1
|
Jones RAC. Australian Cool-Season Pulse Seed-Borne Virus Research: 2. Bean Yellow Mosaic Virus. Viruses 2025; 17:668. [PMID: 40431680 PMCID: PMC12116140 DOI: 10.3390/v17050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Here, research on seed-borne virus diseases of cool-season pulses caused by bean yellow mosaic virus (BYMV) in Australia's grain cropping regions since the 1940s is reviewed. A historical approach is taken towards all past studies involving the main cool-season pulse crops grown, lupin, faba bean, field pea, lentil and chickpea, and the minor ones, narbon bean, vetches and Lathyrus species. The main emphasis adopted is on describing what these studies revealed concerning BYMV biology, epidemiology and management. The field and glasshouse experimentation that enabled the development of effective phytosanitary, cultural and host resistance control strategies, supported by many image illustrations from past investigations, is emphasized. This review commences by providing brief background information and describing past studies on BYMV symptom and sequence variants, and alternative BYMV hosts. Next, as the lupin/BYMV pathosystem has been investigated in much greater depth than any other cool season pulse/BYMV pathosystem combination in Australia, what past studies using it have found is covered considerable detail under a series of nine different sub-headings. Finally, what is known about the less thoroughly investigated cool-season pulse/BYMV pathosystems, especially those involving faba bean, field pea and lentil, is reviewed under seven different sub-headings. Recommendations are provided concerning future research priorities.
Collapse
Affiliation(s)
- Roger A C Jones
- UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
2
|
Wylie S, Li H, Koh SH. A Survey of Wild Indigenous Cryptostylis ovata Orchid Populations in Western Australia Reveals Spillover of Exotic Viruses. Viruses 2025; 17:108. [PMID: 39861897 PMCID: PMC11769163 DOI: 10.3390/v17010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Cryptostylis ovata is a terrestrial orchid endemic to southwestern Australia. The virus status of C. ovata has not been studied. Eighty-three C. ovata samples from 16 populations were collected, and sequencing was used to identify RNA viruses from them. In one population, all tested plants were co-infected with isolates of the exotic-to-Australia viruses Ornithogalum mosaic virus (OrMV) and bean yellow mosaic virus (BYMV). In another population, one plant was infected with BYMV. No viruses were detected in the remaining populations. The OrMV isolate shared 98-99% nucleotide identity with isolates identified from wild indigenous Lachenalia (Iridaceae) plants in South Africa. This suggests that the source of OrMV in C. ovata may be one or more bulbous iridaceous flowering plants of southern African origin that were introduced to Western Australia as ornamentals and that have since become invasive weeds. One BYMV isolate from C. ovata also exhibited 99% nucleotide identity with strains isolated from the exotic leguminous crop Lupinus angustifolius in Western Australia, suggesting possible spillover to indigenous species from this source. This study with C. ovata highlights the probable role of invasive weeds and exotic crops as sources of exotic virus spillovers to indigenous plants.
Collapse
Affiliation(s)
- Stephen Wylie
- Food Futures Institute, Murdoch University, 90 South Street, Perth 6150, Australia;
| | - Hua Li
- Food Futures Institute, Murdoch University, 90 South Street, Perth 6150, Australia;
| | - Shu Hui Koh
- School of Medical, Molecular and Forensic Sciences, College of Environmental and Life Sciences, Murdoch University, 90 South Street, Perth 6150, Australia;
| |
Collapse
|
3
|
Kaur K, Rinaldo A, Lovelock D, Rodoni B, Constable F. The genetic variability of grapevine Pinot gris virus (GPGV) in Australia. Virol J 2023; 20:211. [PMID: 37705082 PMCID: PMC10500770 DOI: 10.1186/s12985-023-02171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Grapevine Pinot gris virus (GPGV; genus Trichovirus in the family Betaflexiviridae) was detected in Australia in 2016, but its impact on the production of nursery material and fruit in Australia is still currently unknown. This study investigated the prevalence and genetic diversity of GPGV in Australia. GPGV was detected by reverse transcription-polymerase chain reaction (RT-PCR) in a range of rootstock, table and wine grape varieties from New South Wales, South Australia, and Victoria, with 473/2171 (21.8%) samples found to be infected. Genomes of 32 Australian GPGV isolates were sequenced and many of the isolates shared high nucleotide homology. Phylogenetic and haplotype analyses demonstrated that there were four distinct clades amongst the 32 Australian GPGV isolates and that there were likely to have been at least five separate introductions of the virus into Australia. Recombination and haplotype analysis indicate the emergence of new GPGV strains after introduction into Australia. When compared with 168 overseas GPGV isolates, the analyses suggest that the most likely origin of Australian GPGV isolates is from Europe. There was no correlation between specific GPGV genotypes and symptoms such as leaf mottling, leaf deformation, and shoot stunting, which were observed in some vineyards, and the virus was frequently found in symptomless grapevines.
Collapse
Affiliation(s)
- Kamalpreet Kaur
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia.
