1
|
Lv P, Zhang Y, Wang Y, Diao P, Wu Y, Cheng J. Development of a liquid-liquid phase separation-related genes signature to predict clinical outcomes, tumor immune microenvironment and chemotherapeutic response in head and neck squamous cell carcinoma. Arch Oral Biol 2025; 177:106334. [PMID: 40527089 DOI: 10.1016/j.archoralbio.2025.106334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/21/2025] [Accepted: 06/11/2025] [Indexed: 06/19/2025]
Abstract
OBJECTIVE Liquid-liquid phase separation (LLPS) has been linked to oncogenesis, prompting research into LLPS-related genes as prognostic markers. Here, our objective was to develop a prognostic signature specific to head and neck squamous cell carcinoma (HNSCC) utilizing genes associated with LLPS. DESIGN The LRG signature was developed using transcriptional sequence data obtained from the TCGA and GEO databases, employing univariate Cox regression, Kaplan-Meier analysis, and LASSO algorithms. Additionally, we developed an LRG nomogram that integrates the signature with specific clinicopathological features, identified using multivariate Cox regression. Clinical value of LRG signature in predicting chemotherapeutic drug sensitivity and immune infiltration was evaluated by bioinformatics approaches. One of the genes in the signature was knocked down to confirm its role in vitro. RESULTS The LRG signature demonstrated prognostic performance across multiple independent cohorts. Moreover, LRG signature scores exhibited a negative correlation with the presence of tumor-infiltrating immune cells and were associated with the sensitivities of various chemotherapeutic agents. LRP12 silencing markedly inhibited the proliferation, migration, and invasion of HNSCC cells, while also inducing apoptosis in these cells. CONCLUSION The findings of our study underscore the efficacy of the LRG signature and nomogram in forecasting prognosis and response to chemotherapy, suggesting a favorable outlook for their application in clinical settings.
Collapse
Affiliation(s)
- Pin Lv
- Department of Oral and Maxillofacial Surgery, Zhenjiang Stomatological Hospital, Zhenjiang 212001, PR China
| | - Yang Zhang
- Department of Oral and Maxillofacial Surgery, Zhenjiang Stomatological Hospital, Zhenjiang 212001, PR China
| | - Yuhan Wang
- Department of Oral and Maxillofacial Surgery, Zhenjiang Stomatological Hospital, Zhenjiang 212001, PR China
| | - Pengfei Diao
- Department of Oral and Maxillofacial Surgery, Zhenjiang Stomatological Hospital, Zhenjiang 212001, PR China
| | - Yaping Wu
- Department of Oral and Maxillofacial Surgery, Zhenjiang Stomatological Hospital, Zhenjiang 212001, PR China
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, Zhenjiang Stomatological Hospital, Zhenjiang 212001, PR China.
| |
Collapse
|
2
|
Huang M, Lu L, Lin C, Zheng Y, Pan X, Wang S, Chen S, Zhang Y, Liu C, Ge G, Zeng YA, Chen J. LRP12 is an endogenous transmembrane inactivator of α4 integrins. Cell Rep 2023; 42:112667. [PMID: 37330909 DOI: 10.1016/j.celrep.2023.112667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Dynamic regulation of integrin activation and inactivation is critical for precisely controlled cell adhesion and migration in physiological and pathological processes. The molecular basis for integrin activation has been intensively studied; however, the understanding of integrin inactivation is still limited. Here, we identify LRP12 as an endogenous transmembrane inhibitor for α4 integrin activation. The LRP12 cytoplasmic domain directly binds to the integrin α4 cytoplasmic tail and inhibits talin binding to the β subunit, thus keeping integrin inactive. In migrating cells, LRP12-α4 interaction induces nascent adhesion (NA) turnover at the leading-edge protrusion. Knockdown of LRP12 leads to increased NAs and enhanced cell migration. Consistently, LRP12-deficient T cells show an enhanced homing capability in mice and lead to aggravated chronic colitis in a T cell-transfer colitis model. Altogether, LRP12 is a transmembrane inactivator for integrins that inhibits α4 integrin activation and controls cell migration by maintaining balanced NA dynamics.
