1
|
Nielsen BS, Madsen NH, Larsen J, Skandorff I, Gad M, Holmstrøm K. Architectural organization and molecular profiling of 3D cancer heterospheroids and their application in drug testing. Front Oncol 2024; 14:1386097. [PMID: 39011470 PMCID: PMC11246882 DOI: 10.3389/fonc.2024.1386097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
3D cancer cell cultures have enabled new opportunities for replacing compound testing in experimental animals. However, most solid tumors are composed of multiple cell types, including fibroblasts. In this study we developed multicellular tumor heterospheroids composed of cancer and fibroblasts cell lines. We developed heterospheroids by combining HT-29, MCF-7, PANC-1 or SW480 with 1BR.3.G fibroblasts, which we have previously reported support spheroid formation. We also tested fibroblast cell lines, MRC-5, GM00498 and HIF, but 1BR.3.G was found to best form heterospheroids with morphological similarity to in vivo tumor tissue. The architectural organization of heterospheroids was based on histological examination using immunohistochemistry. We found that HT-29 and MCF-7 cells developed spheroids with the cancer cells surrounding the fibroblasts, whereas PANC-1 cells interspersed with the fibroblasts and SW480 cells were surrounded by fibroblasts. The fibroblasts also expressed collagen-1 and FAP-α, and whole transcriptomic analysis (WTA) showed abundant ECM- and EMT-related expression in heterospheroids, thus reflecting a representative tumor-like microenvironment. The WTA showed that PANC-1 heterospheroids possess a strong EMT profile with abundant Vimentin and CDH2 expression. Drug testing was evaluated by measuring cytotoxicity of 5FU and cisplatin using cell viability and apoptosis assays. We found no major impact on the cytotoxicity when fibroblasts were added to the spheroids. We conclude that the cancer cell lines together with fibroblasts shape the architectural organization of heterospheroids to form tumor-like morphology, and we propose that the various 3D tumor structures can be used for drug testing directed against the cancer cells as well as the fibroblasts.
Collapse
Affiliation(s)
- Boye Schnack Nielsen
- Department of Cellular Engineering & Disease Modeling, Bioneer A/S, Hørsholm, Denmark
| | | | | | | | | | | |
Collapse
|
2
|
Devarasou S, Kang M, Shin JH. Biophysical perspectives to understanding cancer-associated fibroblasts. APL Bioeng 2024; 8:021507. [PMID: 38855445 PMCID: PMC11161195 DOI: 10.1063/5.0199024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
The understanding of cancer has evolved significantly, with the tumor microenvironment (TME) now recognized as a critical factor influencing the onset and progression of the disease. This broader perspective challenges the traditional view that cancer is primarily caused by mutations, instead emphasizing the dynamic interaction between different cell types and physicochemical factors within the TME. Among these factors, cancer-associated fibroblasts (CAFs) command attention for their profound influence on tumor behavior and patient prognoses. Despite their recognized importance, the biophysical and mechanical interactions of CAFs within the TME remain elusive. This review examines the distinctive physical characteristics of CAFs, their morphological attributes, and mechanical interactions within the TME. We discuss the impact of mechanotransduction on CAF function and highlight how these cells communicate mechanically with neighboring cancer cells, thereby shaping the path of tumor development and progression. By concentrating on the biomechanical regulation of CAFs, this review aims to deepen our understanding of their role in the TME and to illuminate new biomechanical-based therapeutic strategies.
Collapse
Affiliation(s)
- Somayadineshraj Devarasou
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| | - Minwoo Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| | - Jennifer H. Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| |
Collapse
|
3
|
Correlation of the regenerative potential of dermal fibroblasts in 2D culture with the biological properties of fibroblast-derived tissue spheroids. Cell Tissue Res 2022; 390:453-464. [PMID: 36129531 DOI: 10.1007/s00441-022-03690-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
In situ 3D bioprinting is a new emerging therapeutic modality for treating human skin diseases. The tissue spheroids have been previously suggested as a powerful tool in rapidly expanding bioprinting technology. It has been demonstrated that the regenerative potential of human dermal fibroblasts could be quantitatively evaluated in 2D cell culture and confirmed after implantation in vivo. However, the development of unbiassed quantitative criteria of the regenerative potential of 3D tissue spheroids in vitro before their in situ bioprinting remains to be investigated. Here it has been demonstrated for the first time that specific correlations exist between the regenerative potential of human dermal fibroblasts cultured in vitro as 2D cell monolayer with biological properties of 3D tissue spheroids fabricated from these fibroblasts. In vitro assessment of biological properties included diameter, spreading and fusion kinetics, and biomechanical properties of 3D tissue spheroids. This comprehensive characterization could be used to predict tissue spheroids' regenerative potential in vivo.
