiliation(s)
- Luc Dendooven
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico.
| | - Valentín Pérez-Hernández
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico
| | - Selene Gómez-Acata
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Nele Verhulst
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
| | - Bram Govaerts
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
- Cornell University, Ithaca, USA
| | - Marco L Luna-Guido
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico
| | - Yendi E Navarro-Noya
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico.
| |
Collapse
|
2
|
Quinteros-Urquieta C, Francois JP, Aguilar-Muñoz P, Molina V. Soil Microbial Communities Changes Along Depth and Contrasting Facing Slopes at the Parque Nacional La Campana, Chile. Microorganisms 2024; 12:2487. [PMID: 39770691 PMCID: PMC11728372 DOI: 10.3390/microorganisms12122487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
The Parque Nacional La Campana (PNLC) was recently recognized for its high soil surface microbial richness. Here, we explored the microbial community structure in soil profiles from contrasting facing slopes where sclerophyllous forest (SF) and xerophytic shrubland (XS) develop. Soil physicochemical conditions (dry density, pH, and organic matter C and N isotopic soil signatures) were determined at three depths (5, 10, and 15 cm depths). Amplicon sequencing (16S rRNA and ITS1-5F) and specific quantification (qPCR bacteria, archaea and ammonia-oxidizing archaea, fungi) were used to profile the microbial community. Our results indicate that opposite slopes, with different vegetation types and soil conditions studied potentially explained the spatial variability of the microbial community composition, especially between sites than through soil depth. Discriminative taxa were observed to vary between sites, such as, C. nitrososphaera (ammonia-oxidizing archaea) and Sphingomonas, and bacteria associated with Actinobacteria and Bacteroidetes were predominant in SF and XS, respectively. Fungi affiliated with Humicola and Preussia were more abundant in SF, while Cladosporium and Alternaria were in XS. Higher ASV richness was observed in SF compared to XS, for both prokaryotes and fungi. Furthermore, SF showed a higher number of shared ASVs, while XS showed a decrease in unique ASVs in deeper soil layers. In XS, the genus DA101 (Verrucomicrobia) increases with soil depth, reaching higher levels in SF, while Kaistobacter shows the opposite trend. PNLC soils were a reservoir of redundant microbial functions related to biogeochemical cycles, including symbiotic and phytopathogenic fungi. In conclusion, as with the predominant vegetation, the structure and potential function of microbial life in soil profiles were associated with the contrasting the effect of facing slopes as toposequence effects.
Collapse
Affiliation(s)
- Carolina Quinteros-Urquieta
- Programa de Doctorado Interdisciplinario en Ciencias Ambientales, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile;
| | - Jean Pierre Francois
- Departamento de Ciencias y Geografía, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile; (J.P.F.); (P.A.-M.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
| | - Polette Aguilar-Muñoz
- Departamento de Ciencias y Geografía, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile; (J.P.F.); (P.A.-M.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción 3349001, Chile
| | - Verónica Molina
- Departamento de Ciencias y Geografía, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile; (J.P.F.); (P.A.-M.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción 3349001, Chile
| |
Collapse
|
3
|
Paniagua-López M, Silva-Castro GA, Romero-Freire A, Martín-Peinado FJ, Sierra-Aragón M, García-Romera I. Integrating waste valorization and symbiotic microorganisms for sustainable bioremediation of metal(loid)-polluted soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174030. [PMID: 38885698 DOI: 10.1016/j.scitotenv.2024.174030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Remediation strategies for metal(loid)-polluted soils vary among the wide range of approaches, including physical, chemical, and biological remediation, or combinations of these. In this study, we assessed the effectiveness of a set of soil remediation treatments based on the combined application of inorganic (marble sludge) and organic amendments (vermicompost, and dry olive residue [DOR] biotransformed by the saprobic fungi Coriolopsis rigida and Coprinellus radians) and inoculation with arbuscular mycorrhizal fungi (AMFs) (Rhizophagus irregularis and Rhizoglomus custos). The treatments were applied under greenhouse conditions to soil residually polluted by potentially toxic elements (PTEs) (Pb, As, Zn, Cu, Cd, and Sb), and wheat was grown in the amended soils to test the effectiveness of the treatments in reducing soil toxicity and improving soil conditions and plant performance. Therefore, we evaluated the influence of the treatments on the main soil properties and microbial activities, as well as on PTE availability and bioaccumulation in wheat plants. Overall, the results showed a positive influence of all treatments on the main soil properties. Treatments consisting of a combination of marble and organic amendments, especially biotransformed DOR amendments, showed the greatest effectiveness in improving the soil biological status, promoting plant growth and survival, and reducing PTE availability and plant uptake. Furthermore, AMF inoculation further enhanced the efficacy of DOR amendments by promoting the immobilization of PTEs in soil and stimulating the phytostabilization mechanisms induced by AMFs, thus playing an important bioprotective role in plants. Therefore, our results highlight that biotransformed DOR may represent an efficient product for use as a soil organic amendment when remediating metal(loid)-polluted soils, and that its application in combination with AMFs may represent a promising sustainable bioremediation strategy for recovering soil functions and reducing toxicity in polluted areas.
Collapse
Affiliation(s)
- Mario Paniagua-López
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, Granada, 18071, Spain; Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda, 1, Granada, 18008, Spain.
| | - Gloria Andrea Silva-Castro
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda, 1, Granada, 18008, Spain
| | - Ana Romero-Freire
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, Granada, 18071, Spain
| | - Francisco José Martín-Peinado
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, Granada, 18071, Spain
| | - Manuel Sierra-Aragón
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, Granada, 18071, Spain
| | - Inmaculada García-Romera
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda, 1, Granada, 18008, Spain
| |
Collapse
|
4
|
Quinteros-Urquieta C, Francois JP, Aguilar-Muñoz P, Orellana R, Villaseñor R, Moreira-Muñoz A, Molina V. Microbial Diversity of Soil in a Mediterranean Biodiversity Hotspot: Parque Nacional La Campana, Chile. Microorganisms 2024; 12:1569. [PMID: 39203411 PMCID: PMC11356564 DOI: 10.3390/microorganisms12081569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Parque Nacional La Campana (PNLC) is recognized worldwide for its flora and fauna, rather than for its microbial richness. Our goal was to characterize the structure and composition of microbial communities (bacteria, archaea and fungi) and their relationship with the plant communities typical of PNLC, such as sclerophyllous forest, xerophytic shrubland, hygrophilous forest and dry sclerophyllous forest, distributed along topoclimatic variables, namely, exposure, elevation and slope. The plant ecosystems, the physical and chemical properties of organic matter and the soil microbial composition were characterized by massive sequencing (iTag-16S rRNA, V4 and ITS1-5F) from the DNA extracted from the soil surface (5 cm, n = 16). A contribution of environmental variables, particularly related to each location, is observed. Proteobacteria (35.43%), Actinobacteria (32.86%), Acidobacteria (10.07%), Ascomycota (76.11%) and Basidiomycota (15.62%) were the dominant phyla. The beta diversity (~80% in its axes) indicates that bacteria and archaea are linked to their plant categories, where the xerophytic shrub stands out with the most particular microbial community. More specifically, Crenarchaeote, Humicola and Mortierella were dominant in the sclerophyllous forest; Chloroflexi, Cyanobacteria and Alternaria in the xerophytic shrubland; Solicoccozyma in the dry sclerophyllous forest; and Cladophialophora in the hygrophilous forest. In conclusion, the structure and composition of the microbial consortia is characteristic of PNLC's vegetation, related to its topoclimatic variables, which suggests a strong association within the soil microbiome.