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Melbourne, VIC, Australia.
| | - Amy Rinaldo
- The Australian Wine Research Institute, Adelaide, SA, Australia
| | - David Lovelock
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Melbourne, VIC, Australia
| | - Brendan Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Melbourne, VIC, Australia
| | - Fiona Constable
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Premchand U, Mesta RK, Devappa V, Basavarajappa MP, Venkataravanappa V, Narasimha Reddy LRC, Shankarappa KS. Survey, Detection, Characterization of Papaya Ringspot Virus from Southern India and Management of Papaya Ringspot Disease. Pathogens 2023; 12:824. [PMID: 37375514 DOI: 10.3390/pathogens12060824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Papaya ringspot virus (PRSV) is a significant threat to global papaya cultivation, causing ringspot disease, and it belongs to the species Papaya ringspot virus, genus Potyvirus, and family Potyviridae. This study aimed to assess the occurrence and severity of papaya ringspot disease (PRSD) in major papaya-growing districts of Karnataka, India, from 2019 to 2021. The incidence of disease in the surveyed districts ranged from 50.5 to 100.0 percent, exhibiting typical PRSV symptoms. 74 PRSV infected samples were tested using specific primers in RT-PCR, confirming the presence of the virus. The complete genome sequence of a representative isolate (PRSV-BGK: OL677454) was determined, showing the highest nucleotide identity (nt) (95.8%) with the PRSV-HYD (KP743981) isolate from Telangana, India. It also shared an amino acid (aa) identity (96.5%) with the PRSV-Pune VC (MF405299) isolate from Maharashtra, India. Based on phylogenetic and species demarcation criteria, the PRSV-BGK isolate was considered a variant of the reported species and designated as PRSV-[IN:Kar:Bgk:Pap:21]. Furthermore, recombination analysis revealed four unique recombination breakpoint events in the genomic region, except for the region from HC-Pro to VPg, which is highly conserved. Interestingly, more recombination events were detected within the first 1710 nt, suggesting that the 5' UTR and P1 regions play an essential role in shaping the PRSV genome. To manage PRSD, a field experiment was conducted over two seasons, testing various treatments, including insecticides, biorationals, and a seaweed extract with micronutrients, alone or in combination. The best treatment involved eight sprays of insecticides and micronutrients at 30-day intervals, resulting in no PRSD incidence up to 180 days after transplanting (DAT). This treatment also exhibited superior growth, yield, and yield parameters, with the highest cost-benefit ratio (1:3.54) and net return. Furthermore, a module comprising 12 sprays of insecticides and micronutrients at 20-day intervals proved to be the most effective in reducing disease incidence and enhancing plant growth, flowering, and fruiting attributes, resulting in a maximized yield of 192.56 t/ha.
Collapse
Affiliation(s)
- Udavatha Premchand
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot 587104, India
| | - Raghavendra K Mesta
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot 587104, India
| | - Venkatappa Devappa
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot 587104, India
| | | | | | | | | |
Collapse
|
5
|
Abdalla OA, Ali A. Genetic Variability and Evidence of a New Subgroup in Watermelon Mosaic Virus Isolates. Pathogens 2021; 10:pathogens10101245. [PMID: 34684194 PMCID: PMC8538135 DOI: 10.3390/pathogens10101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Watermelon mosaic virus (WMV) is one of the important Potyviruses that infect cucurbits worldwide. To better understand the population structure of WMV in the United States (U.S.), 57 isolates were collected from cucurbit fields located in nine southern states. The complete coat protein gene of all WMV isolates was cloned, sequenced and compared with 89 reported WMV isolates. The nucleotide and amino acid sequence identities among the U.S. WMV isolates ranged from 88.9 to 99.7% and from 91.5 to 100%, respectively. Phylogenetic analysis revealed that all the U.S. WMV isolates irrespective of their geographic origin or hosts belonged to Group 3. However, the fifty-seven isolates made three clusters in G3, where two clusters were similar to previously reported subgroups EM1 and EM2, and the third cluster, containing nine WMV isolates, formed a distinct subgroup named EM5 in this study. The ratio of non-synonymous to synonymous nucleotide substitution was low indicating the occurrence of negative purifying selection in the CP gene of WMV. Phylogenetic analysis of selected 37 complete genome sequences of WMV isolates also supported the above major grouping. Recombination analysis in the CP genes confirmed various recombinant events, indicating that purifying selection and recombination are the two dominant forces for the evolution of WMV isolates in the U.S.
Collapse
Affiliation(s)
- Osama A. Abdalla
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA;
- Department of Plant Pathology, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Akhtar Ali
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA;
- Correspondence: ; Tel.: +1-918-631-2018
| |
Collapse
|
6
|
Mondal S, Ghanim M, Roberts A, Gray SM. Different potato virus Y strains frequently co-localize in single epidermal leaf cells and in the aphid stylet. J Gen Virol 2021; 102. [PMID: 33709906 DOI: 10.1099/jgv.0.001576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Single aphids can simultaneously or sequentially acquire and transmit multiple potato virus Y (PVY) strains. Multiple PVY strains are often found in the same field and occasionally within the same plant, but little is known about how PVY strains interact in plants or in aphid stylets. Immuno-staining and confocal microscopy were used to examine the spatial and temporal dynamics of PVY strain mixtures (PVYO and PVYNTN or PVYO and PVYN) in epidermal leaf cells of 'Samsun NN' tobacco and 'Goldrush' potato. Virus binding and localization was also examined in aphid stylets following acquisition. Both strains systemically infected tobacco and co-localized in cells of all leaves examined; however, the relative amounts of each virus changed over time. Early in the tobacco infection, when mosaic symptoms were observed, PVYO dominated the infection although PVYNTN was detected in some cells. As the infection progressed and vein necrosis developed, PVYNTN was prevalent. Co-localization of PVYO and PVYN was also observed in epidermal cells of potato leaves with most cells infected with both viruses. Furthermore, two strains could be detected binding to the distal end of aphid stylets following virus acquisition from a plant infected with a strain mixture. These data are in contrast with the traditional belief of spatial separation of two closely related potyviruses and suggest apparent non-antagonistic interaction between PVY strains that could help explain the multitude of emerging recombinant PVY strains discovered in potato in recent years.
