1
|
Ravet A, Zervudacki J, Singla-Rastogi M, Charvin M, Thiebeauld O, Perez-Quintero AL, Courgeon L, Candat A, Lebeau L, Fortunato AE, Mendu V, Navarro L. Vesicular and non-vesicular extracellular small RNAs direct gene silencing in a plant-interacting bacterium. Nat Commun 2025; 16:3533. [PMID: 40229238 PMCID: PMC11997071 DOI: 10.1038/s41467-025-57908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Extracellular plant small RNAs (sRNAs) and/or double-stranded RNA (dsRNA) precursors act as triggers of RNAi in interacting filamentous pathogens. However, whether any of these extracellular RNA species direct gene silencing in plant-interacting bacteria remains unknown. Here, we show that Arabidopsis transgenic plants expressing sRNAs directed against virulence factors of a Pseudomonas syringae strain, reduce its pathogenesis. This Antibacterial Gene Silencing (AGS) phenomenon is directed by Dicer-Like (DCL)-dependent antibacterial sRNAs, but not cognate dsRNA precursors. Three populations of active extracellular sRNAs were recovered in the apoplast of these transgenic plants. The first one is mainly non-vesicular and associated with proteins, whereas the second one is located inside Extracellular Vesicles (EVs). Intriguingly, the third population is unbound to proteins and in a dsRNA form, unraveling functional extracellular free sRNAs (efsRNAs). Both Arabidopsis transgene- and genome-derived efsRNAs were retrieved inside bacterial cells. Finally, we show that salicylic acid (SA) promotes AGS, and that a substantial set of endogenous efsRNAs exhibits predicted bacterial targets that are down-regulated by SA biogenesis and/or signaling during infection. This study thus unveils an unexpected AGS phenomenon, which may have wider implications in the understanding of how plants regulate microbial transcriptome, microbial community composition and genome evolution of associated bacteria.
Collapse
Affiliation(s)
- Antinéa Ravet
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Jérôme Zervudacki
- ImmunRise Technologies (IRT), 75005, Paris, France
- ENgreen Technologies, 33100, Bordeaux, France
| | - Meenu Singla-Rastogi
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Magali Charvin
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | | | - Alvaro L Perez-Quintero
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Lucas Courgeon
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Adrien Candat
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Liam Lebeau
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | | | - Venugopal Mendu
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Lionel Navarro
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France.
| |
Collapse
|
2
|
Al-Tohamy A, Grove A. Targeting bacterial transcription factors for infection control: opportunities and challenges. Transcription 2025; 16:141-168. [PMID: 38126125 PMCID: PMC11970743 DOI: 10.1080/21541264.2023.2293523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The rising threat of antibiotic resistance in pathogenic bacteria emphasizes the need for new therapeutic strategies. This review focuses on bacterial transcription factors (TFs), which play crucial roles in bacterial pathogenesis. We discuss the regulatory roles of these factors through examples, and we outline potential therapeutic strategies targeting bacterial TFs. Specifically, we discuss the use of small molecules to interfere with TF function and the development of transcription factor decoys, oligonucleotides that compete with promoters for TF binding. We also cover peptides that target the interaction between the bacterial TF and other factors, such as RNA polymerase, and the targeting of sigma factors. These strategies, while promising, come with challenges, from identifying targets to designing interventions, managing side effects, and accounting for changing bacterial resistance patterns. We also delve into how Artificial Intelligence contributes to these efforts and how it may be exploited in the future, and we touch on the roles of multidisciplinary collaboration and policy to advance this research domain.Abbreviations: AI, artificial intelligence; CNN, convolutional neural networks; DTI: drug-target interaction; HTH, helix-turn-helix; IHF, integration host factor; LTTRs, LysR-type transcriptional regulators; MarR, multiple antibiotic resistance regulator; MRSA, methicillin resistant Staphylococcus aureus; MSA: multiple sequence alignment; NAP, nucleoid-associated protein; PROTACs, proteolysis targeting chimeras; RNAP, RNA polymerase; TF, transcription factor; TFD, transcription factor decoying; TFTRs, TetR-family transcriptional regulators; wHTH, winged helix-turn-helix.