Collapse
Affiliation(s)
- Carolina Quinteros-Urquieta
- Programa de Doctorado Interdisciplinario en Ciencias Ambientales, Universidad de Playa Ancha, Valparaíso 2340000, Chile;
| | - Jean-Pierre Francois
- Departamento de Ciencias y Geografía, Universidad de Playa Ancha, Valparaíso 2340000, Chile; (J.-P.F.); (P.A.-M.); (R.O.)
- HUB AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso 2340000, Chile;
| | - Polette Aguilar-Muñoz
- Departamento de Ciencias y Geografía, Universidad de Playa Ancha, Valparaíso 2340000, Chile; (J.-P.F.); (P.A.-M.); (R.O.)
- HUB AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso 2340000, Chile;
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción 4070386, Chile
| | - Roberto Orellana
- Departamento de Ciencias y Geografía, Universidad de Playa Ancha, Valparaíso 2340000, Chile; (J.-P.F.); (P.A.-M.); (R.O.)
- HUB AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso 2340000, Chile;
| | - Rodrigo Villaseñor
- HUB AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso 2340000, Chile;
| | - Andres Moreira-Muñoz
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile;
| | - Verónica Molina
- Departamento de Ciencias y Geografía, Universidad de Playa Ancha, Valparaíso 2340000, Chile; (J.-P.F.); (P.A.-M.); (R.O.)
- HUB AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso 2340000, Chile;
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción 4070386, Chile
| |
Collapse
|
5
|
Siles JA, Hendrickson AJ, Terry N. Coupling of metataxonomics and culturing improves bacterial diversity characterization and identifies a novel Rhizorhapis sp. with metal resistance potential in a multi-contaminated waste sediment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116132. [PMID: 36067666 DOI: 10.1016/j.jenvman.2022.116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Long-term contaminated environments have been recognized as potential hotspots for bacterial discovery in taxonomic and functional terms for bioremediation purposes. Here, bacterial diversity in waste sediment collected from a former industrial dumpsite and contaminated with petroleum hydrocarbon and heavy metals was investigated through the parallel application of culture-independent (16S rRNA gene amplicon sequencing) and -dependent (plate culturing followed by colony picking and identification of isolates by 16S rRNA gene Sanger sequencing) approaches. The bacterial diversities retrieved by both approaches greatly differed. Bacteroidetes and Proteobacteria were dominant in the culture-independent community, while Firmicutes and Actinobacteria were the main culturable groups. Only 2.7% of OTUs (operational taxonomic units) in the culture-independent dataset were cultured. Most of the culturable OTUs were absent or in very low abundances in the culture-independent dataset, revealing that culturing is a useful tool to study the rare bacterial biosphere. One culturable OTUs (comprising only the isolate SPR117) was identified as a potential new species in the genus Rhizorhapis (class Alphaproteobacteria) and was selected for further characterization. Phytopathogenicity tests showed that Rhizorhapis sp. strain SPR117 (ATCC TSD-228) is not pathogenic to lettuce, despite the only described species in this genus, Rhizorhapis suberifaciens, is causal agent of the lettuce corky root disease. The genome of the strain SPR117 was sequenced, assembled in 256 contigs, with a length of 4,419,522 bp and a GC content of 59.9%, and its further annotation revealed the presence of genes related to the resistance to arsenic, copper, iron, and mercury, among other metals. Therefore, the coupling of metataxonomics and culturing is a useful tool to obtain not only an improved description of bacterial communities in contaminated environments, but also to isolate microorganisms with bioremediation potential.
Collapse
Affiliation(s)
- José A Siles
- Department of Plant & Microbial Biology, University of California at Berkeley, Berkeley, CA, 94720, USA.
| | - Andrew J Hendrickson
- Department of Plant & Microbial Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Norman Terry
- Department of Plant & Microbial Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
6
|
Siles JA, García-Romera I, Cajthaml T, Belloc J, Silva-Castro G, Szaková J, Tlustos P, Garcia-Sanchez M. Application of dry olive residue-based biochar in combination with arbuscular mycorrhizal fungi enhances the microbial status of metal contaminated soils. Sci Rep 2022; 12:12690. [PMID: 35879523 PMCID: PMC9314387 DOI: 10.1038/s41598-022-17075-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
Biochar made-up of dry olive residue (DOR), a biomass resulting from the olive oil extraction industry, has been proposed to be used as a reclamation agent for the recovery of metal contaminated soils. The aim of the present study was to investigate whether the soil application of DOR-based biochar alone or in combination with arbuscular mycorrhizal fungi (AMF) leads to an enhancement in the functionality and abundance of microbial communities inhabiting metal contaminated soils. To study that, a greenhouse microcosm experiment was carried out, where the effect of the factors (i) soil application of DOR-based biochar, (ii) biochar pyrolysis temperature (considering the variants 350 and 500 °C), (iii) soil application dose of biochar (2 and 5%), (iv) soil contamination level (slightly, moderately and highly polluted), (v) soil treatment time (30, 60 and 90 days) and (vi) soil inoculation with Funneliformis mosseae (AM fungus) on β-glucosidase and dehydrogenase activities, FA (fatty acid)-based abundance of soil microbial communities, soil glomalin content and AMF root colonization rates of the wheat plants growing in each microcosm were evaluated. Biochar soil amendment did not stimulate enzyme activities but increased microbial abundances. Dehydrogenase activity and microbial abundances were found to be higher in less contaminated soils and at shorter treatment times. Biochar pyrolysis temperature and application dose differently affected enzyme activities, but while the first factor did not have a significant effect on glucosidase and dehydrogenase, a higher biochar dose resulted in boosted microbial abundances. Soil inoculation with F. mosseae favored the proliferation of soil AMF community and increased soil glomalin content as well as rates of AMF root colonization. This factor also interacted with many of the others evaluated to significantly affect soil enzyme activities, microbial abundances and AMF community. Our results indicate that the application of DOR-based biochar along with AMF fungi is an appropriate approach to improve the status of microbial communities in soils with a moderate metal contamination at short-term.