Collapse
Affiliation(s)
- Shaonpius Mondal
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853-5904, USA
- Present address: USDA-ARS, Crop Improvement and Protection Research Unit, Salinas, CA. 93905, USA
| | - Murad Ghanim
- Department of Entomology, Volcani Center, P.O Box 155, Bet Dagan 5025001, Israel
| | - Alison Roberts
- Cellular and Molecular Sciences, James Hutton Institute, Invergowrie, Scotland, DD2 5DA, UK
| | - Stewart M Gray
- USDA-ARS, Emerging Pests and Pathogen Research Unit, Ithaca, NY 14853-5904, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853-5904, USA
| |
Collapse
|
7
|
Wang Y, Xu W, Abe J, Nakahara KS, Hajimorad MR. Precise Exchange of the Helper-Component Proteinase Cistron Between Soybean mosaic virus and Clover yellow vein virus: Impact on Virus Viability and Host Range Specificity. PHYTOPATHOLOGY 2020; 110:206-214. [PMID: 31509476 DOI: 10.1094/phyto-06-19-0193-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soybean mosaic virus and Clover yellow vein virus are two definite species of the genus Potyvirus within the family Potyviridae. Soybean mosaic virus-N (SMV-N) is well adapted to cultivated soybean (Glycine max) genotypes and wild soybean (G. soja), whereas it remains undetectable in inoculated broad bean (Vicia faba). In contrast, clover yellow vein virus No. 30 (ClYVV-No. 30) is capable of systemic infection in broad bean and wild soybean; however, it infects cultivated soybean genotypes only locally. In this study, SMV-N was shown to also infect broad bean locally; hence, broad bean is a host for SMV-N. Based on these observations, it was hypothesized that lack of systemic infection by SMV-N in broad bean and by ClYVV-No. 30 in cultivated soybean is attributable to the incompatibility of multifunctional helper-component proteinase (HC-Pro) in these hosts. The logic of selecting the HC-Pro cistron as a target is based on its established function in systemic movement and being a relevant factor in host range specificity of potyviruses. To test this hypothesis, chimeras were constructed with precise exchanges of HC-Pro cistrons between SMV-N and ClYVV-No. 30. Upon inoculation, both chimeras were viable in infection, but host range specificity of the recombinant viruses did not differ from those of the parental viruses. These observations suggest that (i) HC-Pro cistrons from SMV-N and ClYVV-No. 30 are functionally compatible in infection despite 55.6 and 48.9% nucleotide and amino acid sequence identity, respectively, and (ii) HC-Pro cistrons from SMV-N and ClYVV-No. 30 are not the determinants of host specificity on cultivated soybean or broad beans, respectively.
Collapse
Affiliation(s)
- Y Wang
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
- Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - W Xu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - J Abe
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - K S Nakahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - M R Hajimorad
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
8
|
Maina S, Barbetti MJ, Edwards OR, Minemba D, Areke MW, Jones RAC. Zucchini yellow mosaic virus Genomic Sequences from Papua New Guinea: Lack of Genetic Connectivity with Northern Australian or East Timorese Genomes, and New Recombination Findings. PLANT DISEASE 2019; 103:1326-1336. [PMID: 30995424 DOI: 10.1094/pdis-09-18-1666-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) isolates were obtained in Papua New Guinea (PNG) from cucumber (Cucumis sativus) or pumpkin (Cucurbita spp.) plants showing mosaic symptoms growing at Kongop in the Mount Hagen District, Western Highlands Province, or Zage in the Goroka District, Eastern Highlands Province. The samples were blotted onto FTA cards, which were sent to Australia, where they were subjected to high-throughput sequencing. When the coding regions of the nine new ZYMV genomic sequences found were compared with those of 64 other ZYMV sequences from elsewhere, they grouped together, forming new minor phylogroup VII within ZYMV's major phylogroup A. Genetic connectivity was lacking between ZYMV genomic sequences from PNG and its neighboring countries, Australia and East Timor; the closest match between a PNG and any other genomic sequence was a 92.8% nucleotide identity with a sequence in major phylogroup A's minor phylogroup VI from Japan. When the RDP5.2 recombination analysis program was used to compare 66 ZYMV sequences, evidence was obtained of 30 firm recombination events involving 41 sequences, and all isolates from PNG were recombinants. There were 21 sequences without recombination events in major phylogroup A, whereas there were only 4 such sequences within major phylogroup B. ZYMV's P1, Cl, N1a-Pro, P3, CP, and NIb regions contained the highest evidence of recombination breakpoints. Following removal of recombinant sequences, seven minor phylogroups were absent (I, III, IV, V, VI, VII, and VIII), leaving only minor phylogroups II and IX. By contrast, when a phylogenetic tree was constructed using recombinant sequences with their recombinationally derived tracts removed before analysis, five previous minor phylogroups remained unchanged within major phylogroup A (II, III, IV, V, and VII) while four formed two new merged phylogroups (I/VI and VIII/IX). Absence of genetic connectivity between PNG, Australian, and East Timorese ZYMV sequences, and the 92.8% nucleotide identity between a PNG sequence and the closest sequence from elsewhere, suggest that a single introduction may have occurred followed by subsequent evolution to adapt to the PNG environment. The need for enhanced biosecurity measures to protect against potentially damaging virus movements crossing the seas separating neighboring countries in this region of the world is discussed.