Collapse
|
4
|
dos Reis VP, Keller M, Schmidt K, Ulrich RG, Groschup MH. αVβ3 Integrin Expression Is Essential for Replication of Mosquito and Tick-Borne Flaviviruses in Murine Fibroblast Cells. Viruses 2021; 14:v14010018. [PMID: 35062222 PMCID: PMC8780171 DOI: 10.3390/v14010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
The Flavivirus genus includes a number of important viruses that are pathogenic to humans and animals and are responsible for outbreaks across the globe. Integrins, a family of heterodimeric transmembrane molecules expressed in all nucleated cells mediate critical functions of cell physiology and cell cycle. Integrins were previously postulated to be involved in flavivirus entry and to modulate flavivirus replication efficiency. In the present study, mouse embryonic fibroblasts (MEF), lacking the expression of αVβ3 integrin (MEF-αVβ3−/−), were infected with four different flaviviruses, namely yellow fever virus (YFV), West Nile virus (WNV), Usutu virus (USUV) and Langat virus (LGTV). The effects of the αVβ3 integrin absence in double-knockout MEF-αVβ3−/− on flavivirus binding, internalization and replication were compared to the respective wild-type cells. Binding to the cell surface for all four flaviviruses was not affected by the ablation of αVβ3 integrin, whereas internalization of USUV and WNV was slightly affected by the loss of αVβ3 integrin expression. Most interestingly, the deletion of αVβ3 integrin strongly impaired replication of all flaviviruses with a reduction of up to 99% on virus yields and a strong reduction on flavivirus anti-genome RNA synthesis. In conclusion, our results demonstrate that αVβ3 integrin expression in flavivirus-susceptible cell lines enhances the flavivirus replication.
Collapse
Affiliation(s)
- Vinicius Pinho dos Reis
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (V.P.d.R.); (M.K.); (R.G.U.)
- Institute for Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (V.P.d.R.); (M.K.); (R.G.U.)
| | - Katja Schmidt
- Microbiological Diagnostics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Rainer Günter Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (V.P.d.R.); (M.K.); (R.G.U.)
- Deutsches Zentrum für Infektionsforschung(DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Martin Hermann Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (V.P.d.R.); (M.K.); (R.G.U.)
- Deutsches Zentrum für Infektionsforschung(DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Südufer 10, 17493 Greifswald-Insel Riems, Germany
- Correspondence: ; Tel.: +49-38351-71163
| |
Collapse
|
5
|
Kato EE, Sampaio SC. Crotoxin Modulates Events Involved in Epithelial-Mesenchymal Transition in 3D Spheroid Model. Toxins (Basel) 2021; 13:toxins13110830. [PMID: 34822613 PMCID: PMC8618719 DOI: 10.3390/toxins13110830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) occurs in the early stages of embryonic development and plays a significant role in the migration and the differentiation of cells into various types of tissues of an organism. However, tumor cells, with altered form and function, use the EMT process to migrate and invade other tissues in the body. Several experimental (in vivo and in vitro) and clinical trial studies have shown the antitumor activity of crotoxin (CTX), a heterodimeric phospholipase A2 present in the Crotalus durissus terrificus venom. In this study, we show that CTX modulates the microenvironment of tumor cells. We have also evaluated the effect of CTX on the EMT process in the spheroid model. The invasion of type I collagen gels by heterospheroids (mix of MRC-5 and A549 cells constitutively prepared with 12.5 nM CTX), expression of EMT markers, and secretion of MMPs were analyzed. Western blotting analysis shows that CTX inhibits the expression of the mesenchymal markers, N-cadherin, α-SMA, and αv. This study provides evidence of CTX as a key modulator of the EMT process, and its antitumor action can be explored further for novel drug designing against metastatic cancer.
Collapse
Affiliation(s)
- Ellen Emi Kato
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, Brazil;
| | - Sandra Coccuzzo Sampaio
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, Brazil;
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-060, Brazil
- Correspondence:
| |
Collapse
|
6
|
Masoumi KC, Huang X, Sime W, Mirkov A, Munksgaard Thorén M, Massoumi R, Lundgren-Åkerlund E. Integrin α10-Antibodies Reduce Glioblastoma Tumor Growth and Cell Migration. Cancers (Basel) 2021; 13:cancers13051184. [PMID: 33803359 PMCID: PMC7980568 DOI: 10.3390/cancers13051184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Glioblastoma (GB) is the most common and most deadly form of brain tumor in adults which currently lacks effective treatments. Thus, there is a high need to identify new and effective ways to target the aggressive GB cells and treat the GB patients. In this study, we investigated the treatment effect of two antibodies that have been developed to target the protein integrin α10β1, which is present on the surface of GB cells. Our results show that the growth of GB tumor cells is reduced in the presence of the α10β1 antibodies. The treatment effect is demonstrated both in cell experiments and in an animal model. In addition, we found that the antibodies reduce the migration of the GB cells. We suggest that function-blocking antibodies targeting the integrin α10β1 is a promising new approach to treat glioblastoma patients. Abstract Glioblastoma (GB) is the most common and the most aggressive form of brain tumor in adults, which currently lacks efficient treatment strategies. In this study, we investigated the therapeutic effect of function-blocking antibodies targeting integrin α10β1 on patient-derived-GB cell lines in vitro and in vivo. The in vitro studies demonstrated significant inhibiting effects of the integrin α10 antibodies on the adhesion, migration, proliferation, and sphere formation of GB cells. In a xenograft mouse model, the effect of the antibodies on tumor growth was investigated in luciferase-labeled and subcutaneously implanted GB cells. As demonstrated by in vivo imaging analysis and caliper measurements, the integrin α10-antibodies significantly suppressed GB tumor growth compared to control antibodies. Immunohistochemical analysis of the GB tumors showed lower expression of the proliferation marker Ki67 and an increased expression of cleaved caspase-3 after treatment with integrin α10 antibodies, further supporting a therapeutic effect. Our results suggest that function-blocking antibody targeting integrin α10β1 is a promising therapeutic strategy for the treatment of glioblastoma.