Collapse
Affiliation(s)
- José A Siles
- Department of Plant & Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Inmaculada García-Romera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científica (EEZ-CSIC), Granada, Spain
| | - Tomas Cajthaml
- Institute of Microbiology of the Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czech Republic
| | - Jorge Belloc
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científica (EEZ-CSIC), Granada, Spain
| | - Gloria Silva-Castro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científica (EEZ-CSIC), Granada, Spain
| | - Jirina Szaková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic
| | - Pavel Tlustos
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic
| | - Mercedes Garcia-Sanchez
- Eco&Sols, CIRAD, INRAE, IRD, Institut Agro Montpellier, Université Montpellier, Montpellier, France.
| |
Collapse
|
7
|
Innovative Culturomic Approaches and Predictive Functional Metagenomic Analysis: The Isolation of Hydrocarbonoclastic Bacteria with Plant Growth Promoting Capacity. WATER 2022. [DOI: 10.3390/w14020142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Innovative culturomic approaches were adopted to isolate hydrocarbonoclastic bacteria capable of degrading diesel oil, bitumen and a selection of polycyclic aromatic hydrocarbons (PAH), e.g., pyrene, anthracene, and dibenzothiophene, from a soil historically contaminated by total petroleum hydrocarbons (TPH) (10,347 ± 98 mg TPH/kg). The culturomic approach focussed on the isolation of saprophytic microorganisms and specialist bacteria utilising the contaminants as sole carbon sources. Bacterial isolates belonging to Pseudomonas, Arthrobacter, Achromobacter, Bacillus, Lysinibacillus, Microbacterium sps. were isolated for their capacity to utilise diesel oil, bitumen, pyrene, anthracene, dibenzothiphene, and their mixture as sole carbon sources. Pseudomonas, Arthrobacter, Achromobacter and Microbacterium sps. showed plant growth promoting activity, producing indole-3-acetic acid and expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. In parallel to the culturomic approach, in the microbial community of interest, bacterial community metabarcoding and predictive functional metagenomic analysis were adopted to confirm the potentiality of the isolates in terms of their functional representativeness. The combination of isolation and molecular approaches for the characterisation of a TPH contaminated soil microbial community is proposed as an instrument for the construction of an artificial hydrocarbonoclastic microbiota for environmental restoration.
Collapse
|
8
|
Risueño Y, Petri C, Conesa HM. A critical assessment on the short-term response of microbial relative composition in a mine tailings soil amended with biochar and manure compost. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126080. [PMID: 33992925 DOI: 10.1016/j.jhazmat.2021.126080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Phytomanagement of tailings requires the use of soil conditioners to favour plant establishment, but their benefits on soil microbial composition need to be assessed. The goal of this work was to evaluate the effect of two organic amendments, manure compost and biochar, on soil bacterial and fungal composition at metallic mine tailings. The addition of compost caused stronger effects in most of soil parameters and microbial composition than biochar, especially at the initial stage of the experiment. However, the higher dependence on labile organic carbon for some bacterial groups at the treatments containing compost determined their decay along time (Flavobacteriales, Sphingobacteriales) and the appearance of other taxa more dependent on recalcitrant organic matter (Xanthomonadales, Myxococcales). Biochar favoured bacterial decomposers (Actinomycetales) specialised in high lignin and other recalcitrant carbon compounds. Unlike bacteria, only a few fungal orders increased their relative abundances in the treatments containing compost (Sordariales and Microascales) while the rest showed a decrease or remained unaltered. The mix biochar-compost may result the best option to support a more diverse microbial population in terms of soil functionality that is able to decompose both labile and recalcitrant carbon compounds. This may favour the resilience of the system against environmental stressors.
Collapse
Affiliation(s)
- Yolanda Risueño
- Universidad Politécnica de Cartagena, Escuela Técnica Superior de Ingeniería Agronómica, Departamento de Ingeniería Agronómica, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain.
| | - César Petri
- IHSM-UMA-CSIC La Mayora, Departamento de Fruticultura Subtropical y Mediterránea, Avenida Dr. Wienberg, s/n, 29750 Algarrobo-Costa, Málaga, Spain.
| | - Héctor M Conesa
- Universidad Politécnica de Cartagena, Escuela Técnica Superior de Ingeniería Agronómica, Departamento de Ingeniería Agronómica, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain.
| |
Collapse
|
9
|
Comparative Effect of Fertilization Practices on Soil Microbial Diversity and Activity: An Overview. Curr Microbiol 2021; 78:3644-3655. [PMID: 34480627 DOI: 10.1007/s00284-021-02634-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Continuously increasing human population demands increased food production, which needs greater fertilizer's input in agricultural lands to enhance crop yield. In this respect, different fertilization practices gained acceptance among farmers. We reviewed effect of three main fertilization practices (Conventional-, Organic-, and Bio-fertilization) on soil microbial diversity, activity, and community composition. Studies reported that over application of inorganic fertilizers decline soil pH, change soil osmolarity, cause soil degradation, disturb taxonomic diversity and metabolism of soil microbes and cause accumulation of extra nutrients into the soil such as phosphorous (P) accumulation. On the contrary, organic fertilizers increase organic carbon (OC) input in the soil, which strongly encourage growth of heterotrophic microbes. Organic fertilizer vermicompost application provides readily available nutrients to both plants as well as microbes and encourage overall microbial number in the soil. Most recently, role of beneficial bacteria in long-term sustainable agriculture attracted attention of scientists towards their use as biofertilizer in the soil. Studies documented favorable effect of biofertilization on microbial Shannon, Chao and ACE diversity indices in the soil. It is concluded from intensive review of literature that all the three fertilization practices have their own way to benefit the soil with nutrients, but biofertilization provides long-term sustainability to crop lands. When it is used in integration with organic fertilizers, it makes the soil best for microbial growth and activity and increase microbial diversity, providing nutrients to soil for a longer time, thus improving crop productivity.