Collapse
Affiliation(s)
- MengWen Huang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ling Lu
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China
| | - ChangDong Lin
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - YaJuan Zheng
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - XingChao Pan
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - ShiHui Wang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - ShiYang Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - YouHua Zhang
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China
| | - ChunYe Liu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - GaoXiang Ge
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - JianFeng Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
3
|
Targeting DNA Methylation in Leukemia, Myelodysplastic Syndrome, and Lymphoma: A Potential Diagnostic, Prognostic, and Therapeutic Tool. Int J Mol Sci 2022; 24:ijms24010633. [PMID: 36614080 PMCID: PMC9820560 DOI: 10.3390/ijms24010633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
DNA methylation represents a crucial mechanism of epigenetic regulation in hematologic malignancies. The methylation process is controlled by specific DNA methyl transferases and other regulators, which are often affected by genetic alterations. Global hypomethylation and hypermethylation of tumor suppressor genes are associated with hematologic cancer development and progression. Several epi-drugs have been successfully implicated in the treatment of hematologic malignancies, including the hypomethylating agents (HMAs) decitabine and azacytidine. However, combinations with other treatment modalities and the discovery of new molecules are still the subject of research to increase sensitivity to anti-cancer therapies and improve patient outcomes. In this review, we summarized the main functions of DNA methylation regulators and genetic events leading to changes in methylation landscapes. We provide current knowledge about target genes with aberrant methylation levels in leukemias, myelodysplastic syndromes, and malignant lymphomas. Moreover, we provide an overview of the clinical trials, focused mainly on the combined therapy of HMAs with other treatments and its impact on adverse events, treatment efficacy, and survival rates among hematologic cancer patients. In the era of precision medicine, a transition from genes to their regulation opens up the possibility of an epigenetic-based approach as a diagnostic, prognostic, and therapeutic tool.
Collapse
|
4
|
Timmers PRHJ, Tiys ES, Sakaue S, Akiyama M, Kiiskinen TTJ, Zhou W, Hwang SJ, Yao C, Deelen J, Levy D, Ganna A, Kamatani Y, Okada Y, Joshi PK, Wilson JF, Tsepilov YA. Mendelian randomization of genetically independent aging phenotypes identifies LPA and VCAM1 as biological targets for human aging. NATURE AGING 2022; 2:19-30. [PMID: 37118362 DOI: 10.1038/s43587-021-00159-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/25/2021] [Indexed: 04/30/2023]
Abstract
Length and quality of life are important to us all, yet identification of promising drug targets for human aging using genetics has had limited success. In the present study, we combine six European-ancestry genome-wide association studies of human aging traits-healthspan, father and mother lifespan, exceptional longevity, frailty index and self-rated health-in a principal component framework that maximizes their shared genetic architecture. The first principal component (aging-GIP1) captures both length of life and indices of mental and physical wellbeing. We identify 27 genomic regions associated with aging-GIP1, and provide additional, independent evidence for an effect on human aging for loci near HTT and MAML3 using a study of Finnish and Japanese survival. Using proteome-wide, two-sample, Mendelian randomization and colocalization, we provide robust evidence for a detrimental effect of blood levels of apolipoprotein(a) and vascular cell adhesion molecule 1 on aging-GIP1. Together, our results demonstrate that combining multiple aging traits using genetic principal components enhances the power to detect biological targets for human aging.
Collapse
Affiliation(s)
- Paul R H J Timmers
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
| | - Evgeny S Tiys
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Novosibirsk, Russia
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Saori Sakaue
- Center for Data Sciences, Harvard Medical School, Boston, MA, USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Masato Akiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tuomo T J Kiiskinen
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Wei Zhou
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Shih-Jen Hwang
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chen Yao
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Ganna
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - James F Wilson
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Yakov A Tsepilov
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Novosibirsk, Russia
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, Novosibirsk, Russia
| |
Collapse
|
5
|
Robison RA, Magaki S, Kheradpour A, Harder SL, Wang J, Yau D, Zuppan CW, Deisch JK. Epstein-Barr virus-associated lymphoproliferative disorder in a young child treated for Wilms tumor. Pediatr Hematol Oncol 2020; 37:645-651. [PMID: 32511040 DOI: 10.1080/08880018.2020.1771491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- R Aaron Robison