Collapse
Affiliation(s)
| | - Xiaoli Huang
- Xintela AB, Medicon Village, Scheeletorget 1, SE-223 81 Lund, Sweden; (K.C.M.); (X.H.); (A.M.); (M.M.T.)
| | - Wondossen Sime
- IVRS AB, Medicon Village, Scheeletorget 1, SE-223 81 Lund, Sweden; (W.S.); (R.M.)
| | - Anna Mirkov
- Xintela AB, Medicon Village, Scheeletorget 1, SE-223 81 Lund, Sweden; (K.C.M.); (X.H.); (A.M.); (M.M.T.)
| | - Matilda Munksgaard Thorén
- Xintela AB, Medicon Village, Scheeletorget 1, SE-223 81 Lund, Sweden; (K.C.M.); (X.H.); (A.M.); (M.M.T.)
| | - Ramin Massoumi
- IVRS AB, Medicon Village, Scheeletorget 1, SE-223 81 Lund, Sweden; (W.S.); (R.M.)
| | - Evy Lundgren-Åkerlund
- Xintela AB, Medicon Village, Scheeletorget 1, SE-223 81 Lund, Sweden; (K.C.M.); (X.H.); (A.M.); (M.M.T.)
- Correspondence: ; Tel.: +46-46-275-6500
| |
Collapse
|
7
|
Alam J, Musiime M, Romaine A, Sawant M, Melleby AO, Lu N, Eckes B, Christensen G, Gullberg D. Generation of a novel mouse strain with fibroblast-specific expression of Cre recombinase. Matrix Biol Plus 2020; 8:100045. [PMID: 33543038 PMCID: PMC7852330 DOI: 10.1016/j.mbplus.2020.100045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/06/2023] Open
Abstract
Cell-specific expression of genes offers the possibility to use their promoters to drive expression of Cre-recombinase, thereby allowing for detailed expression analysis using reporter gene systems, cell lineage tracing, conditional gene deletion, and cell ablation. In this context, current data suggest that the integrin α11 subunit has the potential to serve as a fibroblast biomarker in tissue regeneration and pathology, in particular in wound healing and in tissue- and tumor fibrosis. The mesenchyme-restricted expression pattern of integrin α11 thus prompted us to generate a novel ITGA11-driver Cre mouse strain using a ϕC31 integrase-mediated knock-in approach. In this transgenic mouse, the Cre recombinase is driven by regulatory promoter elements within the 3 kb segment of the human ITGA11 gene. β-Galactosidase staining of embryonic tissues obtained from a transgenic ITGA11-Cre mouse line crossed with Rosa 26R reporter mice (ITGA11-Cre;R26R) revealed ITGA11-driven Cre expression and activity in mesenchymal cells in a variety of mesenchymal tissues in a pattern reminiscent of endogenous α11 protein expression in mouse embryos. Interestingly, X-gal staining of mouse embryonic fibroblasts (MEFs) isolated from the ITGA11-Cre;R26R mice indicated heterogeneity in the MEF population. ITGA11-driven Cre activity was shown in approximately 60% of the MEFs, suggesting that the expression of integrin α11 could be exploited for isolation of different fibroblast populations. ITGA11-driven Cre expression was found to be low in adult mouse tissues but was induced in granulation tissue of excisional wounds and in fibrotic hearts following aortic banding. We predict that the ITGA11-Cre transgenic mouse strain described in this report will be a useful tool in matrix research for the deletion of genes in subsets of fibroblasts in the developing mouse and for determining the function of subsets of pro-fibrotic fibroblasts in tissue fibrosis and in different subsets of cancer-associated fibroblasts in the tumor microenvironment. A mouse strain with Cre-recombinase driven by the human integrin α11 promoter has been generated. Cre-recombinase expression in this strain has been characterized using the Rosa26R reporter mouse. ITGA11-Cre is restricted to fibroblast subsets in mouse embryos, skin wounds and fibrotic hearts. This Cre-driver strain will be a useful tool to study role fibroblasts in fibrosis and tumors.