Collapse
|
10
|
Llimós M, Segarra G, Sancho-Adamson M, Trillas MI, Romanyà J. Impact of Olive Saplings and Organic Amendments on Soil Microbial Communities and Effects of Mineral Fertilization. Front Microbiol 2021; 12:653027. [PMID: 34140935 PMCID: PMC8203829 DOI: 10.3389/fmicb.2021.653027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Plant communities and fertilization may have an impact on soil microbiome. Most commercial olive trees are minerally fertilized, while this practice is being replaced by the use of organic amendments. Organic amendments can both fertilize and promote plant growth-promoting organisms. Our aims were (i) to describe the changes in soil bacterial and fungal communities induced by the presence of young olive trees and their interaction with organic amendments and (ii) to compare the effects of mineral and organic fertilization. We set up two parallel experiments in pots using a previously homogenized soil collected from a commercial olive orchard: in the first one, we grew olive saplings in unamended and organically amended soils with two distinct composts and compared these two soils incubated without a plant, while in the second experiment, we comparatively tested the effects of organic and mineral fertilization. OTUs and the relative abundances of bacterial and fungal genera and phyla were analyzed by 16S rRNA and ITS1 gene amplicon using high-throughput sequencing. Basal respiration and substrate-induced respiration were measured by MicroRespTM. The effects of the different treatments were analyzed in all phyla and in the 100 most abundant genera. The presence of olive saplings increased substrate-induced respiration and bacterial and fungal richness and diversity. Organic amendments greatly affected both bacterial and fungal phyla and increased bacterial richness while not affecting fungal richness. Mineral fertilization increased the relative abundance of the less metabolically active bacterial phyla (Actinobacteria and Firmicutes), while it reduced the most metabolically active phylum, Bacteroidetes. Mineral fertilization increased the relative abundance of three N2-fixing Actinobacteria genera, while organic fertilization only increased one genus of Proteobacteria. In organically and minerally fertilized soils, high basal respiration rates were associated with low fungal diversity. Basidiomycota and Chytridiomycota relative abundances positively correlated with basal respiration and substrate-induced respiration, while Ascomycota correlated negatively. Indeed, the Ascomycota phyla comprised most of the fungal genera decreased by organic amendments. The symbiotrophic phylum Glomeromycota did not correlate with any of the C sources. The relative abundance of this phylum was promoted by the presence of plants but decreased when amending soils with composts.
Collapse
Affiliation(s)
- Miquel Llimós
- Section Environmental Health and Soil Science, Department of Biology, Health and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Guillem Segarra
- Section Plant Physiology, Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Marc Sancho-Adamson
- Section Plant Physiology, Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - M Isabel Trillas
- Section Plant Physiology, Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Joan Romanyà
- Section Environmental Health and Soil Science, Department of Biology, Health and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Studying Microbial Communities through Co-Occurrence Network Analyses during Processes of Waste Treatment and in Organically Amended Soils: A Review. Microorganisms 2021; 9:microorganisms9061165. [PMID: 34071426 PMCID: PMC8227910 DOI: 10.3390/microorganisms9061165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Organic wastes have the potential to be used as soil organic amendments after undergoing a process of stabilization such as composting or as a resource of renewable energy by anaerobic digestion (AD). Both composting and AD are well-known, eco-friendly approaches to eliminate and recycle massive amounts of wastes. Likewise, the application of compost amendments and digestate (the by-product resulting from AD) has been proposed as an effective way of improving soil fertility. The study of microbial communities involved in these waste treatment processes, as well as in organically amended soils, is key in promoting waste resource efficiency and deciphering the features that characterize microbial communities under improved soil fertility conditions. To move beyond the classical analyses of metataxonomic data, the application of co-occurrence network approaches has shown to be useful to gain insights into the interactions among the members of a microbial community, to identify its keystone members and modelling the environmental factors that drive microbial network patterns. Here, we provide an overview of essential concepts for the interpretation and construction of co-occurrence networks and review the features of microbial co-occurrence networks during the processes of composting and AD and following the application of the respective end products (compost and digestate) into soil.
Collapse
|
12
|
Deng S, Wipf HML, Pierroz G, Raab TK, Khanna R, Coleman-Derr D. A Plant Growth-Promoting Microbial Soil Amendment Dynamically Alters the Strawberry Root Bacterial Microbiome. Sci Rep 2019; 9:17677. [PMID: 31776356 PMCID: PMC6881409 DOI: 10.1038/s41598-019-53623-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022] Open
Abstract
Despite growing interest in utilizing microbial-based methods for improving crop growth, much work still remains in elucidating how beneficial plant-microbe associations are established, and what role soil amendments play in shaping these interactions. Here, we describe a set of experiments that test the effect of a commercially available soil amendment, VESTA, on the soil and strawberry (Fragaria x ananassa Monterey) root bacterial microbiome. The bacterial communities of the soil, rhizosphere, and root from amendment-treated and untreated fields were profiled at four time points across the strawberry growing season using 16S rRNA gene amplicon sequencing on the Illumina MiSeq platform. In all sample types, bacterial community composition and relative abundance were significantly altered with amendment application. Importantly, time point effects on composition are more pronounced in the root and rhizosphere, suggesting an interaction between plant development and treatment effect. Surprisingly, there was slight overlap between the taxa within the amendment and those enriched in plant and soil following treatment, suggesting that VESTA may act to rewire existing networks of organisms through an, as of yet, uncharacterized mechanism. These findings demonstrate that a commercial microbial soil amendment can impact the bacterial community structure of both roots and the surrounding environment.
Collapse
Affiliation(s)
- Siwen Deng
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Plant Gene Expression Center, USDA-ARS, Albany, CA, USA
| | - Heidi M-L Wipf
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Plant Gene Expression Center, USDA-ARS, Albany, CA, USA
| | - Grady Pierroz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Plant Gene Expression Center, USDA-ARS, Albany, CA, USA
| | - Ted K Raab
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, USA
| | - Rajnish Khanna
- i-Cultiver, Inc., 404 Clipper Cove Way, San Francisco, CA, USA
| | - Devin Coleman-Derr
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. .,Plant Gene Expression Center, USDA-ARS, Albany, CA, USA.