Collapse
Affiliation(s)
- Solomon Maina
- 1 School of Agriculture and Environment, Faculty of Science, and
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, Australian Capital Territory, Australia
| | - Martin J Barbetti
- 1 School of Agriculture and Environment, Faculty of Science, and
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, Australian Capital Territory, Australia
| | - Owain R Edwards
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, Australian Capital Territory, Australia
- 4 Commonwealth Scientific and Industrial Research Organisation Land and Water, Floreat Park, WA 6014, Australia
| | - David Minemba
- 1 School of Agriculture and Environment, Faculty of Science, and
- 5 The National Agricultural Research Institute, PO Box 4415, Lae, Morobe Province, Papua New Guinea
| | - Michael W Areke
- 6 National Agriculture Quarantine and Inspection Authority, PO Box 741, Port Moresby, National Capital District, Papua New Guinea; and
| | - Roger A C Jones
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, Australian Capital Territory, Australia
- 7 Department of Primary Industries and Regional Development, South Perth, WA, Australia
| |
Collapse
|
9
|
Maina S, Barbetti MJ, Edwards OR, Minemba D, Areke MW, Jones RAC. Genetic Connectivity Between Papaya Ringspot Virus Genomes from Papua New Guinea and Northern Australia, and New Recombination Insights. PLANT DISEASE 2019; 103:737-747. [PMID: 30856073 DOI: 10.1094/pdis-07-18-1136-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isolates of papaya ringspot virus (PRSV) were obtained from plants of pumpkin (Cucurbita spp.) or cucumber (Cucumis sativus) showing mosaic symptoms growing at Zage in Goroka District in the Eastern Highland Province of Papua New Guinea (PNG) or Bagl in the Mount Hagen District, Western Highlands Province. The samples were sent to Australia on FTA cards where they were subjected to High Throughput Sequencing (HTS). When the coding regions of the six new PRSV genomic sequences obtained via HTS were compared with those of 54 other complete PRSV sequences from other parts of the world, all six grouped together with the 12 northern Australian sequences within major phylogroup B minor phylogroup I, the Australian sequences coming from three widely dispersed locations spanning the north of the continent. Notably, none of the PNG isolates grouped with genomic sequences from the nearby country of East Timor in phylogroup A. The closest genetic match between Australian and PNG sequences was a nucleotide (nt) sequence identity of 96.9%, whereas between PNG and East Timorese isolates it was only 83.1%. These phylogenetic and nt identity findings demonstrate genetic connectivity between PRSV populations from PNG and Australia. Recombination analysis of the 60 PRSV sequences available revealed evidence of 26 recombination events within 18 isolates, only four of which were within major phylogroup B and none of which were from PNG or Australia. Within the recombinant genomes, the P1, Cl, NIa-Pro, NIb, 6K2, and 5'UTR regions contained the highest numbers of recombination breakpoints. After removal of nonrecombinant sequences, four minor phylogroups were lost (IV, VII, VIII, XV), only one of which was in phylogroup B. When genome regions from which recombinationally derived tracts of sequence were removed from recombinants prior to alignment with nonrecombinant genomes, seven previous minor phylogroups within major phylogroup A, and two within major phylogroup B, merged either partially or entirely forming four merged minor phylogroups. The genetic connectivity between PNG and northern Australian isolates and absence of detectable recombination within either group suggests that PRSV isolates from East Timor, rather than PNG, might pose a biosecurity threat to northern Australian agriculture should they prove more virulent than those already present.
Collapse
Affiliation(s)
- Solomon Maina
- 1 School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, ACT, Australia
| | - Martin J Barbetti
- 1 School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, ACT, Australia
| | - Owain R Edwards
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, ACT, Australia
- 4 CSIRO Land and Water, Floreat Park, WA6014, Australia
| | - David Minemba
- 1 School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 5 The National Agriculture Research Institute, P.O. Box 4415, Lae, Morobe Province, Papua New Guinea
| | - Michael W Areke
- 6 National Agriculture Quarantine and Inspection Authority, P.O. Box 741, Port Moresby, National Capital District, Papua New Guinea; and
| | - Roger A C Jones
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, ACT, Australia
- 7 Department of Primary Industries and Rural Development Food Western Australia, South Perth, WA, Australia
| |
Collapse
|
10
|
Wainaina JM, Ateka E, Makori T, Kehoe MA, Boykin LM. A metagenomic study of DNA viruses from samples of local varieties of common bean in Kenya. PeerJ 2019; 7:e6465. [PMID: 30891366 PMCID: PMC6422016 DOI: 10.7717/peerj.6465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/16/2019] [Indexed: 11/20/2022] Open
Abstract
Common bean (Phaseolus vulgaris L.) is the primary source of protein and nutrients in the majority of households in sub-Saharan Africa. However, pests and viral diseases are key drivers in the reduction of bean production. To date, the majority of viruses reported in beans have been RNA viruses. In this study, we carried out a viral metagenomic analysis on virus symptomatic bean plants. Our virus detection pipeline identified three viral fragments of the double-stranded DNA virus Pelargonium vein banding virus (PVBV) (family, Caulimoviridae, genus Badnavirus). This is the first report of the dsDNA virus and specifically PVBV in legumes to our knowledge. In addition two previously reported +ssRNA viruses the bean common mosaic necrosis virus (BCMNVA) (Potyviridae) and aphid lethal paralysis virus (ALPV) (Dicistroviridae) were identified. Bayesian phylogenetic analysis of the Badnavirus (PVBV) using amino acid sequences of the RT/RNA-dependent DNA polymerase region showed the Kenyan sequence (SRF019_MK014483) was closely matched with two Badnavirus viruses: Dracaena mottle virus (DrMV) (YP_610965) and Lucky bamboo bacilliform virus (ABR01170). Phylogenetic analysis of BCMNVA was based on amino acid sequences of the Nib region. The BCMNVA phylogenetic tree resolved two clades identified as clade (I and II). Sequence from this study SRF35_MK014482, clustered within clade I with other Kenyan sequences. Conversely, Bayesian phylogenetic analysis of ALPV was based on nucleotide sequences of the hypothetical protein gene 1 and 2. Three main clades were resolved and identified as clades I-III. The Kenyan sequence from this study (SRF35_MK014481) clustered within clade II, and nested within a sub-clade; comprising of sequences from China and an earlier ALPV sequences from Kenya isolated from maize (MF458892). Our findings support the use of viral metagenomics to reveal the nascent viruses, their viral diversity and evolutionary history of these viruses. The detection of ALPV and PVBV indicate that these viruses have likely been underreported due to the unavailability of diagnostic tools.