Collapse
Affiliation(s)
- Jahedul Alam
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Moses Musiime
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Andreas Romaine
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Mugdha Sawant
- Translational Matrix Biology, University of Cologne Medical Faculty, Cologne, Germany
| | - Arne Olav Melleby
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Ning Lu
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne Medical Faculty, Cologne, Germany
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Donald Gullberg
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Bergen, Norway
- Corresponding author Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
| |
Collapse
|
8
|
Minamikawa-Tachino R, Ogura K, Ito A, Nagayama K. Time-lapse imaging of HeLa spheroids in soft agar culture provides virtual inner proliferative activity. PLoS One 2020; 15:e0231774. [PMID: 32302356 PMCID: PMC7164667 DOI: 10.1371/journal.pone.0231774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/31/2020] [Indexed: 01/11/2023] Open
Abstract
Cancer is a complex disease caused by multiple types of interactions. To simplify and normalize the assessment of drug effects, spheroid microenvironments have been utilized. Research models that involve agent measurement with the examination of clonogenic survival by monitoring culture process with image analysis have been developed for spheroid-based screening. Meanwhile, computer simulations using various models have enabled better predictions for phenomena in cancer. However, user-based parameters that are specific to a researcher’s own experimental conditions must be inputted. In order to bridge the gap between experimental and simulated conditions, we have developed an in silico analysis method with virtual three-dimensional embodiment computed using the researcher’s own samples. The present work focused on HeLa spheroid growth in soft agar culture, with spheroids being modeled in silico based on time-lapse images capturing spheroid growth. The spheroids in silico were optimized by adjusting the growth curves to those obtained from time-lapse images of spheroids and were then assigned virtual inner proliferative activity by using generations assigned to each cellular particle. The ratio and distribution of the virtual inner proliferative activities were confirmed to be similar to the proliferation zone ratio and histochemical profiles of HeLa spheroids, which were also consistent with those identified in an earlier study. We validated that time-lapse images of HeLa spheroids provided virtual inner proliferative activity for spheroids in vitro. The present work has achieved the first step toward an in silico analysis method using computational simulation based on a researcher’s own samples, helping to bridge the gap between experiment and simulation.
Collapse
Affiliation(s)
- Reiko Minamikawa-Tachino
- Translational Medical Research Center, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- * E-mail:
| | - Kiyoshi Ogura
- Translational Medical Research Center, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Ayane Ito
- Department of Interdisciplinary Informatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Katsuya Nagayama
- Department of Mechanical Information Science and Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| |
Collapse
|
9
|
Smeland HYH, Askeland C, Wik E, Knutsvik G, Molven A, Edelmann RJ, Reed RK, Warren DJ, Gullberg D, Stuhr L, Akslen LA. Integrin α11β1 is expressed in breast cancer stroma and associates with aggressive tumor phenotypes. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2019; 6:69-82. [PMID: 31605508 PMCID: PMC6966706 DOI: 10.1002/cjp2.148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022]
Abstract
Cancer‐associated fibroblasts are essential modifiers of the tumor microenvironment. The collagen‐binding integrin α11β1 has been proposed to be upregulated in a pro‐tumorigenic subtype of cancer‐associated fibroblasts. Here, we analyzed the expression and clinical relevance of integrin α11β1 in a large breast cancer series using a novel antibody against the human integrin α11 chain. Several novel monoclonal antibodies against the integrin α11 subunit were tested for use on formalin‐fixed paraffin‐embedded tissues, and Ab 210F4B6A4 was eventually selected to investigate the immunohistochemical expression in 392 breast cancers using whole sections. mRNA data from METABRIC and co‐expression patterns of integrin α11 in relation to αSMA and cytokeratin‐14 were also investigated. Integrin α11 was expressed to varying degrees in spindle‐shaped cells in the stroma of 99% of invasive breast carcinomas. Integrin α11 co‐localized with αSMA in stromal cells, and with αSMA and cytokeratin‐14 in breast myoepithelium. High stromal integrin α11 expression (66% of cases) was associated with aggressive breast cancer features such as high histologic grade, increased tumor cell proliferation, ER negativity, HER2 positivity, and triple‐negative phenotype, but was not associated with breast cancer specific survival at protein or mRNA levels. In conclusion, high stromal integrin α11 expression was associated with aggressive breast cancer phenotypes.
Collapse
Affiliation(s)
- Hilde Ytre-Hauge Smeland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Cecilie Askeland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Elisabeth Wik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Gøril Knutsvik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Anders Molven
- Department of Pathology, Haukeland University Hospital, Bergen, Norway.,Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Reidunn J Edelmann
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Rolf K Reed
- Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - David J Warren
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Donald Gullberg
- Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Linda Stuhr
- Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
10
|
Erusappan P, Alam J, Lu N, Zeltz C, Gullberg D. Integrin α11 cytoplasmic tail is required for FAK activation to initiate 3D cell invasion and ERK-mediated cell proliferation. Sci Rep 2019; 9:15283. [PMID: 31653900 PMCID: PMC6814791 DOI: 10.1038/s41598-019-51689-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022] Open
Abstract
Integrin α11β1 is a collagen-binding integrin, which is receiving increasing attention in the context of wound healing and fibrosis. Although α11β1 integrin displays similar collagen specificity to α2β1 integrin, both integrins have distinct in vivo functions. In this context, the contribution of α11 subunit cytoplasmic tail interactions to diverse molecular signals and biological functions is largely unknown. In the current study, we have deleted the α11 cytoplasmic tail and studied the effect of this deletion on α11 integrin function. Compared to wild-type cells, C2C12 cells expressing tail-less α11 attached normally to collagen I, but formed fewer focal contacts. α11-tail-less cells furthermore displayed a reduced capacity to invade and reorganize a 3D collagen matrix and to proliferate. Analysis of cell signaling showed that FAK and ERK phosphorylation was reduced in cells expressing tail-less α11. Inhibition of ERK and FAK activation decreased α11-mediated cell proliferation, whereas α11-mediated cell invasion was FAK-dependent and occurred independently of ERK signaling. In summary, our data demonstrate that the integrin α11 cytoplasmic tail plays a central role in α11 integrin-specific functions, including FAK-dependent ERK activation to promote cell proliferation.