Collapse
Affiliation(s)
- Ahmed Al-Tohamy
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
3
|
Vadillo‐Dieguez A, Zeng Z, Mansfield JW, Grinberg NF, Lynn SC, Gregg A, Connell J, Harrison RJ, Jackson RW, Hulin MT. Genetic dissection of the tissue-specific roles of type III effectors and phytotoxins in the pathogenicity of Pseudomonas syringae pv. syringae to cherry. MOLECULAR PLANT PATHOLOGY 2024; 25:e13451. [PMID: 38590135 PMCID: PMC11002349 DOI: 10.1111/mpp.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
When compared with other phylogroups (PGs) of the Pseudomonas syringae species complex, P. syringae pv. syringae (Pss) strains within PG2 have a reduced repertoire of type III effectors (T3Es) but produce several phytotoxins. Effectors within the cherry pathogen Pss 9644 were grouped based on their frequency in strains from Prunus as the conserved effector locus (CEL) common to most P. syringae pathogens; a core of effectors common to PG2; a set of PRUNUS effectors common to cherry pathogens; and a FLEXIBLE set of T3Es. Pss 9644 also contains gene clusters for biosynthesis of toxins syringomycin, syringopeptin and syringolin A. After confirmation of virulence gene expression, mutants with a sequential series of T3E and toxin deletions were pathogenicity tested on wood, leaves and fruits of sweet cherry (Prunus avium) and leaves of ornamental cherry (Prunus incisa). The toxins had a key role in disease development in fruits but were less important in leaves and wood. An effectorless mutant retained some pathogenicity to fruit but not wood or leaves. Striking redundancy was observed amongst effector groups. The CEL effectors have important roles during the early stages of leaf infection and possibly acted synergistically with toxins in all tissues. Deletion of separate groups of T3Es had more effect in P. incisa than in P. avium. Mixed inocula were used to complement the toxin mutations in trans and indicated that strain mixtures may be important in the field. Our results highlight the niche-specific role of toxins in P. avium tissues and the complexity of effector redundancy in the pathogen Pss 9644.
Collapse
Affiliation(s)
- Andrea Vadillo‐Dieguez
- NIABCambridgeUK
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | | | | | | | | | | | | | - Richard J. Harrison
- NIABCambridgeUK
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
- Faculty of Natural Sciences, Plant Science GroupWageningen University and ResearchWageningenNetherlands
- Present address:
Faculty of Natural Sciences, Plant Science GroupWageningen University and ResearchWageningenNetherlands
| | - Robert W. Jackson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Michelle T. Hulin
- NIABCambridgeUK
- Department of Plant Soil & Microbial SciencesMichigan State UniversityEast LansingUSA
- Present address:
Department of Plant Soil & Microbial SciencesMichigan State UniversityEast LansingUSA
| |
Collapse
|
4
|
O’Malley MR, Kpenu E, Peck SC, Anderson JC. Plant-exuded chemical signals induce surface attachment of the bacterial pathogen Pseudomonas syringae. PeerJ 2023; 11:e14862. [PMID: 37009160 PMCID: PMC10062345 DOI: 10.7717/peerj.14862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/17/2023] [Indexed: 03/29/2023] Open
Abstract
Many plant pathogenic bacteria suppress host defenses by secreting small molecule toxins or immune-suppressing proteins into host cells, processes that likely require close physical contact between pathogen and host. Yet, in most cases, little is known about whether phytopathogenic bacteria physically attach to host surfaces during infection. Here we report that Pseudomonas syringae pv. tomato strain DC3000, a Gram-negative bacterial pathogen of tomato and Arabidopsis, attaches to polystyrene and glass surfaces in response to chemical signals exuded from Arabidopsis seedlings and tomato leaves. We characterized the molecular nature of these attachment-inducing signals and discovered that multiple hydrophilic metabolites found in plant exudates, including citric acid, glutamic acid, and aspartic acid, are potent inducers of surface attachment. These same compounds were previously identified as inducers of P. syringae genes encoding a type III secretion system (T3SS), indicating that both attachment and T3SS deployment are induced by the same plant signals. To test if surface attachment and T3SS are regulated by the same signaling pathways, we assessed the attachment phenotypes of several previously characterized DC3000 mutants, and found that the T3SS master regulator HrpL was partially required for maximal levels of surface attachment, whereas the response regulator GacA, a negative regulator of T3SS, negatively regulated DC3000 surface attachment. Together, our data indicate that T3SS deployment and surface attachment by P. syringae may be co-regulated by the same host signals during infection, possibly to ensure close contact necessary to facilitate delivery of T3SS effectors into host cells.