Collapse
Affiliation(s)
- James M. Wainaina
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Elijah Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Timothy Makori
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Monica A. Kehoe
- Diagnostic Laboratory Service, Plant Pathology, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Laura M. Boykin
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
11
|
Wainaina JM, Kubatko L, Harvey J, Ateka E, Makori T, Karanja D, Boykin LM, Kehoe MA. Evolutionary insights of Bean common mosaic necrosis virus and Cowpea aphid-borne mosaic virus. PeerJ 2019; 7:e6297. [PMID: 30783563 PMCID: PMC6377593 DOI: 10.7717/peerj.6297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/18/2018] [Indexed: 11/20/2022] Open
Abstract
Plant viral diseases are one of the major limitations in legume production within sub-Saharan Africa (SSA), as they account for up to 100% in production losses within smallholder farms. In this study, field surveys were conducted in the western highlands of Kenya with viral symptomatic leaf samples collected. Subsequently, next-generation sequencing was carried out to gain insights into the molecular evolution and evolutionary relationships of Bean common mosaic necrosis virus (BCMNV) and Cowpea aphid-borne mosaic virus (CABMV) present within symptomatic common bean and cowpea. Eleven near-complete genomes of BCMNV and two for CABMV were obtained from western Kenya. Bayesian phylogenomic analysis and tests for differential selection pressure within sites and across tree branches of the viral genomes were carried out. Three well-supported clades in BCMNV and one supported clade for CABMNV were resolved and in agreement with individual gene trees. Selection pressure analysis within sites and across phylogenetic branches suggested both viruses were evolving independently, but under strong purifying selection, with a slow evolutionary rate. These findings provide valuable insights on the evolution of BCMNV and CABMV genomes and their relationship to other viral genomes globally. The results will contribute greatly to the knowledge gap involving the phylogenomic relationship of these viruses, particularly for CABMV, for which there are few genome sequences available, and inform the current breeding efforts towards resistance for BCMNV and CABMV.
Collapse
Affiliation(s)
- James M Wainaina
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Laura Kubatko
- Ohio State University, Columbus, OH, United States of America
| | - Jagger Harvey
- Feed the Future Innovation Lab for the Reduction of Post-Harvest Loss, Kansas State University, Manhattan, KS, United States of America
| | - Elijah Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Timothy Makori
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - David Karanja
- Kenya Agricultural and Livestock Research Organization (KARLO), Machakos, Kenya
| | - Laura M Boykin
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Monica A Kehoe
- Plant Pathology, Department of Primary Industries and Regional Development Diagnostic Laboratory Service, South Perth, Australia
| |
Collapse
|
12
|
Nigam D, LaTourrette K, Souza PFN, Garcia-Ruiz H. Genome-Wide Variation in Potyviruses. FRONTIERS IN PLANT SCIENCE 2019; 10:1439. [PMID: 31798606 PMCID: PMC6863122 DOI: 10.3389/fpls.2019.01439] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/16/2019] [Indexed: 05/07/2023]
Abstract
Potyviruses (family Potyviridae, genus Potyvirus) are the result of an initial radiation event that occurred 6,600 years ago. The genus currently consists of 167 species that infect monocots or dicots, including domesticated and wild plants. Potyviruses are transmitted in a non-persistent way by more than 200 species of aphids. As indicated by their wide host range, worldwide distribution, and diversity of their vectors, potyviruses have an outstanding capacity to adapt to new hosts and environments. However, factors that confer adaptability are poorly understood. Viral RNA-dependent RNA polymerases introduce nucleotide substitutions that generate genetic diversity. We hypothesized that selection imposed by hosts and vectors creates a footprint in areas of the genome involved in host adaptation. Here, we profiled genomic and polyprotein variation in all species in the genus Potyvirus. Results showed that the potyviral genome is under strong negative selection. Accordingly, the genome and polyprotein sequence are remarkably stable. However, nucleotide and amino acid substitutions across the potyviral genome are not randomly distributed and are not determined by codon usage. Instead, substitutions preferentially accumulate in hypervariable areas at homologous locations across potyviruses. At a frequency that is higher than that of the rest of the genome, hypervariable areas accumulate non-synonymous nucleotide substitutions and sites under positive selection. Our results show, for the first time, that there is correlation between host range and the frequency of sites under positive selection. Hypervariable areas map to the N terminal part of protein P1, N and C terminal parts of helper component proteinase (HC-Pro), the C terminal part of protein P3, VPg, the C terminal part of NIb (RNA-dependent RNA polymerase), and the N terminal part of the coat protein (CP). Additionally, a hypervariable area at the NIb-CP junction showed that there is variability in the sequence of the NIa protease cleavage sites. Structural alignment showed that the hypervariable area in the CP maps to the N terminal flexible loop and includes the motif required for aphid transmission. Collectively, results described here show that potyviruses contain fixed hypervariable areas in key parts of the genome which provide mutational robustness and are potentially involved in host adaptation.
Collapse
|
13
|
Dey KK, Sugikawa J, Kerr C, Melzer MJ. Air potato (Dioscorea bulbifera) plants displaying virus-like symptoms are co-infected with a novel potyvirus and a novel ampelovirus. Virus Genes 2018; 55:117-121. [PMID: 30460477 DOI: 10.1007/s11262-018-1616-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/10/2018] [Indexed: 01/27/2023]
Abstract
Air potato (Dioscorea bulbifera) plants being grown at the Florida Department of Agriculture and Consumer Services Division of Plant Industry Biological Control Laboratory II in Alachua County, Florida were observed exhibiting foliar mosaic symptoms characteristic of virus infection. A double-stranded RNA library generated from a symptomatic plant underwent high-throughput sequencing to determine if viral pathogens were present. Sequence data revealed the presence of two viral genomes, one with properties congruent with members of the genus Potyvirus (family Potyviridae), and the other with members of the genus Ampelovirus (family Closteroviridae). Sequence comparisons and phylogenetic placement indicate that both viruses represent novel species. The names "dioscorea mosaic virus" and "air potato virus 1" are proposed for the potyvirus and ampelovirus, respectively.