- Department of Neurosurgery, Loma Linda University Medical Center and School of Medicine, Loma Linda, California, USA
| | - Shino Magaki
- Department of Pathology, Loma Linda University Medical Center and School of Medicine, Loma Linda, California, USA
| | - Albert Kheradpour
- Division of Hematology-Oncology, Department of Pediatrics, Loma Linda University Medical Center and School of Medicine, Loma Linda, California, USA
| | - Sheri L Harder
- Department of Radiology, Loma Linda University Medical Center and School of Medicine, Loma Linda, California, USA
| | - Jun Wang
- Department of Pathology, Loma Linda University Medical Center and School of Medicine, Loma Linda, California, USA
| | - David Yau
- Department of Pathology, Loma Linda University Medical Center and School of Medicine, Loma Linda, California, USA
| | - Craig W Zuppan
- Department of Pathology, Loma Linda University Medical Center and School of Medicine, Loma Linda, California, USA
| | - Jeremy K Deisch
- Department of Pathology, Loma Linda University Medical Center and School of Medicine, Loma Linda, California, USA
| |
Collapse
|
6
|
Overexpression of BMPER in Ovarian Cancer and the Mechanism by which It Promotes Malignant Biological Behavior in Tumor Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3607436. [PMID: 32309430 PMCID: PMC7136775 DOI: 10.1155/2020/3607436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/08/2020] [Accepted: 02/24/2020] [Indexed: 01/13/2023]
Abstract
Background BMPER has been reported to be associated with the biological behavior of a few malignant tumors, but the mechanism is still unclear. We aimed to detect BMPER expression in ovarian epithelial tumor tissues and its effects on their biological behaviors, as well as to elucidate the possible mechanism. Methods BMPER expression in ovarian epithelial tumor tissues was detected by immunohistochemistry. BMPER expression in ovarian cancer cell lines was inhibited via RNA interference. Changes in the malignant behaviors of ovarian cancer cells were detected by MTT, wound healing, Transwell, and flow cytometry assays. Changes in proteins in the MAPK and autophagy-related signaling pathways were detected by Western blot analysis. Results The expression of BMPER was significantly upregulated in ovarian epithelial malignant tumors and was related to increased lymph node metastasis and lower survival rate. High BMPER expression is an independent risk factor for poor prognosis in patients. Inhibition of BMPER inhibited the proliferation, invasion, and migration of ovarian cancer cells and promoted apoptosis. In addition, BMPER downregulation decreased the expression of PCNA, Bcl-2, MMP2, and MMP9 and increased the expression of Bax. Moreover, the levels of p-ERK, p-MEK, and the autophagy-related protein p-mTOR were decreased, and Beclin 1 levels and the LC3II/I ratio were increased. Conclusions Our findings indicated that BMPER is closely related to poor prognosis in ovarian cancer. BMPER plays a role in promoting the malignant biological behavior of tumor cells through the MAPK and autophagy-related signaling pathways.
Collapse
|
7
|
Hassanudin SA, Ponnampalam SN, Amini MN. Determination of genetic aberrations and novel transcripts involved in the pathogenesis of oligodendroglioma using array comparative genomic hybridization and next generation sequencing. Oncol Lett 2018; 17:1675-1687. [PMID: 30675227 PMCID: PMC6341554 DOI: 10.3892/ol.2018.9811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/17/2018] [Indexed: 01/11/2023] Open
Abstract
The aim of the present study was to determine the genetic aberrations and novel transcripts, particularly the fusion transcripts, involved in the pathogenesis of low-grade and anaplastic oligodendroglioma. In the present study, tissue samples were obtained from patients with oligodendroglioma and additionally from archived tissue samples from the Brain Tumor Tissue Bank of the Brain Tumor Foundation of Canada. Six samples were obtained, three of which were low-grade oligodendroglioma and the other three anaplastic oligodendroglioma. DNA and RNA were extracted from each tissue sample. The resulting genomic DNA was then hybridized using the Agilent CytoSure 4×180K oligonucleotide array. Human reference DNA and samples were labeled using Cy3 cytidine 5′-triphosphate (CTP) and Cy5 CTP, respectively, while human Cot-1 DNA was used to reduce non-specific binding. Microarray-based comparative genomic hybridization data was then analyzed for genetic aberrations using the Agilent Cytosure Interpret software v3.4.2. The total RNA isolated from each sample was mixed with oligo dT magnetic beads to enrich for poly(A) mRNA. cDNAs were then synthesized and subjected to end-repair, poly(A) addition and connected using sequencing adapters using the Illumina TruSeq RNA Sample Preparation kit. The fragments were then purified and selected as templates for polymerase chain reaction amplification. The final library was constructed with fragments between 350–450 base pairs and sequenced using deep transcriptome sequencing on an Illumina HiSeq 2500 sequencer. The array comparative genomic hybridization revealed numerous amplifications and deletions on several chromosomes in all samples. However, the most interesting result was from the next generation sequencing, where one anaplastic oligodendroglioma sample was demonstrated to have five novel fusion genes that may potentially serve a critical role in tumor pathogenesis and progression.