| |
Collapse
|
13
|
Robledo-Mahón T, Martín MA, Gutiérrez MC, Toledo M, González I, Aranda E, Chica AF, Calvo C. Sewage sludge composting under semi-permeable film at full-scale: Evaluation of odour emissions and relationships between microbiological activities and physico-chemical variables. ENVIRONMENTAL RESEARCH 2019; 177:108624. [PMID: 31422221 DOI: 10.1016/j.envres.2019.108624] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/12/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
In the present study, physico-chemical characteristics, heavy metals content, odour emissions, microbial enumeration and enzymatic activities were analysed during industrial scale composting of sewage sludge partially pre-treated to evaluate the effect of a combined system of semi-permeable film and aeration on these parameters. The results related to physico-chemical parameters showed a decrease in total organic carbon (TOC), organic matter (OM), total carbon (TC) along the process. Volatile solids (VS) were also reduced, reaching 36% at 120 days, which is above the limit according to the current legislation. Similarly, metal content was found to be an important variable in the evolution of enzymatic activity, while lead (Pb), zinc (Zn), and nickel (Ni) were the most influential. Moreover, heavy metals were found below the limit of type B compost quality or European class 2 at the end of the process, which is suitable for agriculture soil. The odorous impact generated during the hydrolytic stage was reduced to an average value of 4 ouE/s. This suggests that, covered stage with the semi-permeable film, could be a viable solution to mitigate odour emissions. The highest temperature was reached at 10 days and it was favoured by semi-permeable film. Temperature promoted the presence of thermophilic bacteria and fungi and indicated an early biodegradation process mediated by microorganisms. Statistical analyses revealed a high correlation of physico-chemical variables with microbial activity. Thus, samples from the first 14 days were highly correlated with enzymatic activities such as β-glucosidase (Ac-βGlu), protease (Ac-Pr), and dehydrogenase (Ac-De), which have usually been involved in the hydrolysis of organic matter.
Collapse
Affiliation(s)
- T Robledo-Mahón
- Institute of Water Research, Department of Microbiology. University of Granada. Ramón Cajal nº 4, 18071 Granada, Spain
| | - M A Martín
- University of Cordoba (Spain) - Department of Inorganic Chemistry and Chemical Engineering. Campus Universitario de Rabanales. Carretera N-IV, km 396, Edificio Marie Curie, 14071 Córdoba, Spain.
| | - M C Gutiérrez
- University of Cordoba (Spain) - Department of Inorganic Chemistry and Chemical Engineering. Campus Universitario de Rabanales. Carretera N-IV, km 396, Edificio Marie Curie, 14071 Córdoba, Spain
| | - M Toledo
- University of Cordoba (Spain) - Department of Inorganic Chemistry and Chemical Engineering. Campus Universitario de Rabanales. Carretera N-IV, km 396, Edificio Marie Curie, 14071 Córdoba, Spain
| | - I González
- University of Cordoba (Spain) - Department of Inorganic Chemistry and Chemical Engineering. Campus Universitario de Rabanales. Carretera N-IV, km 396, Edificio Marie Curie, 14071 Córdoba, Spain
| | - E Aranda
- Institute of Water Research, Department of Microbiology. University of Granada. Ramón Cajal nº 4, 18071 Granada, Spain
| | - A F Chica
- University of Cordoba (Spain) - Department of Inorganic Chemistry and Chemical Engineering. Campus Universitario de Rabanales. Carretera N-IV, km 396, Edificio Marie Curie, 14071 Córdoba, Spain
| | - C Calvo
- Institute of Water Research, Department of Microbiology. University of Granada. Ramón Cajal nº 4, 18071 Granada, Spain
| |
Collapse
|
14
|
Moreno-Espíndola IP, Ferrara-Guerrero MJ, Luna-Guido ML, Ramírez-Villanueva DA, De León-Lorenzana AS, Gómez-Acata S, González-Terreros E, Ramírez-Barajas B, Navarro-Noya YE, Sánchez-Rodríguez LM, Fuentes-Ponce M, Macedas-Jímenez JU, Dendooven L. The Bacterial Community Structure and Microbial Activity in a Traditional Organic Milpa Farming System Under Different Soil Moisture Conditions. Front Microbiol 2018; 9:2737. [PMID: 30487784 PMCID: PMC6246654 DOI: 10.3389/fmicb.2018.02737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/25/2018] [Indexed: 12/03/2022] Open
Abstract
Agricultural practices affect the bacterial community structure, but how they determine the response of the bacterial community to drought, is still largely unknown. Conventional cultivated soil, i.e., inorganic fertilization, tillage, crop residue removal and maize (Zea mays L.) monoculture, and traditional organic farmed soil "milpa," i.e., minimum tillage, rotation of maize, pumpkin (Cucurbita sp.) and beans (Phaseolus vulgaris L.) and organic fertilization were sampled. Both soils from the central highlands of Mexico were characterized and incubated aerobically at 5% field capacity (5%FC) and 100% field capacity (FC) for 45 days, while the C and N mineralization, enzyme activity and the bacterial community structure were monitored. After applying the different agricultural practices 3 years, the organic C content was 1.8-times larger in the milpa than in the conventional cultivated soil, the microbial biomass C 1.3-times, and C and N mineralization 2.0-times (mean for soil incubated at 5%FC and FC). The dehydrogenase, activity was significantly higher in the conventional cultivated soil than in the milpa soil when incubated at 5%FC, but not when incubated at FC. The relative abundance of Gemmatimonadetes was larger in the conventional cultivated soil than in the milpa soil in soil both at 5%FC and FC, while that of Bacteroidetes showed an opposite trend. The relative abundance of other groups, such as Nitrospirae and Proteobacteria, was affected by cultivation technique, but controlled by soil water content. The relative abundance of other groups, e.g., FBP, Gemmatimonadetes and Proteobacteria, was affected by water content, but the effect depended on agricultural practice. For soil incubated at FC, the xenobiotics biodegradation and metabolism related functions were higher in the milpa soil than in the conventional cultivated soil, and carbohydrate metabolism showed an opposite trend. It was found that agricultural practices and soil water content had a strong effect on soil characteristics, C and N mineralization, enzyme activity, and the bacterial community structure and its functionality. Decreases or increases in the relative abundance of bacterial groups when the soil water content decreased, i.e., from FC to 5%FC, was defined often by the cultivation technique, and the larger organic matter content in the milpa soil did not prevent large changes in the bacterial community structure when the soil was dried.