Collapse
Affiliation(s)
- Kishore K Dey
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL, 32608, USA
| | - Jaylinn Sugikawa
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Christopher Kerr
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL, 32608, USA
| | - Michael J Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA.
| |
Collapse
|
14
|
Maina S, Barbetti MJ, Martin DP, Edwards OR, Jones RAC. New Isolates of Sweet potato feathery mottle virus and Sweet potato virus C: Biological and Molecular Properties, and Recombination Analysis Based on Complete Genomes. PLANT DISEASE 2018; 102:1899-1914. [PMID: 30136885 DOI: 10.1094/pdis-12-17-1972-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sweet potato feathery mottle virus (SPFMV) and Sweet potato virus C (SPVC) isolates were obtained from sweetpotato shoot or tuberous root samples from three widely separated locations in Australia's tropical north (Cairns, Darwin, and Kununurra). The samples were planted in the glasshouse and scions obtained from the plants were graft inoculated to Ipomoea setosa plants. Virus symptoms were recorded in the field in Kununurra and in glasshouse-grown sweetpotato and I. setosa plants. RNA extracts from I. setosa leaf samples were subjected to high-throughput sequencing. New complete SPFMV (n = 17) and SPVC (n = 6) genomic sequences were obtained and compared with 47 sequences from GenBank. Phylogenetic analysis revealed that the 17 new SPFMV genomes all fitted within either major phylogroup A, minor phylogroup II, formerly O; or major phylogroup B, formerly RC. Major phylogroup A's minor phylogroup I, formerly EA, only appeared when recombinants were included. Numbers of SPVC genomes were insufficient to subdivide it into phylogroups. Within phylogroup A's minor phylogroup II, the closest genetic match between an Australian and a Southeast Asian SPFMV sequence was the 97.4% nucleotide identity with an East Timorese sequence. Recombination analysis of the 43 SPFMV and 27 SPVC sequences revealed evidence of 44 recombination events, 16 of which involved interspecies sequence transfers between SPFMV and SPVC and 28 intraspecies transfers, 17 in SPFMV and 11 in SPVC. Within SPFMV, 11 intraspecies recombination events were between different major phylogroups and 6 were between members of the same major phylogroup. Phylogenetic analysis accounting for the detected recombination events within SPFMV sequences yielded evidence of minor phylogroup II and phylogroup B but the five sequences from minor phylogroup I were distributed in two separate groups among the sequences of minor phylogroup II. For the SPVC sequences, phylogenetic analysis accounting for the detected recombination events revealed three major phylogroups (A, B, and C), with major phylogroup A being further subdivided into two minor phylogroups. Within the recombinant genomes of both viruses, their PI, NIa-Pro, NIb, and CP genes contained the highest numbers of recombination breakpoints. The high frequency of interspecies and interphylogroup recombination events reflects the widespread occurrence of mixed SPVC and SPFMV infections within sweetpotato plants. The prevalence of infection in northern Australian sweetpotato samples reinforces the need for improved virus testing in healthy sweetpotato stock programs. Furthermore, evidence of genetic connectivity between Australian and East Timorese SPFMV genomes emphasizes the need for improved biosecurity measures to protect against potentially damaging international virus movements.
Collapse
Affiliation(s)
- Solomon Maina
- School of Agriculture and Environment and the University of Western Australia (UWA) Institute of Agriculture, Faculty of Science, UWA, Crawley, WA 6009, Australia; and Cooperative Research Centre for Plant Biosecurity, Canberra, ACT 2617, Australia
| | - Martin J Barbetti
- School of Agriculture and Environment and UWA Institute of Agriculture, Faculty of Science, UWA
| | - Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, Computational Biology Group, University of Cape Town, Cape Town 7549, South Africa
| | - Owain R Edwards
- CSIRO Land and Water, Floreat Park, WA 6014, Australia; and Cooperative Research Centre for Plant Biosecurity, Canberra, ACT 2617, Australia
| | - Roger A C Jones
- Department of Primary Industries and Rural Development, South Perth, WA 6151, Australia; UWA Institute of Agriculture, Faculty of Science, UWA
| |
Collapse
|
15
|
Perotto MC, Pozzi EA, Celli MG, Luciani CE, Mitidieri MS, Conci VC. Identification and characterization of a new potyvirus infecting cucurbits. Arch Virol 2017; 163:719-724. [PMID: 29196817 DOI: 10.1007/s00705-017-3660-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/20/2017] [Indexed: 11/25/2022]
Abstract
A new potyvirus, tentatively named cucurbit vein banding virus (CVBV), was identified in crops of cucurbits in San Pedro (Buenos Aires, Argentina). The complete genome sequences of two isolates of CVBV were obtained by next-generation sequencing (Illumina). The genomic RNA consisted of 9968 and 9813 nucleotides, respectively, and displayed typical potyvirus organization. The percentage identity for these two genome sequences, using BLASTn, was 77% to sweet potato virus c and 73% to tomato necrotic stunt virus. BLASTx analysis of the complete polyprotein showed that the most closely related virus is plum pox virus, with 48% amino acid sequence identity for both isolates. Sequence comparisons and phylogenetic analyses indicate that CVBV belongs to a previously undescribed species in genus Potyvirus.