Collapse
Affiliation(s)
- Siti A Hassanudin
- Cancer Research Center, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Stephen N Ponnampalam
- Cancer Research Center, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Muhammad N Amini
- Cancer Research Center, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Grasse S, Lienhard M, Frese S, Kerick M, Steinbach A, Grimm C, Hussong M, Rolff J, Becker M, Dreher F, Schirmer U, Boerno S, Ramisch A, Leschber G, Timmermann B, Grohé C, Lüders H, Vingron M, Fichtner I, Klein S, Odenthal M, Büttner R, Lehrach H, Sültmann H, Herwig R, Schweiger MR. Epigenomic profiling of non-small cell lung cancer xenografts uncover LRP12 DNA methylation as predictive biomarker for carboplatin resistance. Genome Med 2018; 10:55. [PMID: 30029672 PMCID: PMC6054719 DOI: 10.1186/s13073-018-0562-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related deaths worldwide and is primarily treated with radiation, surgery, and platinum-based drugs like cisplatin and carboplatin. The major challenge in the treatment of NSCLC patients is intrinsic or acquired resistance to chemotherapy. Molecular markers predicting the outcome of the patients are urgently needed. Methods Here, we employed patient-derived xenografts (PDXs) to detect predictive methylation biomarkers for platin-based therapies. We used MeDIP-Seq to generate genome-wide DNA methylation profiles of 22 PDXs, their parental primary NSCLC, and their corresponding normal tissues and complemented the data with gene expression analyses of the same tissues. Candidate biomarkers were validated with quantitative methylation-specific PCRs (qMSP) in an independent cohort. Results Comprehensive analyses revealed that differential methylation patterns are highly similar, enriched in PDXs and lung tumor-specific when comparing differences in methylation between PDXs versus primary NSCLC. We identified a set of 40 candidate regions with methylation correlated to carboplatin response and corresponding inverse gene expression pattern even before therapy. This analysis led to the identification of a promoter CpG island methylation of LDL receptor-related protein 12 (LRP12) associated with increased resistance to carboplatin. Validation in an independent patient cohort (n = 35) confirmed that LRP12 methylation status is predictive for therapeutic response of NSCLC patients to platin therapy with a sensitivity of 80% and a specificity of 84% (p < 0.01). Similarly, we find a shorter survival time for patients with LRP12 hypermethylation in the TCGA data set for NSCLC (lung adenocarcinoma). Conclusions Using an epigenome-wide sequencing approach, we find differential methylation patterns from primary lung cancer and PDX-derived cancers to be very similar, albeit with a lower degree of differential methylation in primary tumors. We identify LRP12 DNA methylation as a powerful predictive marker for carboplatin resistance. These findings outline a platform for the identification of epigenetic therapy resistance biomarkers based on PDX NSCLC models. Electronic supplementary material The online version of this article (10.1186/s13073-018-0562-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina Grasse
- Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany.,Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Matthias Lienhard
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Martin Kerick
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Present Address: Department of Cell Biology and Immunology, Institute for Parasitology and Biomedicine, Granada, Spain
| | - Anne Steinbach
- Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany.,Department of Biology, Chemistry and Pharmacy, Free University Berlin, Berlin, Germany
| | - Christina Grimm
- Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany
| | - Michelle Hussong
- Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, CMMC, Cologne, Germany
| | - Jana Rolff
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin, Germany
| | - Michael Becker
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin, Germany
| | - Felix Dreher
- Alacris Theranostics GmbH Berlin, Berlin, Germany
| | - Uwe Schirmer
- Cancer Genome Research Group, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Translational Lung Research, Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Stefan Boerno
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anna Ramisch
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Iduna Fichtner
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin, Germany
| | - Sebastian Klein
- Institute of Pathology, University of Cologne, Cologne, Germany.,Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, Weyertal 115b, 50931, Cologne, Germany
| | | | | | - Hans Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Alacris Theranostics GmbH Berlin, Berlin, Germany
| | - Holger Sültmann
- Cancer Genome Research Group, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Translational Lung Research, Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michal R Schweiger
- Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany. .,Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany. .,Center for Molecular Medicine Cologne, CMMC, Cologne, Germany.