Collapse
Affiliation(s)
- Megan R. O’Malley
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Eyram Kpenu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Scott C. Peck
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Jeffrey C. Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
5
|
McMillan HM, Kuehn MJ. Proteomic Profiling Reveals Distinct Bacterial Extracellular Vesicle Subpopulations with Possibly Unique Functionality. Appl Environ Microbiol 2023; 89:e0168622. [PMID: 36533919 PMCID: PMC9888257 DOI: 10.1128/aem.01686-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) are 20- to 200-nm secreted packages of lipids, small molecules, and proteins that contribute to diverse bacterial processes. In plant systems, OMVs from pathogenic and beneficial strains elicit plant immune responses that inhibit seedling growth and protect against future pathogen challenge. Previous studies of OMV-plant interactions suggest functionally important differences in the protein composition of Pseudomonas syringae and Pseudomonas fluorescens OMVs, and that their composition and activity differ as a result of medium culture conditions. Here, we show that plant apoplast-mimicking minimal medium conditions impact OMV protein content dramatically in P. syringae but not in P. fluorescens relative to complete medium conditions. Comparative, 2-way analysis of the four conditions reveals subsets of proteins that may contribute to OMV-mediated bacterial virulence and plant immune activation as well as those involved in bacterial stress tolerance or adaptation to a beneficial relationship with plants. Additional localization enrichment analysis of these subsets suggests the presence of outer-inner membrane vesicles (OIMVs). Collectively, these results reveal distinct differences in bacterial extracellular vesicle cargo and biogenesis routes from pathogenic and beneficial plant bacteria in different medium conditions and point to distinct populations of vesicles with diverse functional roles. IMPORTANCE Recent publications have shown that bacterial vesicles play important roles in interkingdom communication between bacteria and plants. Indeed, our recently published data reveal that bacterial vesicles from pathogenic and beneficial strains elicit immune responses in plants that protect against future pathogen challenge. However, the molecules underlying these striking phenomena remain unknown. Our recent work indicated that proteins packaged in vesicles are critically important for vesicle-mediated seedling growth inhibition, often considered an indirect measure of plant immune activation. In this study, we characterize the protein cargo of vesicles from Pseudomonas syringae pathovar tomato DC3000 and Pseudomonas fluorescens from two different medium conditions and show that distinct subpopulations of vesicles contribute to bacterial virulence and stress tolerance. Furthermore, we reveal differences in how beneficial and pathogenic bacterial species respond to harsh environmental conditions through vesicle packaging. Importantly, we find that protein cargo implicates outer-inner membrane vesicles in bacterial stress responses, while outer membrane vesicles are packaged for virulence.