Collapse
Affiliation(s)
- M C Perotto
- Instituto de Patología Vegetal (IPAVE-CIAP-INTA), Camino 60 cuadras km 5,5, Córdoba, X5020ICA, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino 60 cuadras km 5,5, Córdoba, X5020ICA, Argentina.
| | - E A Pozzi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino 60 cuadras km 5,5, Córdoba, X5020ICA, Argentina
| | - M G Celli
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino 60 cuadras km 5,5, Córdoba, X5020ICA, Argentina
| | - C E Luciani
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino 60 cuadras km 5,5, Córdoba, X5020ICA, Argentina
| | - M S Mitidieri
- Estación Experimental Agropecuaria San Pedro (EEA San Pedro-INTA), Ruta 9, km 170, 2930, San Pedro, Buenos Aires, Argentina
| | - V C Conci
- Instituto de Patología Vegetal (IPAVE-CIAP-INTA), Camino 60 cuadras km 5,5, Córdoba, X5020ICA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino 60 cuadras km 5,5, Córdoba, X5020ICA, Argentina
| |
Collapse
|
16
|
Maina S, Coutts BA, Edwards OR, de Almeida L, Kehoe MA, Ximenes A, Jones RAC. Zucchini yellow mosaic virus Populations from East Timorese and Northern Australian Cucurbit Crops: Molecular Properties, Genetic Connectivity, and Biosecurity Implications. PLANT DISEASE 2017; 101:1236-1245. [PMID: 30682959 DOI: 10.1094/pdis-11-16-1672-re] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) isolates from cucurbit crops growing in northern Australia and East Timor were investigated to establish possible genetic connectivity between crop viruses in Australia and Southeast Asia. Leaves from symptomatic plants of pumpkin (Cucurbita moschata and C. maxima), melon (Cucumis melo), and zucchini (C. pepo) were sampled near Broome, Darwin, and Kununurra in northern Australia. Leaves from symptomatic plants of cucumber (C. sativus) and pumpkin sampled in East Timor were sent to Australia on FTA cards. These samples were subjected to high-throughput sequencing and 15 complete new ZYMV genomic sequences obtained. When their nucleotide sequences were compared with those of 48 others from GenBank, the East Timorese and Kununurra sequences (three per location) and single earlier sequences from Singapore and Reunion Island were all in major phylogroup B. The seven Broome and two Darwin sequences were in minor phylogroups I and II, respectively, within larger major phylogroup A. When coat protein (CP) nucleotide sequences from the 15 new genomes and 47 Australian isolates sequenced previously were compared with 331 other CP sequences, the closest genetic match for a sequence from Kununurra was with an East Timorese sequence (95.5% nucleotide identity). Analysis of the 63 complete genomes found firm recombination events in 12 (75%) and 2 (4%) sequences from northern Australia or Southeast Asia versus the rest of the world, respectively; therefore, the formers' high recombination frequency might reflect adaptation to tropical conditions. Both parents of the recombinant Kununurra sequence were East Timorese. Phylogenetic analysis, nucleotide sequence identities, and recombination analysis provided clear evidence of genetic connectivity between sequences from Kununurra and East Timor. Inoculation of a Broome isolate to zucchini and watermelon plants reproduced field symptoms observed in northern Australia. This research has important biosecurity implications over entry of damaging viral crop pathogens not only into northern Australia but also moving between Australia's different agricultural regions.
Collapse
Affiliation(s)
- Solomon Maina
- School of Agriculture and Environment and the UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; and Cooperative Research Centre for Plant Biosecurity, Canberra, ACT 2617, Australia
| | - Brenda A Coutts
- Department of Agriculture and Food Western Australia, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| | - Owain R Edwards
- Commonwealth Scientific and Industrial Research Organisation, Land and Water, Floreat Park, WA 6014, Australia, and Cooperative Research Centre for Plant Biosecurity, Canberra
| | - Luis de Almeida
- Seeds of Life Project, Ministry Agriculture and Fisheries, PO Box 221, Dili, East Timor
| | - Monica A Kehoe
- Department of Agriculture and Food Western Australia, South Perth
| | - Abel Ximenes
- DNQB-Plant Quarantine International Airport Nicolau Lobato Comoro, Dili, East Timor
| | - Roger A C Jones
- Department of Agriculture and Food Western Australia, South Perth; UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley; and Australia and Cooperative Research Centre for Plant Biosecurity, Canberra
| |
Collapse
|
17
|
Alicai T, Ndunguru J, Sseruwagi P, Tairo F, Okao-Okuja G, Nanvubya R, Kiiza L, Kubatko L, Kehoe MA, Boykin LM. Cassava brown streak virus has a rapidly evolving genome: implications for virus speciation, variability, diagnosis and host resistance. Sci Rep 2016; 6:36164. [PMID: 27808114 PMCID: PMC5093738 DOI: 10.1038/srep36164] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/06/2016] [Indexed: 01/20/2023] Open
Abstract
Cassava is a major staple food for about 800 million people in the tropics and sub-tropical regions of the world. Production of cassava is significantly hampered by cassava brown streak disease (CBSD), caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). The disease is suppressing cassava yields in eastern Africa at an alarming rate. Previous studies have documented that CBSV is more devastating than UCBSV because it more readily infects both susceptible and tolerant cassava cultivars, resulting in greater yield losses. Using whole genome sequences from NGS data, we produced the first coalescent-based species tree estimate for CBSV and UCBSV. This species framework led to the finding that CBSV has a faster rate of evolution when compared with UCBSV. Furthermore, we have discovered that in CBSV, nonsynonymous substitutions are more predominant than synonymous substitution and occur across the entire genome. All comparative analyses between CBSV and UCBSV presented here suggest that CBSV may be outsmarting the cassava immune system, thus making it more devastating and harder to control.