Collapse
Affiliation(s)
- Iván P. Moreno-Espíndola
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - María J. Ferrara-Guerrero
- Departamento de El Hombre y su Ambiente, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Marco L. Luna-Guido
- Laboratory of Soil Ecology, ABACUS, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | | | - Arit S. De León-Lorenzana
- Laboratory of Soil Ecology, ABACUS, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Selene Gómez-Acata
- Laboratory of Soil Ecology, ABACUS, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | | | - Blanca Ramírez-Barajas
- Laboratory of Soil Ecology, ABACUS, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | | | - Luis M. Sánchez-Rodríguez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Mariela Fuentes-Ponce
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Juan U. Macedas-Jímenez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Luc Dendooven
- Laboratory of Soil Ecology, ABACUS, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| |
Collapse
|
15
|
Short-term effect of Eucalyptus plantations on soil microbial communities and soil-atmosphere methane and nitrous oxide exchange. Sci Rep 2018; 8:15133. [PMID: 30310127 PMCID: PMC6181980 DOI: 10.1038/s41598-018-33594-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/26/2018] [Indexed: 01/10/2023] Open
Abstract
Soil greenhouse gas (GHG) emissions are a significant environmental problem resulting from microbially-mediated nitrogen (N) and carbon (C) cycling. This study aimed to investigate the impact of Eucalyptus plantations on the structure and function of a soil microbial community, and how resulting alterations may be linked to GHG fluxes. We sampled and monitored two adjacent Eucalyptus plantations—a recently logged site that harbored new seedlings and an adult plantation—and compared them to a site hosting native vegetation. We used 16S rRNA gene sequencing and qPCR amplifications of key nitrogen and methane cycle genes to characterize microbial structure and functional gene abundance and compared our data with soil parameters and GHG fluxes. Both microbial community attributes were significantly affected by land use and logging of Eucalyptus plantations. The genes nosZ and archaeal amoA were significantly more abundant in native forest than in either young or old Eucalyptus plantations. Statistical analyses suggest that land use type has a greater impact on microbial community structure and functional gene abundance than Eucalyptus rotation. There was no correlation between GHG fluxes and shifts in microbial community, suggesting that microbial community structure and functional gene abundance are not the main drivers of GHG fluxes in this system.
Collapse
|
16
|
De León-Lorenzana AS, Delgado-Balbuena L, Domínguez-Mendoza CA, Navarro-Noya YE, Luna-Guido M, Dendooven L. Soil Salinity Controls Relative Abundance of Specific Bacterial Groups Involved in the Decomposition of Maize Plant Residues. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
The Effect of Re-Planting Trees on Soil Microbial Communities in a Wildfire-Induced Subalpine Grassland. FORESTS 2017. [DOI: 10.3390/f8100385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Margesin R, Siles JA, Cajthaml T, Öhlinger B, Kistler E. Microbiology Meets Archaeology: Soil Microbial Communities Reveal Different Human Activities at Archaic Monte Iato (Sixth Century BC). MICROBIAL ECOLOGY 2017; 73:925-938. [PMID: 27966037 PMCID: PMC5382179 DOI: 10.1007/s00248-016-0904-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
Microbial ecology has been recognized as useful in archaeological studies. At Archaic Monte Iato in Western Sicily, a native (indigenous) building was discovered. The objective of this study was the first examination of soil microbial communities related to this building. Soil samples were collected from archaeological layers at a ritual deposit (food waste disposal) in the main room and above the fireplace in the annex. Microbial soil characterization included abundance (cellular phospholipid fatty acids (PLFA), viable bacterial counts), activity (physiological profiles, enzyme activities of viable bacteria), diversity, and community structure (bacterial and fungal Illumina amplicon sequencing, identification of viable bacteria). PLFA-derived microbial abundance was lower in soils from the fireplace than in soils from the deposit; the opposite was observed with culturable bacteria. Microbial communities in soils from the fireplace had a higher ability to metabolize carboxylic and acetic acids, while those in soils from the deposit metabolized preferentially carbohydrates. The lower deposit layer was characterized by higher total microbial and bacterial abundance and bacterial richness and by a different carbohydrate metabolization profile compared to the upper deposit layer. Microbial community structures in the fireplace were similar and could be distinguished from those in the two deposit layers, which had different microbial communities. Our data confirmed our hypothesis that human consumption habits left traces on microbiota in the archaeological evidence; therefore, microbiological residues as part of the so-called ecofacts are, like artifacts, key indicators of consumer behavior in the past.
Collapse
Affiliation(s)
- Rosa Margesin
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| | - José A Siles
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Tomas Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benatska 2, 128 01, Prague 2, Czech Republic
| | - Birgit Öhlinger
- Institute of Archaeologies, University of Innsbruck, Langer Weg 11, 6020, Innsbruck, Austria
| | - Erich Kistler
- Institute of Archaeologies, University of Innsbruck, Langer Weg 11, 6020, Innsbruck, Austria
| |
Collapse
|
19
|
Borowik A, Wyszkowska J, Kucharski J, Baćmaga M, Tomkiel M. Response of microorganisms and enzymes to soil contamination with a mixture of terbuthylazine, mesotrione, and S-metolachlor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1910-1925. [PMID: 27798799 PMCID: PMC5306303 DOI: 10.1007/s11356-016-7919-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/16/2016] [Indexed: 05/17/2023]
Abstract
The research objective has been to evaluate the effect, unexplored yet, of a mixture of three active ingredients of the herbicide Lumax 537.5 SE: terbuthylazine (T), mesotrione (M), and S-metolachlor (S) on counts of soil microorganisms, structure of microbial communities, activity of soil enzymes as well as the growth and development of maize. The research was based on a pot experiment established on sandy soil with pHKCl 7.0. The herbicide was applied to soil once, in the form of liquid emulsion dosed as follows: 0.67, 13.4, 26.9, 53.8, 108, 215, and 430 mg kg-1 of soil, converted per active substance (M + T + S). The control sample consisted of soil untreated with herbicide. The results showed that the mixture of the above active substances caused changes in values of the colony development (CD) indices of organotrophic bacteria, actinomycetes, and fungi and ecophysiological diversity (EP) indices of fungi. Changes in the ecophysiological diversity index of organotrophic bacteria and actinomycetes were small. The M + T + S mixture was a strong inhibitor of dehydrogenases, to a less degree catalase, urease, β-glucosidase, and arylsulfatase, while being a weak inhibitor of phosphatases. The actual impact was correlated with the dosage. The M + T + S mixture inhibited the growth and development of maize. The herbicide Lumax 537.5 SE should be applied strictly in line with the regime that defines its optimum dosage. Should its application adhere to the manufacturer's instructions, the herbicide would not cause any serious disturbance in soil homeostasis. However, its excessive quantities (from 13.442 to 430.144 mg kg-1 DM of soil) proved to be harmful to the soil environment.