Collapse
Affiliation(s)
- Pugazendhi Erusappan
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.,Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Kirkeveien 166, 0450, Oslo, Norway
| | - Jahedul Alam
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Ning Lu
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Cédric Zeltz
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.,Princess Margaret Cancer Center, University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Donald Gullberg
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.
| |
Collapse
|
11
|
Schoos A, Knab VM, Gabriel C, Tripolt S, Wagner DA, Bauder B, Url A, Fux DA. In vitro study to assess the efficacy of CDK4/6 inhibitor Palbociclib (PD-0332991) for treating canine mammary tumours. Vet Comp Oncol 2019; 17:507-521. [PMID: 31207004 DOI: 10.1111/vco.12514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
Abstract
Therapy of canine mammary tumours (CMTs) with classical antitumour drugs is problematic, so better therapeutic options are needed. Palbociclib (PD-0332991) is an innovative and effective anticancer drug for the treatment of breast cancer in women. Palbociclib is an inhibitor of cyclin-dependent kinase 4 (CDK4) and CDK6, which are key regulators of the cell cycle machinery and thus cell proliferation. In the present in vitro study, we investigated whether Palbociclib also represents a candidate drug to combat CMT. For this purpose, the effect of Palbociclib was analysed in P114 and CF41 cells, two CMT cell lines with an endogenous CDK4/6 co-expression. Incubation of P114 and CF41 cells with Palbociclib resulted in a dose- and time-dependent loss of phosphorylated retinoblastoma protein (pRb), a classical CDK4/6 substrate within the cell cycle machinery. Moreover, treatment of CMT cells with Palbociclib-induced cell cycle arrest affected cell viability, prevented colony formation and impaired cell migration activity. Palbociclib also inhibited the growth of P114 and CF41 cell spheroids. Immunohistochemical analysis of canine patient samples revealed a consistent expression of CDK6 in different canine mammary carcinoma types, but an individual and tumour-specific expression pattern of phosphorylated pRb independent of the tumour grade. Together, our findings let us suggest that Palbociclib has antitumour effects on CMT cells and that canine patients may represent potential candidates for treatment with this CDK4/6 inhibitor.
Collapse
Affiliation(s)
- Alexandra Schoos
- Institute of Pharmacology and Toxicology, Unit of Clinical Pharmacology, University of Veterinary Medicine, Vienna, Austria
| | - Vanessa M Knab
- Institute of Pharmacology and Toxicology, Unit of Clinical Pharmacology, University of Veterinary Medicine, Vienna, Austria
| | - Cordula Gabriel
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Sabrina Tripolt
- Institute of Pharmacology and Toxicology, Unit of Clinical Pharmacology, University of Veterinary Medicine, Vienna, Austria
| | - Daniela A Wagner
- Institute of Pharmacology and Toxicology, Unit of Clinical Pharmacology, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Bauder
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Angelika Url
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Daniela A Fux
- Institute of Pharmacology and Toxicology, Unit of Clinical Pharmacology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
12
|
Zeltz C, Alam J, Liu H, Erusappan PM, Hoschuetzky H, Molven A, Parajuli H, Cukierman E, Costea DE, Lu N, Gullberg D. α11β1 Integrin is Induced in a Subset of Cancer-Associated Fibroblasts in Desmoplastic Tumor Stroma and Mediates In Vitro Cell Migration. Cancers (Basel) 2019; 11:E765. [PMID: 31159419 PMCID: PMC6627481 DOI: 10.3390/cancers11060765] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023] Open
Abstract
Integrin α11β1 is a collagen receptor that has been reported to be overexpressed in the stroma of non-small cell lung cancer (NSCLC) and of head and neck squamous cell carcinoma (HNSCC). In the current study, we further analyzed integrin α11 expression in 14 tumor types by screening a tumor tissue array while using mAb 203E3, a newly developed monoclonal antibody to human α11. Different degrees of expression of integrin α11 were observed in the stroma of breast, ovary, skin, lung, uterus, stomach, and pancreatic ductal adenocarcinoma (PDAC) tumors. Co-expression queries with the myofibroblastic cancer-associated fibroblast (myCAF) marker, alpha smooth muscle actin (αSMA), demonstrated a moderate level of α11+ in myCAFs associated with PDAC and HNSCC tumors, and a lack of α11 expression in additional stromal cells (i.e., cells positive for fibroblast-specific protein 1 (FSP1) and NG2). The new function-blocking α11 antibody, mAb 203E1, inhibited cell adhesion to collagen I, partially hindered fibroblast-mediated collagen remodeling and obstructed the three-dimensional (3D) migration rates of PDAC myCAFs. Our data demonstrate that integrin α11 is expressed in a subset of non-pericyte-derived CAFs in a range of cancers and suggest that α11β1 constitutes an important receptor for collagen remodeling and CAF migration in the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Jahedul Alam
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Hengshuo Liu
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Pugazendhi M Erusappan
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Heinz Hoschuetzky
- nanoTools Antikörpertechnik, Tscheulinstr. 21, 79331 Teningen, Germany.