Collapse
Affiliation(s)
- Hannah M. McMillan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Meta J. Kuehn
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
- Department of Biochemistry, Duke University, Durham, North Carolina, USA
| |
Collapse
|
6
|
Sun Y, Shao X, Zhang Y, Han L, Huang J, Xie Y, Liu J, Deng X. Maintenance of tRNA and elongation factors supports T3SS proteins translational elongations in pathogenic bacteria during nutrient starvation. Cell Biosci 2022; 12:147. [PMID: 36064743 PMCID: PMC9446538 DOI: 10.1186/s13578-022-00884-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Sufficient nutrition contributes to rapid translational elongation and protein synthesis in eukaryotic cells and prokaryotic bacteria. Fast synthesis and accumulation of type III secretion system (T3SS) proteins conduce to the invasion of pathogenic bacteria into the host cells. However, the translational elongation patterns of T3SS proteins in pathogenic bacteria under T3SS-inducing conditions remain unclear. Here, we report a mechanism of translational elongation of T3SS regulators, effectors and structural protein in four model pathogenic bacteria (Pseudomonas syringae, Pseudomonas aeruginosa, Xanthomonas oryzae and Ralstonia solanacearum) and a clinical isolate (Pseudomonas aeruginosa UCBPP-PA14) under nutrient-limiting conditions. We proposed a luminescence reporter system to quantitatively determine the translational elongation rates (ERs) of T3SS regulators, effectors and structural protein under different nutrient-limiting conditions and culture durations.
Results
The translational ERs of T3SS regulators, effectors and structural protein in these pathogenic bacteria were negatively regulated by the nutrient concentration and culture duration. The translational ERs in 0.5× T3SS-inducing medium were the highest of all tested media. In 1× T3SS-inducing medium, the translational ERs were highest at 0 min and then rapidly decreased. The translational ERs of T3SS regulators, effectors and structural protein were inhibited by tRNA degradation and by reduced levels of elongation factors (EFs).
Conclusions
Rapid translational ER and synthesis of T3SS protein need adequate tRNAs and EFs in nutrient-limiting conditions. Numeric presentation of T3SS translation visually indicates the invasion of bacteria and provides new insights into T3SS expression that can be applied to other pathogenic bacteria.
Collapse
|
7
|
Shared in planta population and transcriptomic features of nonpathogenic members of endophytic phyllosphere microbiota. Proc Natl Acad Sci U S A 2022; 119:e2114460119. [PMID: 35344425 PMCID: PMC9168490 DOI: 10.1073/pnas.2114460119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Plants evolved in an environment colonized by a vast number of microbes, which collectively constitute the plant microbiota. The majority of microbiota taxa are nonpathogenic and may be beneficial to plants under certain ecological or environmental conditions. We conducted experiments to understand the features of long-term interactions of nonpathogenic microbiota members with plants. We found that a multiplication–death equilibrium explained the shared long-term static populations of nonpathogenic bacteria and that in planta bacterial transcriptomic signatures were characteristic of the stationary phase, a physiological state in which stress protection responses are induced. These results may have significant implications in understanding the bulk of “nonpathogenic” plant–microbiota interactions that occur in agricultural and natural ecosystems. Plants and animals are in constant association with a variety of microbes. Although much is known about how pathogenic and symbiotic microbes interact with plants, less is known about the population dynamics, adaptive traits, and transcriptional features of the vast number of microbes that make up the bulk of the plant microbiota. The majority of microbiota taxa are either commensal, natural mutants of pathogens, or pathogens that encounter strong immune responses due to plant recognition of pathogen effectors. How these “nonpathogenic” microbes interact with plants is poorly understood, especially during long-term, steady-state interactions, which are more reflective of plant–microbiota interactions in nature. In this study, we embarked upon long-term population and in planta transcriptomic studies of commensal endophytic bacteria and compared them to nonpathogenic or effector-triggered immunity-inducing strains of the bacterial pathogen Pseudomonas syringae. Our results led to the discovery of multiplication–death equilibrium as a common basis for the shared long-term static population densities of these bacteria. A comprehensive in planta transcriptomic analysis using multiple time points after inoculation revealed a striking similarity between the transcriptomic features of nonpathogenic P. syringae to that of bacteria in stationary phase in vitro, a metabolically active physiological state in which the production of adaptive secondary metabolites and stress responses are induced. We propose that the long-term population and transcriptomic features of nonpathogenic bacteria captured in this study likely reflect the physiological steady state encountered by the bulk of endophytic microbiota—excluding virulent pathogens—in their life-long interactions with plants in nature.