Collapse
Affiliation(s)
- Agata Borowik
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jan Kucharski
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Małgorzata Baćmaga
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Monika Tomkiel
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
20
|
De la Cruz-Barrón M, Cruz-Mendoza A, Navarro-Noya YE, Ruiz-Valdiviezo VM, Ortíz-Gutiérrez D, Ramírez-Villanueva DA, Luna-Guido M, Thierfelder C, Wall PC, Verhulst N, Govaerts B, Dendooven L. The Bacterial Community Structure and Dynamics of Carbon and Nitrogen when Maize (Zea mays L.) and Its Neutral Detergent Fibre Were Added to Soil from Zimbabwe with Contrasting Management Practices. MICROBIAL ECOLOGY 2017; 73:135-152. [PMID: 27538875 DOI: 10.1007/s00248-016-0807-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Water infiltration, soil carbon content, aggregate stability and yields increased in conservation agriculture practices compared to conventionally ploughed control treatments at the Henderson research station near Mazowe (Zimbabwe). How these changes in soil characteristics affect the bacterial community structure and the bacteria involved in the degradation of applied organic material remains unanswered. Soil was sampled from three agricultural systems at Henderson, i.e. (1) conventional mouldboard ploughing with continuous maize (conventional tillage), (2) direct seeding with a Fitarelli jab planter and continuous maize (direct seeding with continuous maize) and (3) direct seeding with a Fitarelli jab planter with rotation of maize sunn hemp (direct seeding with crop rotation). Soil was amended with young maize plants or their neutral detergent fibre (NDF) and incubated aerobically for 56 days, while C and N mineralization and the bacterial community structure were monitored. Bacillus (Bacillales), Micrococcaceae (Actinomycetales) and phylotypes belonging to the Pseudomonadales were first degraders of the applied maize plants. At day 3, Streptomyces (Actinomycetales), Chitinophagaceae ([Saprospirales]) and Dyella (Xanthomonadales) participated in the degradation of the applied maize and at day 7 Oxalobacteraceae (Burkholderiales). Phylotypes belonging to Halomonas (Oceanospirillales) were the first degraders of NDF and were replaced by Phenylobacterium (Caulobacterales) and phylotypes belonging to Pseudomonadales at day 3. Afterwards, similar bacterial groups were favoured by application of NDF as they were by the application of maize plants, but there were also clear differences. Phylotypes belonging to the Micrococcaceae and Bacillus did not participate in the degradation of NDF or its metabolic products, while phylotypes belonging to the Acidobacteriaceae participated in the degradation of NDF but not in that of maize plants. It was found that agricultural practices had a limited effect on the bacterial community structure, but application of organic material altered it substantially.
Collapse
Affiliation(s)
| | | | - Yendi E Navarro-Noya
- Cátedras CONACYT-Universidad Autónoma de Tlaxcala, Av. Universidad 1, C.P., 90062, Tlaxcala, Mexico
| | | | | | | | - Marco Luna-Guido
- Laboratory of Soil Ecology, ABACUS, Cinvestav, Mexico City, Mexico
| | - Cristian Thierfelder
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico D. F, Mexico
| | - Patrick C Wall
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico D. F, Mexico
| | - Nele Verhulst
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico D. F, Mexico
| | - Bram Govaerts
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico D. F, Mexico
| | - Luc Dendooven
- Laboratory of Soil Ecology, ABACUS, Cinvestav, Mexico City, Mexico.
| |
Collapse
|
21
|
Hentati O, Oliveira V, Sena C, Bouji MSM, Wali A, Ksibi M. Soil contamination with olive mill wastes negatively affects microbial communities, invertebrates and plants. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1500-1513. [PMID: 27491759 DOI: 10.1007/s10646-016-1700-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
The aim of the present study was to evaluate the ecotoxicological effects of olive mill waste (OMW) on soil habitat function. To this end, soil samples from OMW evaporating ponds (S1-S5) located at Agareb (Sfax, Tunisia) and a reference soil (R) were collected. The effects of OMW on the springtails Folsomia candida (F.c.), the earthworm species Eisenia fetida (E.f.), Enchytraeus crypticus (E.c.) reproduction and on the soil living microbial communities were investigated. E.f. reproduction and tomato growth assays were performed in the reference soil amended with 0.43 to 7.60 % (wOMW/wref-soil) mass ratios of dried OMW. Changes in microbial function diversity were explored using sole-carbon-source utilization profiles (BiologEcoPlates®). E.f. absolutely avoided (100 %) the most polluted soil (S4) while the F.c. moderately avoided (37.5 ± 7.5 %) the same soil. E.c. reproduction in S4 was significantly lower than in S1, S2, S3 and S5, and was the highest in R soil. Estimated effect concentration EC50 for juveniles' production by E.f., and for tomato fresh weight and chlorophyll content were 0.138, 0.6 and 1.13 %, respectively. Community level physiological profiles (CLPPs) were remarkably different in R and S4 and a higher similarity was observed between soils S1, S2, S3 and S5. Principal component analysis (PCA) revealed that differences between soil microbial functional diversity were mainly due to high polyphenol concentrations, while the salinity negatively affected E.c. reproduction in OMW contaminated soils. These results clearly reflect the high toxicity of dried OMW when added to agricultural soils, causing severe threats to terrestrial ecosystem functions and services provided by invertebrates and microbial communities.
Collapse
Affiliation(s)
- Olfa Hentati
- Laboratory Water, Energy and Environment, National School of Engineers of Sfax, University of Sfax, Road of Soukra Km 4, Po. Box 1173, 3038, Sfax, Tunisia.
- High Institute of Biotechnology of Sfax, University of Sfax, Road of Soukra Km 4, Po. Box 1175, 3038, Sfax, Tunisia.
| | - Vanessa Oliveira
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Clara Sena
- Department of Geosciences and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Mohamed Seddik Mahmoud Bouji
- Laboratory Water, Energy and Environment, National School of Engineers of Sfax, University of Sfax, Road of Soukra Km 4, Po. Box 1173, 3038, Sfax, Tunisia
| | - Ahmed Wali
- Laboratory Water, Energy and Environment, National School of Engineers of Sfax, University of Sfax, Road of Soukra Km 4, Po. Box 1173, 3038, Sfax, Tunisia
| | - Mohamed Ksibi
- Laboratory Water, Energy and Environment, National School of Engineers of Sfax, University of Sfax, Road of Soukra Km 4, Po. Box 1173, 3038, Sfax, Tunisia
- High Institute of Biotechnology of Sfax, University of Sfax, Road of Soukra Km 4, Po. Box 1175, 3038, Sfax, Tunisia
| |
Collapse
|
22
|
Yucatán in black and red: Linking edaphic analysis and pyrosequencing-based assessment of bacterial and fungal community structures in the two main kinds of soil of Yucatán State. Microbiol Res 2016; 188-189:23-33. [PMID: 27296959 DOI: 10.1016/j.micres.2016.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/16/2016] [Accepted: 04/21/2016] [Indexed: 12/11/2022]
Abstract
Yucatán State is dominated by two kinds of soil, named "Black Leptosol" and "Red Leptosol", which are interwoven across the State. In this work, we analyzed the relation between the edaphic characteristics and the bacterial and fungal community structures in these two kinds of Leptosol. The results revealed that Black Leptosol (BlaS) had a higher content of calcium carbonates, organic matter, nitrogen, and phosphorus than Red Leptosol (RedS). The most outstanding difference in the bacterial community structure between BlaS and RedS was that while in BlaS Actinobacteria was the most abundant phylum (43.7%), followed by Acidobacteria (26.9%) and Proteobacteria (23.6%), in RedS the bacterial community was strongly dominated by Acidobacteria (83%). Two fungal phyla were identified in both kinds of soil; Ascomycota, with 77% in BlaS and 56% in RedS, and Basidiomycota, with 22% in RedS and only 0.67% in BlaS. The most relevant difference between the two fungal communities was that excepting for Fusarium sp., all the species they had were different. Thus, in contrast with bacterial communities, where most of the major OTUs were present in both kinds of soil, fungal communities appeared to be unique to each kind of Leptosol.