| |
Collapse
|
9
|
DNA methylation profiling reveals common signatures of tumorigenesis and defines epigenetic prognostic subtypes of canine Diffuse Large B-cell Lymphoma. Sci Rep 2017; 7:11591. [PMID: 28912427 PMCID: PMC5599585 DOI: 10.1038/s41598-017-11724-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
|
10
|
Frazzi R, Zanetti E, Pistoni M, Tamagnini I, Valli R, Braglia L, Merli F. Methylation changes of SIRT1, KLF4, DAPK1 and SPG20 in B-lymphocytes derived from follicular and diffuse large B-cell lymphoma. Leuk Res 2017; 57:89-96. [PMID: 28324774 DOI: 10.1016/j.leukres.2017.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/26/2017] [Accepted: 02/26/2017] [Indexed: 12/24/2022]
Abstract
Diffuse large-B cell lymphomas (DLBCL) and follicular lymphomas (FL) are the most represented subtypes among mature B-cell neoplasms and originate from malignant B lymphocytes. Methylation represents one of the major epigenetic mechanisms of gene regulation. Silent information regulator 1 (SIRT1) is a class III lysine-deacetylase playing several functions and considered to be a context-dependent tumor promoter. We present the quantitative methylation, gene expression and tissue distribution of SIRT1 and some key mediators related to lymphoma pathogenesis in B lymphocytes purified from biopsies of follicular hyperplasias, FL and DLBCL. SIRT1 mRNA levels are higher in FL than follicular hyperplasias and DLBCL. B cell lymphoma 6 (BCL6) positively correlates with SIRT1. SIRT1 promoter shows a methylation decrease in the order: follicular hyperplasia - FL - DLBCL. Kruppel-like factor 4 (KLF4), Death-associated protein kinase 1 (DAPK1) and Spastic Paraplegia 20 (SPG20) methylation increase significantly in FL and DLBCL compared to follicular hyperplasias. Gene expression of DAPK1 and SPG20 inversely correlates with their degree of methylation. Our findings evidence a positive correlation between SIRT1 and BCL6 expression increase in FL. SIRT1 methylation decreases in FL and DLBCL accordingly and this parallels the increase of KLF4, DAPK1 and SPG20 methylation.
Collapse
Affiliation(s)
- Raffaele Frazzi
- Laboratory of Translational Research, Arcispedale S. Maria Nuova IRCCS, Viale Risorgimento 80, 42124 Reggio Emilia, Italy.
| | - Eleonora Zanetti
- Laboratory of Translational Research, Arcispedale S. Maria Nuova IRCCS, Viale Risorgimento 80, 42124 Reggio Emilia, Italy.
| | - Mariaelena Pistoni
- Laboratory of Translational Research, Arcispedale S. Maria Nuova IRCCS, Viale Risorgimento 80, 42124 Reggio Emilia, Italy.
| | - Ione Tamagnini
- Pathology Division, Arcispedale S. Maria Nuova IRCCS, Viale Risorgimento 80, 42124 Reggio Emilia, Italy.
| | - Riccardo Valli
- Pathology Division, Arcispedale S. Maria Nuova IRCCS, Viale Risorgimento 80, 42124 Reggio Emilia, Italy.
| | - Luca Braglia
- Scientific Direction, Arcispedale S. Maria Nuova IRCCS, Viale Umberto I, 42123 Reggio Emilia, Italy.
| | - Francesco Merli
- Hematology Division, Arcispedale S. Maria Nuova IRCCS, Viale Risorgimento 80, 42124 Reggio Emilia, Italy.
| |
Collapse
|
11
|
LRP12 silencing during brain development results in cortical dyslamination and seizure sensitization. Neurobiol Dis 2015; 86:170-6. [PMID: 26639854 DOI: 10.1016/j.nbd.2015.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 10/20/2015] [Accepted: 11/26/2015] [Indexed: 02/04/2023] Open
Abstract
Correct positioning and differentiation of neurons during brain development is a key precondition for proper function. Focal cortical dysplasias (FCDs) are increasingly recognized as causes of therapy refractory epilepsies. Neuropathological analyses of respective surgical specimens from neurosurgery for seizure control often reveal aberrant cortical architecture and/or aberrantly shaped neurons in FCDs. However, the molecular pathogenesis particularly of FCDs with aberrant lamination (so-called FCD type I) is largely unresolved. Lipoproteins and particularly low-density lipoprotein receptor-related protein 12 (LRP12) are involved in brain development. Here, we have examined a potential role of LRP12 in the pathogenesis of FCDs. In vitro knockdown of LRP12 in primary neurons results in impaired neuronal arborization. In vivo ablation of LRP12 by intraventricularly in utero electroporated shRNAs elicits cortical maldevelopment, i.e. aberrant lamination by malpositioning of upper cortical layer neurons. Subsequent epilepsy phenotyping revealed pentylenetetrazol (PTZ)-induced seizures to be aggravated in cortical LRP12-silenced mice. Our data demonstrates IUE mediated cortical gene silencing as an excellent approach to study the role of distinct molecules for epilepsy associated focal brain lesions and suggests LRP12 and lipoprotein homeostasis as potential molecular target structures for the emergence of epilepsy-associated FCDs.