Collapse
|
8
|
Kandel PP, Naumova M, Fautt C, Patel RR, Triplett LR, Hockett KL. Genome Mining Shows Ubiquitous Presence and Extensive Diversity of Toxin-Antitoxin Systems in Pseudomonas syringae. Front Microbiol 2022; 12:815911. [PMID: 35095819 PMCID: PMC8790059 DOI: 10.3389/fmicb.2021.815911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022] Open
Abstract
Bacterial toxin-antitoxin (TA) systems consist of two or more adjacent genes, encoding a toxin and an antitoxin. TA systems are implicated in evolutionary and physiological functions including genome maintenance, antibiotics persistence, phage defense, and virulence. Eight classes of TA systems have been described, based on the mechanism of toxin neutralization by the antitoxin. Although studied well in model species of clinical significance, little is known about the TA system abundance and diversity, and their potential roles in stress tolerance and virulence of plant pathogens. In this study, we screened the genomes of 339 strains representing the genetic and lifestyle diversity of the Pseudomonas syringae species complex for TA systems. Using bioinformatic search and prediction tools, including SLING, BLAST, HMMER, TADB2.0, and T1TAdb, we show that P. syringae strains encode 26 different families of TA systems targeting diverse cellular functions. TA systems in this species are almost exclusively type II. We predicted a median of 15 TA systems per genome, and we identified six type II TA families that are found in more than 80% of strains, while others are more sporadic. The majority of predicted TA genes are chromosomally encoded. Further functional characterization of the predicted TA systems could reveal how these widely prevalent gene modules potentially impact P. syringae ecology, virulence, and disease management practices.
Collapse
Affiliation(s)
- Prem P. Kandel
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States,*Correspondence: Prem P. kandel,
| | - Marina Naumova
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States
| | - Chad Fautt
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States
| | - Ravikumar R. Patel
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Lindsay R. Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Kevin L. Hockett
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States,Kevin L. Hockett,
| |
Collapse
|
9
|
Nguyen VT, Sakata N, Usuki G, Ishiga T, Hashimoto Y, Ishiga Y. Multiple virulence factors regulated by AlgU contribute to the pathogenicity of Pseudomonas savastanoi pv. glycinea in soybean. PeerJ 2021; 9:e12405. [PMID: 34760389 PMCID: PMC8559602 DOI: 10.7717/peerj.12405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas savastanoi pv. glycinea (Psg) causes bacterial blight of soybean. To identify candidate virulence factors, transposon-mediated mutational analysis of Psg was carried out. We syringe-inoculated soybean leaves with Psg transposon mutants and identified 28 mutants which showed reduced virulence from 1,000 mutants screened. Next, we spray-inoculated soybean leaves with these mutants and demonstrated that the algU mutant showed significantly reduced virulence together with reduced bacterial populations in planta. Expression profiles comparison between the Psg wild-type (WT) and algU mutant in HSC broth revealed that expression of coronatine (COR)-related genes (including cmaA and corR) were down-regulated in the algU mutant compared with Psg WT. Moreover, we also showed that COR production were reduced in the algU mutant compared with WT. We also demonstrated that algD, which is related to alginate biosynthesis, showed reduced expression and biofilm formation was significantly suppressed in the algU mutant. Furthermore, hrpL also showed less expression in the algU mutant. These results indicate that AlgU plays a critical role in promoting Psg pathogenesis by regulating multiple virulence factors.
