1
|
Pachano B, Farhat DC, Shahinas M, von Velsen J, Corrao C, Belmudes L, de Bock PJ, Mas C, Couté Y, Bowler MW, Bougdour A, Swale C, Hakimi MA. An ISWI-related chromatin remodeller regulates stage-specific gene expression in Toxoplasma gondii. Nat Microbiol 2025; 10:1156-1170. [PMID: 40217127 DOI: 10.1038/s41564-025-01980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/05/2025] [Indexed: 05/08/2025]
Abstract
ATP-dependent chromatin remodellers are specialized multiprotein machines that organize the genome in eukaryotic cells and regulate its accessibility by repositioning, ejecting or modifying nucleosomes. However, their role in Toxoplasma gondii is poorly understood. Here we show that T. gondii has evolved two divergent proteins within the imitation switch (ISWI) family: TgSNF2h and TgSNF2L. TgSNF2h specifically forms a core complex with the transcription factor AP2VIII-2 and the scaffold protein TgRFTS. Depletion of TgRFTS phenocopies the knockdown of TgSNF2h, restricting access to chromatin and altering local gene expression. At the genomic level, TgSNF2h insulates highly transcribed genes from silenced neighbours, ensuring stage-specific gene regulation. By modulating chromatin accessibility to transcription factors, TgSNF2h exerts epistatic control over MORC, a key regulator of sexual commitment. Our findings show that a specific ISWI complex orchestrates the partitioning of developmental genes and ensures transcriptional fidelity throughout the parasite life cycle.
Collapse
Affiliation(s)
- Belen Pachano
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Dayana C Farhat
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Martina Shahinas
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Jill von Velsen
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France
| | - Charlotte Corrao
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Lucid Belmudes
- University Grenoble Alpes (INSERM, UA13 BGE, CNRS, CEA), Grenoble, France
| | - Pieter-Jan de Bock
- University Grenoble Alpes (INSERM, UA13 BGE, CNRS, CEA), Grenoble, France
| | - Caroline Mas
- Integrated Structural Biology Grenoble, Université Grenoble Alpes, EMBL (CNRS, CEA), Grenoble, France
| | - Yohann Couté
- University Grenoble Alpes (INSERM, UA13 BGE, CNRS, CEA), Grenoble, France
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France
| | - Alexandre Bougdour
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Christopher Swale
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Grenoble, France.
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Grenoble, France.
| |
Collapse
|
2
|
Mascarenhas Dos Santos AC, Julian AT, Liang P, Juárez O, Pombert JF. Telomere-to-Telomere genome assemblies of human-infecting Encephalitozoon species. BMC Genomics 2023; 24:237. [PMID: 37142951 PMCID: PMC10158259 DOI: 10.1186/s12864-023-09331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Microsporidia are diverse spore forming, fungal-related obligate intracellular pathogens infecting a wide range of hosts. This diversity is reflected at the genome level with sizes varying by an order of magnitude, ranging from less than 3 Mb in Encephalitozoon species (the smallest known in eukaryotes) to more than 50 Mb in Edhazardia spp. As a paradigm of genome reduction in eukaryotes, the small Encephalitozoon genomes have attracted much attention with investigations revealing gene dense, repeat- and intron-poor genomes characterized by a thorough pruning of molecular functions no longer relevant to their obligate intracellular lifestyle. However, because no Encephalitozoon genome has been sequenced from telomere-to-telomere and since no methylation data is available for these species, our understanding of their overall genetic and epigenetic architectures is incomplete. METHODS In this study, we sequenced the complete genomes from telomere-to-telomere of three human-infecting Encephalitozoon spp. -E. intestinalis ATCC 50506, E. hellem ATCC 50604 and E. cuniculi ATCC 50602- using short and long read platforms and leveraged the data generated as part of the sequencing process to investigate the presence of epigenetic markers in these genomes. We also used a mixture of sequence- and structure-based computational approaches, including protein structure prediction, to help identify which Encephalitozoon proteins are involved in telomere maintenance, epigenetic regulation, and heterochromatin formation. RESULTS The Encephalitozoon chromosomes were found capped by TTAGG 5-mer telomeric repeats followed by telomere associated repeat elements (TAREs) flanking hypermethylated ribosomal RNA (rRNA) gene loci featuring 5-methylcytosines (5mC) and 5-hemimethylcytosines (5hmC), themselves followed by lesser methylated subtelomeres and hypomethylated chromosome cores. Strong nucleotide biases were identified between the telomeres/subtelomeres and chromosome cores with significant changes in GC/AT, GT/AC and GA/CT contents. The presence of several genes coding for proteins essential to telomere maintenance, epigenetic regulation, and heterochromatin formation was further confirmed in the Encephalitozoon genomes. CONCLUSION Altogether, our results strongly support the subtelomeres as sites of heterochromatin formation in Encephalitozoon genomes and further suggest that these species might shutdown their energy-consuming ribosomal machinery while dormant as spores by silencing of the rRNA genes using both 5mC/5hmC methylation and facultative heterochromatin formation at these loci.