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, NO-5020 Bergen, Norway.
- Department of Pathology, Haukeland University Hospital, NO-5020 Bergen, Norway.
| | - Himalaya Parajuli
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Edna Cukierman
- Cancer Biology Department, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111, USA.
| | - Daniela-Elena Costea
- Department of Pathology, Haukeland University Hospital, NO-5020 Bergen, Norway.
- Department of Clinical Medicine, Center for Cancer Biomarkers CCBIO and Gade Laboratory for Pathology, University of Bergen, NO-5020 Bergen, Norway.
| | - Ning Lu
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| |
Collapse
|
13
|
Zeltz C, Pasko E, Cox TR, Navab R, Tsao MS. LOXL1 Is Regulated by Integrin α11 and Promotes Non-Small Cell Lung Cancer Tumorigenicity. Cancers (Basel) 2019; 11:cancers11050705. [PMID: 31121900 PMCID: PMC6562909 DOI: 10.3390/cancers11050705] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
Integrin α11, a stromal collagen receptor, promotes tumor growth and metastasis of non-small cell lung cancer (NSCLC) and is associated with the regulation of collagen stiffness in the tumor stroma. We have previously reported that lysyl oxidase like-1 (LOXL1), a matrix cross-linking enzyme, is down-regulated in integrin α11-deficient mice. In the present study, we investigated the relationship between LOXL1 and integrin α11, and the role of LOXL1 in NSCLC tumorigenicity. Our results show that the expression of LOXL1 and integrin α11 was correlated in three lung adenocarcinoma patient datasets and that integrin α11 indeed regulated LOXL1 expression in stromal cells. Using cancer-associated fibroblast (CAF) with either a knockdown or overexpression of LOXL1, we demonstrated a role for LOXL1 in collagen matrix remodeling and collagen fiber alignment in vitro and in vivo in a NSCLC xenograft model. As a consequence of collagen reorganization in NSCLC tumor stroma, we showed that LOXL1 supported tumor growth and progression. Our findings demonstrate that stromal LOXL1, under regulation of integrin α11, is a determinant factor of NSCLC tumorigenesis and may be an interesting target in this disease.
Collapse
Affiliation(s)
- Cédric Zeltz
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Elena Pasko
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Thomas R Cox
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 370 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Roya Navab
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Ming-Sound Tsao
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
14
|
Smeland HYH, Lu N, Karlsen TV, Salvesen G, Reed RK, Stuhr L. Stromal integrin α11-deficiency reduces interstitial fluid pressure and perturbs collagen structure in triple-negative breast xenograft tumors. BMC Cancer 2019; 19:234. [PMID: 30876468 PMCID: PMC6419843 DOI: 10.1186/s12885-019-5449-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/10/2019] [Indexed: 12/16/2022] Open
Abstract
Background Cancer progression is influenced by a pro-tumorigenic microenvironment. The aberrant tumor stroma with increased collagen deposition, contractile fibroblasts and dysfunctional vessels has a major impact on the interstitial fluid pressure (PIF) in most solid tumors. An increased tumor PIF is a barrier to the transport of interstitial fluid into and within the tumor. Therefore, understanding the mechanisms that regulate pressure homeostasis can lead to new insight into breast tumor progression, invasion and response to therapy. The collagen binding integrin α11β1 is upregulated during myofibroblast differentiation and expressed on fibroblasts in the tumor stroma. As a collagen organizer and a probable link between contractile fibroblasts and the complex collagen network in tumors, integrin α11β1 could be a potential regulator of tumor PIF. Methods We investigated the effect of stromal integrin α11-deficiency on pressure homeostasis, collagen organization and tumor growth using orthotopic and ectopic triple-negative breast cancer xenografts (MDA-MB-231 and MDA-MB-468) in wild type and integrin α11-deficient mice. PIF was measured by the wick-in-needle technique, collagen by Picrosirius Red staining and electron microscopy, and uptake of radioactively labeled 5FU by microdialysis. Further, PIF in heterospheroids composed of MDA-MB-231 cells and wild type or integrin α11-deficient fibroblasts was measured by micropuncture. Results Stromal integrin α11-deficiency decreased PIF in both the orthotopic breast cancer models. A concomitant perturbed collagen structure was seen, with fewer aligned and thinner fibrils. Integrin α11-deficiency also impeded MDA-MB-231 breast tumor growth, but no effect was observed on drug uptake. No effects were seen in the ectopic model. By investigating the isolated effect of integrin α11-positive fibroblasts on MDA-MB-231 cells in vitro, we provide evidence that PIF regulation was mediated by integrin α11-positive fibroblasts. Conclusion We hereby show the importance of integrin α11β1 in pressure homeostasis in triple-negative breast tumors, indicating a new role for integrin α11β1 in the tumor microenvironment. Our data suggest that integrin α11β1 has a pro-tumorigenic effect on triple-negative breast cancer growth in vivo. The significance of the local microenvironment is shown by the different effects of integrin α11β1 in the orthotopic and ectopic models, underlining the importance of choosing an appropriate preclinical model. Electronic supplementary material The online version of this article (10.1186/s12885-019-5449-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hilde Ytre-Hauge Smeland
- Department of Biomedicine, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway. .,Centre of Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway.