Collapse
Affiliation(s)
- Viet Tru Nguyen
- Western Highlands Agriculture and Forestry Science Institute, Buon Ma Thuot, Daklak, Vietnam.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nanami Sakata
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Giyu Usuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takako Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiteru Hashimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Moreno-Pérez A, Ramos C, Rodríguez-Moreno L. HrpL Regulon of Bacterial Pathogen of Woody Host Pseudomonas savastanoi pv. savastanoi NCPPB 3335. Microorganisms 2021; 9:microorganisms9071447. [PMID: 34361883 PMCID: PMC8303149 DOI: 10.3390/microorganisms9071447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
The Pseudomonas savastanoi species comprises a group of phytopathogenic bacteria that cause symptoms of disease in woody hosts. This is mediated by the rapid activation of a pool of virulence factors that suppress host defences and hijack the host’s metabolism to the pathogen’s benefit. The hrpL gene encodes an essential transcriptional regulator of virulence functions, including the type III secretion system (T3SS), in pathogenic bacteria. Here, we analyzed the contribution of HrpL to the virulence of four pathovars (pv.) of P. savastanoi isolated from different woody hosts (oleander, ash, broom, and dipladenia) and characterized the HrpL regulon of P. savastanoi pv. savastanoi NCPPB 3335 using two approaches: whole transcriptome sequencing (RNA-seq) and the bioinformatic prediction of candidate genes containing an hrp-box. Pathogenicity tests carried out for the P. savastanoi pvs. showed that HrpL was essential for symptom development in both non-host and host plants. The RNA-seq analysis of the HrpL regulon in P. savastanoi revealed a total of 53 deregulated genes, 49 of which were downregulated in the ΔhrpL mutant. Bioinformatic prediction resulted in the identification of 50 putative genes containing an hrp-box, 16 of which were shared with genes previously identified by RNA-seq. Although most of the genes regulated by HrpL belonged to the T3SS, we also identified some genes regulated by HrpL that could encode potential virulence factors in P. savastanoi.
Collapse
Affiliation(s)
- Alba Moreno-Pérez
- Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, Universidad de Málaga, E-29010 Málaga, Spain;
- Departamento de Microbiología y Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea «La Mayora», Extensión Campus de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), E-29010 Málaga, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, Universidad de Málaga, E-29010 Málaga, Spain;
- Departamento de Microbiología y Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea «La Mayora», Extensión Campus de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), E-29010 Málaga, Spain
- Correspondence: (C.R.); (L.R.-M.); Tel.: +34-952-132-146 (C.R.); +34-952-132-131 (L.R.-M.)
| | - Luis Rodríguez-Moreno
- Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, Universidad de Málaga, E-29010 Málaga, Spain;
- Departamento de Microbiología y Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea «La Mayora», Extensión Campus de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), E-29010 Málaga, Spain
- Correspondence: (C.R.); (L.R.-M.); Tel.: +34-952-132-146 (C.R.); +34-952-132-131 (L.R.-M.)
| |
Collapse
|
11
|
O’Malley MR, Anderson JC. Regulation of the Pseudomonas syringae Type III Secretion System by Host Environment Signals. Microorganisms 2021; 9:microorganisms9061227. [PMID: 34198761 PMCID: PMC8228185 DOI: 10.3390/microorganisms9061227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas syringae are Gram-negative, plant pathogenic bacteria that use a type III secretion system (T3SS) to disarm host immune responses and promote bacterial growth within plant tissues. Despite the critical role for type III secretion in promoting virulence, T3SS-encoding genes are not constitutively expressed by P. syringae and must instead be induced during infection. While it has been known for many years that culturing P. syringae in synthetic minimal media can induce the T3SS, relatively little is known about host signals that regulate the deployment of the T3SS during infection. The recent identification of specific plant-derived amino acids and organic acids that induce T3SS-inducing genes in P. syringae has provided new insights into host sensing mechanisms. This review summarizes current knowledge of the regulatory machinery governing T3SS deployment in P. syringae, including master regulators HrpRS and HrpL encoded within the T3SS pathogenicity island, and the environmental factors that modulate the abundance and/or activity of these key regulators. We highlight putative receptors and regulatory networks involved in linking the perception of host signals to the regulation of the core HrpRS–HrpL pathway. Positive and negative regulation of T3SS deployment is also discussed within the context of P. syringae infection, where contributions from distinct host signals and regulatory networks likely enable the fine-tuning of T3SS deployment within host tissues. Last, we propose future research directions necessary to construct a comprehensive model that (a) links the perception of host metabolite signals to T3SS deployment and (b) places these host–pathogen signaling events in the overall context of P. syringae infection.