Collapse
|
23
|
Siles JA, Cajthaml T, Minerbi S, Margesin R. Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils. FEMS Microbiol Ecol 2016; 92:fiw008. [PMID: 26787774 DOI: 10.1093/femsec/fiw008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2016] [Indexed: 11/13/2022] Open
Abstract
In the current context of climate change, the study of microbial communities along altitudinal gradients is especially useful. Only few studies considered altitude and season at the same time. We characterized four forest sites located in the Italian Alps, along an altitude gradient (545-2000 m a.s.l.), to evaluate the effect of altitude in spring and autumn on soil microbial properties. Each site in each season was characterized with regard to soil temperature, physicochemical properties, microbial activities (respiration, enzymes), community level physiological profiles (CLPP), microbial abundance and community structure (PLFA). Increased levels of soil organic matter (SOM) and nutrients were found at higher altitudes and in autumn, resulting in a significant increase of (soil dry-mass related) microbial activities and abundance at higher altitudes. Significant site- and season-specific effects were found for enzyme production. The significant interaction of the factors site and incubation temperature for soil microbial activities indicated differences in microbial communities and their responses to temperature among sites. CLPP revealed site-specific effects. Microbial community structure was influenced by altitudinal, seasonal and/or site-specific effects. Correlations demonstrated that altitude, and not season, was the main factor determining the changes in abiotic and biotic characteristics at the sites investigated.
Collapse
Affiliation(s)
- José A Siles
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Tomas Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benatska 2, CZ-128 01 Prague 2, Czech Republic
| | - Stefano Minerbi
- Division Forestry, Autonomous Province of Bozen/Bolzano, Brennerstrasse 6, I-39100 Bozen/Bolzano, Italy
| | - Rosa Margesin
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
24
|
Soil restoration with organic amendments: linking cellular functionality and ecosystem processes. Sci Rep 2015; 5:15550. [PMID: 26503516 PMCID: PMC4621494 DOI: 10.1038/srep15550] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 09/28/2015] [Indexed: 11/08/2022] Open
Abstract
A hot topic in recent decades, the application of organic amendments to arid-degraded soils has been shown to benefit microbially-mediated processes. However, despite the importance of soils for global sustainability, a gap has not been addressed yet in soil science: is there any connection between ecosystem-community processes, cellular functionality, and microbial lifestyles (i.e. oligotrophy-copiotrophy) in restored soils? Together with classical ecosystem indicators (fatty-acids, extracellular-enzyme activities, basal respiration), state-of-the-art metaproteomics was applied to fill this gap in a model-restoration experiment initiated 10-years ago by the addition of sewage-sludge and compost. Organic amendment strongly impacted ecosystem processes. Furthermore, the type of material used induced differences in the cellular functionalities through variations in the percentages of proteins involved in translation, transcription, energy production and C-fixation. We conclude that the long-term impact of organic restoration goes beyond ecosystem processes and affects cellular functionalities and phyla-lifestyles coupled with differences in microbial-community structures.
Collapse
|
25
|
Fungal enzymes for environmental management. Curr Opin Biotechnol 2015; 33:268-78. [DOI: 10.1016/j.copbio.2015.03.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/07/2015] [Indexed: 11/20/2022]
|
26
|
Varela A, Martins C, Núñez O, Martins I, Houbraken JAMP, Martins TM, Leitão MC, McLellan I, Vetter W, Galceran MT, Samson RA, Hursthouse A, Silva Pereira C. Understanding fungal functional biodiversity during the mitigation of environmentally dispersed pentachlorophenol in cork oak forest soils. Environ Microbiol 2015; 17:2922-34. [PMID: 25753337 DOI: 10.1111/1462-2920.12837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/26/2015] [Indexed: 01/19/2023]
Abstract
Pentachlorophenol (PCP) is globally dispersed and contamination of soil with this biocide adversely affects its functional biodiversity, particularly of fungi - key colonizers. Their functional role as a community is poorly understood, although a few pathways have been already elucidated in pure cultures. This constitutes here our main challenge - elucidate how fungi influence the pollutant mitigation processes in forest soils. Circumstantial evidence exists that cork oak forests in N. W. Tunisia - economically critical managed forests are likely to be contaminated with PCP, but the scientific evidence has previously been lacking. Our data illustrate significant forest contamination through the detection of undefined active sources of PCP. By solving the taxonomic diversity and the PCP-derived metabolomes of both the cultivable fungi and the fungal community, we demonstrate here that most strains (predominantly penicillia) participate in the pollutant biotic degradation. They form an array of degradation intermediates and by-products, including several hydroquinone, resorcinol and catechol derivatives, either chlorinated or not. The degradation pathway of the fungal community includes uncharacterized derivatives, e.g. tetrachloroguaiacol isomers. Our study highlights fungi key role in the mineralization and short lifetime of PCP in forest soils and provide novel tools to monitor its degradation in other fungi dominated food webs.
Collapse
Affiliation(s)
- Adélia Varela
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,Instituto Nacional de Investigação Agrária e Veterinária, Av. da República, Quinta do Marquês, 2784-505, Oeiras, Portugal
| | - Celso Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Oscar Núñez
- Department of Analytical Chemistry, University of Barcelona, Diagonal 645, E-08028, Barcelona, Spain.,Serra Húnter Programme, Generalitat de Catalunya, Barcelona, Spain
| | - Isabel Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Jos A M P Houbraken
- CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167-3508AD, Utrecht, The Netherlands
| | - Tiago M Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - M Cristina Leitão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Iain McLellan
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley Campus, PA1 2BE, Paisley, UK
| | - Walter Vetter
- Institute of Food Chemistry (170b), University of Hohenheim, Stuttgart, Germany
| | - M Teresa Galceran
- Department of Analytical Chemistry, University of Barcelona, Diagonal 645, E-08028, Barcelona, Spain
| | - Robert A Samson
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167-3508AD, Utrecht, The Netherlands
| | - Andrew Hursthouse
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley Campus, PA1 2BE, Paisley, UK
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Institute of Food Chemistry (170b), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|