| | - Ning Lu
- Department of Biomedicine, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway.,Centre of Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway
| | - Tine V Karlsen
- Department of Biomedicine, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway
| | - Gerd Salvesen
- Department of Biomedicine, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway
| | - Rolf K Reed
- Department of Biomedicine, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway.,Centre of Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway
| | - Linda Stuhr
- Department of Biomedicine, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway.,Centre of Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway
| |
Collapse
|
15
|
Muddineti OS, Kumari P, Ray E, Ghosh B, Biswas S. Curcumin-loaded chitosan–cholesterol micelles: evaluation in monolayers and 3D cancer spheroid model. Nanomedicine (Lond) 2017; 12:1435-1453. [DOI: 10.2217/nnm-2017-0036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To improve the bioavailability and anticancer potential of curcumin by using a cholesterol-conjugated chitosan micelle. Methods & methods: Cholesterol was conjugated to chitosan (15 kDa) to form self-assembled micelles, which loaded curcumin. Physicochemical characterization and formulation optimization of the drug-loaded micelles (curcumin-loaded chitosan–cholesterol micelles [C-CCM]) were performed. In vitro cellular uptake and viability of C-CCM were investigated in melanoma and breast cancer cell lines. The antitumor efficacy was evaluated in 3D lung cancer spheroid model. Results & conclusion: The optimized C-CCM had size of approximately 162 nm with loading efficiency of approximately 36%. C-CCM was taken up efficiently by the cells, and it reduced cancer cell viability significantly compared with free curcumin. C-CCM enhanced the antitumor efficacy in spheroids, suggesting that C-CCM could be used as an effective chemotherapy in cancer.
Collapse
Affiliation(s)
- Omkara Swami Muddineti
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad – 500078, Telangana, India
| | - Preeti Kumari
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad – 500078, Telangana, India
| | - Eupa Ray
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad – 500078, Telangana, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad – 500078, Telangana, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad – 500078, Telangana, India
| |
Collapse
|
16
|
Jennewein M, Bubel M, Guthörl S, Metzger W, Weigert M, Pohlemann T, Oberringer M. Two- and three-dimensional co-culture models of soft tissue healing: pericyte-endothelial cell interaction. Cell Tissue Res 2016; 365:279-93. [DOI: 10.1007/s00441-016-2391-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/29/2016] [Indexed: 12/20/2022]
|
17
|
Reigstad I, Smeland HYH, Skogstrand T, Sortland K, Schmid MC, Reed RK, Stuhr L. Stromal Integrin α11β1 Affects RM11 Prostate and 4T1 Breast Xenograft Tumors Differently. PLoS One 2016; 11:e0151663. [PMID: 26990302 PMCID: PMC4798484 DOI: 10.1371/journal.pone.0151663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/02/2016] [Indexed: 11/18/2022] Open
Abstract
PURPOSE It has been implied that the collagen binding integrin α11β1 plays a role in carcinogenesis. As still relatively little is known about how the stromal integrin α11β1 affects different aspects of tumor development, we wanted to examine the direct effects on primary tumor growth, fibrosis, tumor interstitial fluid pressure (PIF) and metastasis in murine 4T1 mammary and RM11 prostate tumors, using an in vivo SCID integrin α11-deficient mouse model. METHODS Tumor growth was measured using a caliper, PIF by the wick-in-needle technique, activated fibroblasts by α-SMA immunofluorescence staining and fibrosis by transmission electron microscopy and picrosirius-red staining. Metastases were evaluated using hematoxylin and eosin stained sections. RESULTS RM11 tumor growth was significantly reduced in the SCID integrin α11-deficient (α11-KO) compared to in SCID integrin α11 wild type (WT) mice, whereas there was no similar effect in the 4T1 tumor model. The 4T1 model demonstrated an alteration in collagen fibril diameter in the integrin α11-KO mice compared to WT, which was not found in the RM11 model. There were no significant differences in the amount of activated fibroblasts, total collagen content, collagen organization or PIF in the tumors in integrin α11-deficient mice compared to WT mice. There was also no difference in lung metastases between the two groups. CONCLUSION Deficiency of stromal integrin α11β1 showed different effects on tumor growth and collagen fibril diameter depending on tumor type, but no effect on tumor PIF or development of lung metastasis.