Collapse
|
12
|
Shao X, Tan M, Xie Y, Yao C, Wang T, Huang H, Zhang Y, Ding Y, Liu J, Han L, Hua C, Wang X, Deng X. Integrated regulatory network in Pseudomonas syringae reveals dynamics of virulence. Cell Rep 2021; 34:108920. [PMID: 33789108 DOI: 10.1016/j.celrep.2021.108920] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/09/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas syringae, a Gram-negative plant pathogen, expresses multitudinous transcriptional regulators to control the type III secretion system (T3SS) and response to diverse environmental challenges. Although the mechanisms of virulence-associated regulators of P. syringae have been studied for decades, the overall crosstalk underlying these regulators is still elusive. Here, we identify five T3SS regulators (EnvZ-OmpR, CbrAB2, PhoPQ, PilRS, and MgrA), and find that the two-component systems EnvZ-OmpR and CbrAB2 negatively regulate the T3SS. To elucidate crosstalk between 16 virulence-associated regulators in P. syringae, we map an online intricate network called "PSRnet" (Pseudomonas syringae regulatory network) by combining the differentially expressed genes (DEGs) of these 16 regulators by RNA sequencing (RNA-seq) and their binding loci by chromatin immunoprecipitation sequencing (ChIP-seq). Consequently, we identify 238 and 153 functional genes involved in the T3SS and other virulence-related pathways in KB and MM media, respectively. Our results provide insights into the mechanism of plant infections caused by P. syringae.
Collapse
Affiliation(s)
- Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Miaomiao Tan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Chunyan Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Tingting Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yingchao Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yiqing Ding
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jingui Liu
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Liangliang Han
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Canfeng Hua
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China.
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
13
|
McMillan HM, Zebell SG, Ristaino JB, Dong X, Kuehn MJ. Protective plant immune responses are elicited by bacterial outer membrane vesicles. Cell Rep 2021; 34:108645. [PMID: 33472073 PMCID: PMC8158063 DOI: 10.1016/j.celrep.2020.108645] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/26/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) perform a variety of functions in bacterial survival and virulence. In mammalian systems, OMVs activate immune responses and are exploited as vaccines. However, little work has focused on the interactions of OMVs with plant hosts. Here, we report that OMVs from Pseudomonas syringae and P. fluorescens activate plant immune responses that protect against bacterial and oomycete pathogens. OMV-mediated immunomodulatory activity from these species displayed different sensitivity to biochemical stressors, reflecting differences in OMV content. Importantly, OMV-mediated plant responses are distinct from those triggered by conserved bacterial epitopes or effector molecules alone. Our study shows that OMV-induced protective immune responses are independent of the T3SS and protein, but that OMV-mediated seedling growth inhibition largely depends on proteinaceous components. OMVs provide a unique opportunity to understand the interplay between virulence and host response strategies and add a new dimension to consider in host-microbe interactions. The role that bacterial outer membrane vesicles (OMVs) play in plant-microbe interactions is poorly characterized. McMillan et al. show that OMVs elicit plant immune responses that protect against pathogens. This study also reveals a use for OMVs as tools to probe the plant immune system.