Collapse
Affiliation(s)
| | | | - Pingdong Liang
- Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Oscar Juárez
- Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | | |
Collapse
|
3
|
Nakamura R, Nakayama JI. Regulation of the SUV39H Family Methyltransferases: Insights from Fission Yeast. Biomolecules 2023; 13:biom13040593. [PMID: 37189341 DOI: 10.3390/biom13040593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Histones, which make up nucleosomes, undergo various post-translational modifications, such as acetylation, methylation, phosphorylation, and ubiquitylation. In particular, histone methylation serves different cellular functions depending on the location of the amino acid residue undergoing modification, and is tightly regulated by the antagonistic action of histone methyltransferases and demethylases. The SUV39H family of histone methyltransferases (HMTases) are evolutionarily conserved from fission yeast to humans and play an important role in the formation of higher-order chromatin structures called heterochromatin. The SUV39H family HMTases catalyzes the methylation of histone H3 lysine 9 (H3K9), and this modification serves as a binding site for heterochromatin protein 1 (HP1) to form a higher-order chromatin structure. While the regulatory mechanism of this family of enzymes has been extensively studied in various model organisms, Clr4, a fission yeast homologue, has made an important contribution. In this review, we focus on the regulatory mechanisms of the SUV39H family of proteins, in particular, the molecular mechanisms revealed by the studies of the fission yeast Clr4, and discuss their generality in comparison to other HMTases.
Collapse
|
4
|
Klocko AD, Summers CA, Glover ML, Parrish R, Storck WK, McNaught KJ, Moss ND, Gotting K, Stewart A, Morrison AM, Payne L, Hatakeyama S, Selker EU. Selection and Characterization of Mutants Defective in DNA Methylation in Neurospora crassa. Genetics 2020; 216:671-688. [PMID: 32873602 PMCID: PMC7648584 DOI: 10.1534/genetics.120.303471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
DNA methylation, a prototypical epigenetic modification implicated in gene silencing, occurs in many eukaryotes and plays a significant role in the etiology of diseases such as cancer. The filamentous fungus Neurospora crassa places DNA methylation at regions of constitutive heterochromatin such as in centromeres and in other A:T-rich regions of the genome, but this modification is dispensable for normal growth and development. This and other features render N. crassa an excellent model to genetically dissect elements of the DNA methylation pathway. We implemented a forward genetic selection on a massive scale, utilizing two engineered antibiotic-resistance genes silenced by DNA methylation, to isolate mutants d efective i n m ethylation (dim). Hundreds of potential mutants were characterized, yielding a rich collection of informative alleles of 11 genes important for DNA methylation, most of which were already reported. In parallel, we characterized the pairwise interactions in nuclei of the DCDC, the only histone H3 lysine 9 methyltransferase complex in Neurospora, including those between the DIM-5 catalytic subunit and other complex members. We also dissected the N- and C-termini of the key protein DIM-7, required for DIM-5 histone methyltransferase localization and activation. Lastly, we identified two alleles of a novel gene, dim-10 - a homolog of Clr5 in Schizosaccharomyces pombe - that is not essential for DNA methylation, but is necessary for repression of the antibiotic-resistance genes used in the selection, which suggests that both DIM-10 and DNA methylation promote silencing of constitutive heterochromatin.