Collapse
Affiliation(s)
- Inga Reigstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Matrix biology group, Haukeland University Hospital, Bergen, Norway
- * E-mail:
| | - Hilde Y. H. Smeland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Center of Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Trude Skogstrand
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Matrix biology group, Haukeland University Hospital, Bergen, Norway
| | - Kristina Sortland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Matrix biology group, Haukeland University Hospital, Bergen, Norway
| | - Marei Caroline Schmid
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Center of Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Rolf K. Reed
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Center of Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Linda Stuhr
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
18
|
Zeltz C, Gullberg D. The integrin-collagen connection--a glue for tissue repair? J Cell Sci 2016; 129:653-64. [PMID: 26857815 DOI: 10.1242/jcs.180992] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The α1β1, α2β1, α10β1 and α11β1 integrins constitute a subset of the integrin family with affinity for GFOGER-like sequences in collagens. Integrins α1β1 and α2β1 were originally identified on a subset of activated T-cells, and have since been found to be expressed on a number of cell types including platelets (α2β1), vascular cells (α1β1, α2β1), epithelial cells (α1β1, α2β1) and fibroblasts (α1β1, α2β1). Integrin α10β1 shows a distribution that is restricted to mesenchymal stem cells and chondrocytes, whereas integrin α11β1 appears restricted to mesenchymal stem cells and subsets of fibroblasts. The bulk of the current literature suggests that collagen-binding integrins only have a limited role in adult connective tissue homeostasis, partly due to a limited availability of cell-binding sites in the mature fibrillar collagen matrices. However, some recent data suggest that, instead, they are more crucial for dynamic connective tissue remodeling events--such as wound healing--where they might act specifically to remodel and restore the tissue architecture. This Commentary discusses the recent development in the field of collagen-binding integrins, their roles in physiological and pathological settings with special emphasis on wound healing, fibrosis and tumor-stroma interactions, and include a discussion of the most recently identified newcomers to this subfamily--integrins α10β1 and α11β1.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| |
Collapse
|
19
|
Grella A, Kole D, Holmes W, Dominko T. FGF2 Overrides TGFβ1-Driven Integrin ITGA11 Expression in Human Dermal Fibroblasts. J Cell Biochem 2015; 117:1000-8. [PMID: 26403263 DOI: 10.1002/jcb.25386] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 12/28/2022]
Abstract
Deposition of collagen-based extracellular matrix by fibroblasts during wound healing leads to scar formation--a typical outcome of the healing process in soft tissue wounds. The process can, however, be skewed in favor of tissue regeneration by manipulation of wound environment. Low oxygen conditions and supplementation with FGF2 provide extracellular cues that drive wound fibroblasts towards a pro-regenerative phenotype. Under these conditions, fibroblasts dramatically alter expression of many genes among which the most significantly deregulated are extracellular matrix and adhesion molecules. Here we investigate the mechanism of a collagen I binding integrin α11 (ITGA11) deregulation in response to low oxygen-mediated FGF2 effects in dermal fibroblasts. Using RT-PCR, qRT-PCR, Western blotting, and immunocytochemistry, we describe significant down-regulation of ITGA11. Decrease in ITGA11 is associated with its loss from focal adhesions. We show that loss of ITGA11 requires FGF2 induced ERK1/2 activity and in the presence of FGF2, ITGA11 expression cannot be rescued by TGFβ1, a potent activator of ITGA11. Our results indicate that FGF2 may be redirecting fibroblasts towards an anti-fibrotic phenotype by overriding TGFβ1 mediated ITGA11 expression.
Collapse
Affiliation(s)
- Alexandra Grella
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts, 01609
| | - Denis Kole
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts, 01609
| | - William Holmes
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts, 01609
| | - Tanja Dominko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts, 01609.,Center for Biomedical Sciences and Engineering, University of Nova Gorica, Nova Gorica 5000, Slovenia
| |
Collapse
|
20
|
Schulz JN, Zeltz C, Sørensen IW, Barczyk M, Carracedo S, Hallinger R, Niehoff A, Eckes B, Gullberg D. Reduced granulation tissue and wound strength in the absence of α11β1 integrin. J Invest Dermatol 2015; 135:1435-1444. [PMID: 25634355 PMCID: PMC4407012 DOI: 10.1038/jid.2015.24] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 12/24/2022]
Abstract
Previous wound healing studies have failed to define a role for either α1β1 or α2β1 integrin in fibroblast-mediated wound contraction, suggesting the involvement of another collagen receptor in this process. Our previous work demonstrated that the integrin subunit α11 is highly induced during wound healing both at the mRNA and protein level, prompting us to investigate and dissect the role of the integrin α11β1 during this process. Therefore, we used mice with a global ablation of either α2 or α11 or both integrin subunits and investigated the repair of excisional wounds. Analyses of wounds demonstrated that α11β1 deficiency results in reduced granulation tissue formation and impaired wound contraction, independently of the presence of α2β1. Our combined in vivo and in vitro data further demonstrate that dermal fibroblasts lacking α11β1 are unable to efficiently convert to myofibroblasts, resulting in scar tissue with compromised tensile strength. Moreover, we suggest that the reduced stability of the scar is a consequence of poor collagen remodeling in α11−/− wounds associated with defective transforming growth factor-β–dependent JNK signaling.
Collapse
Affiliation(s)
| | - Cédric Zeltz
- Department of Biomedicine, Centre for Cancer Biomarkers (CCBIO), Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Ida W Sørensen
- Department of Biomedicine, Centre for Cancer Biomarkers (CCBIO), Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Malgorzata Barczyk
- Department of Biomedicine, Centre for Cancer Biomarkers (CCBIO), Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Sergio Carracedo
- Department of Biomedicine, Centre for Cancer Biomarkers (CCBIO), Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Ralf Hallinger
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopedics, German Sport University, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Cologne, Germany
| | - Beate Eckes
- Department of Dermatology, University of Cologne, Cologne, Germany.
| | - Donald Gullberg
- Department of Biomedicine, Centre for Cancer Biomarkers (CCBIO), Norwegian Centre of Excellence, University of Bergen, Bergen, Norway.
| |
Collapse
|