Collapse
|
12
|
Schmid CA, Robinson MD, Scheifinger NA, Müller S, Cogliatti S, Tzankov A, Müller A. DUSP4 deficiency caused by promoter hypermethylation drives JNK signaling and tumor cell survival in diffuse large B cell lymphoma. ACTA ACUST UNITED AC 2015; 212:775-92. [PMID: 25847947 PMCID: PMC4419353 DOI: 10.1084/jem.20141957] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/19/2015] [Indexed: 12/18/2022]
Abstract
Using DNA methylation and gene expression profiling of diffuse large B cell lymphoma (DLBCL) samples, Schmid et al. find that the dual-specificity phosphatase DUSP4 gene is highly methylated in nodal and extranodal DLBCL cases, which correlates with loss of DUSP4 expression. Low DUSP4 expression represents a negative prognostic factor in patient cohorts. Ectopic DUSP4 expression inhibits JNK signaling and induces apoptosis in DLBCL cells. This effect can be phenocopied by JNK inhibitors in vitro and in vivo. The epigenetic dysregulation of tumor suppressor genes is an important driver of human carcinogenesis. We have combined genome-wide DNA methylation analyses and gene expression profiling after pharmacological DNA demethylation with functional screening to identify novel tumor suppressors in diffuse large B cell lymphoma (DLBCL). We find that a CpG island in the promoter of the dual-specificity phosphatase DUSP4 is aberrantly methylated in nodal and extranodal DLBCL, irrespective of ABC or GCB subtype, resulting in loss of DUSP4 expression in 75% of >200 examined cases. The DUSP4 genomic locus is further deleted in up to 13% of aggressive B cell lymphomas, and the lack of DUSP4 is a negative prognostic factor in three independent cohorts of DLBCL patients. Ectopic expression of wild-type DUSP4, but not of a phosphatase-deficient mutant, dephosphorylates c-JUN N-terminal kinase (JNK) and induces apoptosis in DLBCL cells. Pharmacological or dominant-negative JNK inhibition restricts DLBCL survival in vitro and in vivo and synergizes strongly with the Bruton’s tyrosine kinase inhibitor ibrutinib. Our results indicate that DLBCL cells depend on JNK signaling for survival. This finding provides a mechanistic basis for the clinical development of JNK inhibitors in DLBCL, ideally in synthetic lethal combinations with inhibitors of chronic active B cell receptor signaling.
Collapse
Affiliation(s)
- Corina A Schmid
- Institute of Molecular Cancer Research, Institute of Molecular Life Sciences, and Swiss Institute of Bioinformatics (SIB), University of Zürich, 8057 Zürich, Switzerland
| | - Mark D Robinson
- Institute of Molecular Cancer Research, Institute of Molecular Life Sciences, and Swiss Institute of Bioinformatics (SIB), University of Zürich, 8057 Zürich, Switzerland Institute of Molecular Cancer Research, Institute of Molecular Life Sciences, and Swiss Institute of Bioinformatics (SIB), University of Zürich, 8057 Zürich, Switzerland
| | - Nicole A Scheifinger
- Institute of Molecular Cancer Research, Institute of Molecular Life Sciences, and Swiss Institute of Bioinformatics (SIB), University of Zürich, 8057 Zürich, Switzerland
| | - Sebastian Müller
- Institute of Food, Nutrition, and Health and Institute of Molecular Systems Biology, Swiss Federal Institute of Technology Zürich (ETHZ), 8093 Zürich, Switzerland Institute of Food, Nutrition, and Health and Institute of Molecular Systems Biology, Swiss Federal Institute of Technology Zürich (ETHZ), 8093 Zürich, Switzerland
| | - Sergio Cogliatti
- Institute of Pathology, Cantonal Hospital of St. Gallen, 9007 St. Gallen, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, Institute of Molecular Life Sciences, and Swiss Institute of Bioinformatics (SIB), University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
13
|
van Krieken JH. New developments in the pathology of malignant lymphoma. A review of the literature published from August 2014 to October 2014. J Hematop 2014. [DOI: 10.1007/s12308-014-0224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|