Collapse
Affiliation(s)
- Andrew D Klocko
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Calvin A Summers
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Marissa L Glover
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Robert Parrish
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - William K Storck
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Kevin J McNaught
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Nicole D Moss
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Kirsten Gotting
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Aurelian Stewart
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Ariel M Morrison
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Laurel Payne
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Shin Hatakeyama
- Laboratory of Genetics, Faculty of Science, Shimo-ohkubo 255, Saitama University, Sakura-ward, 338-8570, JAPAN
| | - Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
5
|
Oya E, Nakagawa R, Yoshimura Y, Tanaka M, Nishibuchi G, Machida S, Shirai A, Ekwall K, Kurumizaka H, Tagami H, Nakayama J. H3K14 ubiquitylation promotes H3K9 methylation for heterochromatin assembly. EMBO Rep 2019; 20:e48111. [PMID: 31468675 PMCID: PMC6776926 DOI: 10.15252/embr.201948111] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022] Open
Abstract
The methylation of histone H3 at lysine 9 (H3K9me), performed by the methyltransferase Clr4/SUV39H, is a key event in heterochromatin assembly. In fission yeast, Clr4, together with the ubiquitin E3 ligase Cul4, forms the Clr4 methyltransferase complex (CLRC), whose physiological targets and biological role are currently unclear. Here, we show that CLRC-dependent H3 ubiquitylation regulates Clr4's methyltransferase activity. Affinity-purified CLRC ubiquitylates histone H3, and mass spectrometric and mutation analyses reveal that H3 lysine 14 (H3K14) is the preferred target of the complex. Chromatin immunoprecipitation analysis shows that H3K14 ubiquitylation (H3K14ub) is closely associated with H3K9me-enriched chromatin. Notably, the CLRC-mediated H3 ubiquitylation promotes H3K9me by Clr4, suggesting that H3 ubiquitylation is intimately linked to the establishment and/or maintenance of H3K9me. These findings demonstrate a cross-talk mechanism between histone ubiquitylation and methylation that is involved in heterochromatin assembly.
Collapse
Affiliation(s)
- Eriko Oya
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Present address:
Faculty of Science and EngineeringChuo UniversityBunkyo‐ku, TokyoJapan
| | - Reiko Nakagawa
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Yuriko Yoshimura
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
| | - Mayo Tanaka
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
| | - Gohei Nishibuchi
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
- Present address:
Graduate School of ScienceOsaka UniversityToyonakaJapan
| | - Shinichi Machida
- Laboratory of Structural BiologyGraduate School of Advanced Science and EngineeringWaseda UniversityShinjuku‐ku, TokyoJapan
- Present address:
Institute of Human GeneticsCNRS UMR 9002MontpellierFrance
| | | | - Karl Ekwall
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Hitoshi Kurumizaka
- Laboratory of Structural BiologyGraduate School of Advanced Science and EngineeringWaseda UniversityShinjuku‐ku, TokyoJapan
- Laboratory of Chromatin Structure and FunctionInstitute for Quantitative BiosciencesThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Hideaki Tagami
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
| | - Jun‐ichi Nakayama
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
- Department of Basic BiologySchool of Life ScienceThe Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan
| |
Collapse
|
6
|
Roche B, Arcangioli B, Martienssen RA. RNA interference is essential for cellular quiescence. Science 2016; 354:science.aah5651. [PMID: 27738016 DOI: 10.1126/science.aah5651] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022]
Abstract
Quiescent cells play a predominant role in most organisms. Here we identify RNA interference (RNAi) as a major requirement for quiescence (G0 phase of the cell cycle) in Schizosaccharomyces pombe RNAi mutants lose viability at G0 entry and are unable to maintain long-term quiescence. We identified suppressors of G0 defects in cells lacking Dicer (dcr1Δ), which mapped to genes involved in chromosome segregation, RNA polymerase-associated factors, and heterochromatin formation. We propose a model in which RNAi promotes the release of RNA polymerase in cycling and quiescent cells: (i) RNA polymerase II release mediates heterochromatin formation at centromeres, allowing proper chromosome segregation during mitotic growth and G0 entry, and (ii) RNA polymerase I release prevents heterochromatin formation at ribosomal DNA during quiescence maintenance. Our model may account for the codependency of RNAi and histone H3 lysine 9 methylation throughout eukaryotic evolution.
Collapse
Affiliation(s)
- B Roche
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - B Arcangioli
- Dynamics of the Genome Unit, Department of Genomes and Genetics, Institut Pasteur, UMR3525, 25-28 rue du Docteur Roux, Paris 75015, France
| | - R A Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|