Collapse
Affiliation(s)
- Titus Alicai
- National Crops Resources Research Institute, P.O. Box 7084, Kampala, Uganda
| | - Joseph Ndunguru
- Mikocheni Agricultural Research Institute, Coca cola Road, Box 6226, Dar es Salaam, Tanzania
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, Coca cola Road, Box 6226, Dar es Salaam, Tanzania
| | - Fred Tairo
- Mikocheni Agricultural Research Institute, Coca cola Road, Box 6226, Dar es Salaam, Tanzania
| | | | - Resty Nanvubya
- National Crops Resources Research Institute, P.O. Box 7084, Kampala, Uganda
| | - Lilliane Kiiza
- National Crops Resources Research Institute, P.O. Box 7084, Kampala, Uganda
| | - Laura Kubatko
- The Ohio State University, 154W 12 Avenue, Columbus, Ohio 43210, USA
| | - Monica A. Kehoe
- Crop Protection Branch, Department of Agriculture and Food, Western Australia, Bentley Delivery Centre, Perth, 6983, Western Australia, Australia
| | - Laura M. Boykin
- The University of Western Australia, ARC Centre of Excellence in Plant Energy Biology and School of Chemistry and Biochemistry, Crawley, Perth 6009, Western Australia, Australia
| |
Collapse
|
18
|
Jones RAC, Kehoe MA. A proposal to rationalize within-species plant virus nomenclature: benefits and implications of inaction. Arch Virol 2016; 161:2051-7. [PMID: 27101071 DOI: 10.1007/s00705-016-2848-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/29/2016] [Indexed: 01/13/2023]
Abstract
Current approaches used to name within-species, plant virus phylogenetic groups are often misleading and illogical. They involve names based on biological properties, sequence differences and geographical, country or place-association designations, or any combination of these. This type of nomenclature is becoming increasingly unsustainable as numbers of sequences of the same virus from new host species and different parts of the world increase. Moreover, this increase is accelerating as world trade and agriculture expand, and climate change progresses. Serious consequences for virus research and disease management might arise from incorrect assumptions made when current within-species phylogenetic group names incorrectly identify properties of group members. This could result in development of molecular tools that incorrectly target dangerous virus strains, potentially leading to unjustified impediments to international trade or failure to prevent such strains being introduced to countries, regions or continents formerly free of them. Dangerous strains might be missed or misdiagnosed by diagnostic laboratories and monitoring programs, and new cultivars with incorrect strain-specific resistances released. Incorrect deductions are possible during phylogenetic analysis of plant virus sequences and errors from strain misidentification during molecular and biological virus research activities. A nomenclature system for within-species plant virus phylogenetic group names is needed which avoids such problems. We suggest replacing all other naming approaches with Latinized numerals, restricting biologically based names only to biological strains and removing geographically based names altogether. Our recommendations have implications for biosecurity authorities, diagnostic laboratories, disease-management programs, plant breeders and researchers.
Collapse
Affiliation(s)
- Roger A C Jones
- Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia. .,Department of Agriculture and Food, Locked Bag No. 4, Bentley Delivery Centre, Perth, WA, 6983, Australia.
| | - Monica A Kehoe
- Department of Agriculture and Food, Locked Bag No. 4, Bentley Delivery Centre, Perth, WA, 6983, Australia
| |
Collapse
|
19
|
Ndunguru J, Sseruwagi P, Tairo F, Stomeo F, Maina S, Djinkeng A, Kehoe M, Boykin LM. Analyses of Twelve New Whole Genome Sequences of Cassava Brown Streak Viruses and Ugandan Cassava Brown Streak Viruses from East Africa: Diversity, Supercomputing and Evidence for Further Speciation. PLoS One 2015; 10:e0139321. [PMID: 26439260 PMCID: PMC4595453 DOI: 10.1371/journal.pone.0139321] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/11/2015] [Indexed: 11/19/2022] Open
Abstract
Cassava brown streak disease is caused by two devastating viruses, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) which are frequently found infecting cassava, one of sub-Saharan Africa's most important staple food crops. Each year these viruses cause losses of up to $100 million USD and can leave entire families without their primary food source, for an entire year. Twelve new whole genomes, including seven of CBSV and five of UCBSV were uncovered in this research, doubling the genomic sequences available in the public domain for these viruses. These new sequences disprove the assumption that the viruses are limited by agro-ecological zones, show that current diagnostic primers are insufficient to provide confident diagnosis of these viruses and give rise to the possibility that there may be as many as four distinct species of virus. Utilizing NGS sequencing technologies and proper phylogenetic practices will rapidly increase the solution to sustainable cassava production.
Collapse
Affiliation(s)
- Joseph Ndunguru
- Mikocheni Agricultural Research Institute, Sam Nujoma Road, Box 6226, Dar es Salaam, Tanzania
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, Sam Nujoma Road, Box 6226, Dar es Salaam, Tanzania
| | - Fred Tairo
- Mikocheni Agricultural Research Institute, Sam Nujoma Road, Box 6226, Dar es Salaam, Tanzania
| | - Francesca Stomeo
- Biosciences eastern and central Africa, The International Livestock Research Institute in Nairobi, Kenya (the BecA-ILRI Hub), P.O. Box 30709, Nairobi 00100, Kenya
| | - Solomon Maina
- Biosciences eastern and central Africa, The International Livestock Research Institute in Nairobi, Kenya (the BecA-ILRI Hub), P.O. Box 30709, Nairobi 00100, Kenya
| | - Appolinaire Djinkeng
- Biosciences eastern and central Africa, The International Livestock Research Institute in Nairobi, Kenya (the BecA-ILRI Hub), P.O. Box 30709, Nairobi 00100, Kenya
| | - Monica Kehoe
- Crop Protection Branch, Department of Agriculture and Food Western Australia, Bentley Delivery Centre, Perth 6983, Western Australia, Australia
| | - Laura M. Boykin
- The University of Western Australia, ARC Centre of Excellence in Plant Energy Biology and School of Chemistry and Biochemistry, Crawley, Perth 6009, Western Australia, Australia
- * E-mail:
| |
Collapse
|