Collapse
Affiliation(s)
- Hannah M McMillan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Sophia G Zebell
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jean B Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Meta J Kuehn
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Biochemistry, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
14
|
Xie Y, Liu W, Shao X, Zhang W, Deng X. Signal transduction schemes in Pseudomonas syringae. Comput Struct Biotechnol J 2020; 18:3415-3424. [PMID: 33294136 PMCID: PMC7691447 DOI: 10.1016/j.csbj.2020.10.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 11/11/2022] Open
Abstract
To cope with their continually fluctuating surroundings, pathovars of the unicellular phytopathogen Pseudomonas syringae have developed rapid and sophisticated signalling networks to sense extracellular stimuli, which allow them to adjust their cellular composition to survive and cause diseases in host plants. Comparative genomic analyses of P. syringae strains have identified various genes that encode several classes of signalling proteins, although how this bacterium directly perceives these environmental cues remains elusive. Recent work has revealed new mechanisms of a cluster of bacterial signal transduction systems that mainly include two-component systems (such as RhpRS, GacAS, CvsRS and AauRS), extracytoplasmic function sigma factors (such as HrpL and AlgU), nucleotide-based secondary messengers, methyl-accepting chemotaxis sensor proteins and several other intracellular surveillance systems. In this review, we compile a list of the signal transduction mechanisms that P. syringae uses to monitor and respond in a timely manner to intracellular and external conditions. Further understanding of these surveillance processes will provide new perspectives from which to combat P. syringae infections.
Collapse
Affiliation(s)
- Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong 999077, Hong Kong Special Administrative Region
| | - Wenbao Liu
- College of Agricultural Sciences and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong 999077, Hong Kong Special Administrative Region
| | - Weihua Zhang
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong 999077, Hong Kong Special Administrative Region.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
15
|
Yuan X, Yu M, Yang CH. Innovation and Application of the Type III Secretion System Inhibitors in Plant Pathogenic Bacteria. Microorganisms 2020; 8:microorganisms8121956. [PMID: 33317075 PMCID: PMC7764658 DOI: 10.3390/microorganisms8121956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Many Gram-negative pathogenic bacteria rely on a functional type III secretion system (T3SS), which injects multiple effector proteins into eukaryotic host cells, for their pathogenicity. Genetic studies conducted in different host-microbe pathosystems often revealed a sophisticated regulatory mechanism of their T3SSs, suggesting that the expression of T3SS is tightly controlled and constantly monitored by bacteria in response to the ever-changing host environment. Therefore, it is critical to understand the regulation of T3SS in pathogenic bacteria for successful disease management. This review focuses on a model plant pathogen, Dickeyadadantii, and summarizes the current knowledge of its T3SS regulation. We highlight the roles of several T3SS regulators that were recently discovered, including the transcriptional regulators: FlhDC, RpoS, and SlyA; the post-transcriptional regulators: PNPase, Hfq with its dependent sRNA ArcZ, and the RsmA/B system; and the bacterial second messenger cyclic-di-GMP (c-di-GMP). Homologs of these regulatory components have also been characterized in almost all major bacterial plant pathogens like Erwiniaamylovora, Pseudomonassyringae, Pectobacterium spp., Xanthomonas spp., and Ralstonia spp. The second half of this review shifts focus to an in-depth discussion of the innovation and development of T3SS inhibitors, small molecules that inhibit T3SSs, in the field of plant pathology. This includes T3SS inhibitors that are derived from plant phenolic compounds, plant coumarins, and salicylidene acylhydrazides. We also discuss their modes of action in bacteria and application for controlling plant diseases.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Manda Yu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| |
Collapse
|
16
|
Hirose K, Ishiga Y, Fujikawa T. Phytotoxin synthesis genes and type III effector genes of Pseudomonas syringae pv. actinidiae biovar 6 are regulated by culture conditions. PeerJ 2020; 8:e9697. [PMID: 32864217 PMCID: PMC7430302 DOI: 10.7717/peerj.9697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/20/2020] [Indexed: 01/21/2023] Open
Abstract
The kiwifruit bacterial canker (Pseudomonas syringae pv. actinidiae; Psa) causes severe damage to kiwifruit production worldwide. Psa biovar 6 (Psa6), which was isolated in Japan in 2015, produces two types of phytotoxins: coronatine and phaseolotoxin. To elucidate the unique virulence of Psa6, we performed transcriptomic analysis of phytotoxin synthesis genes and type III effector genes in in vitro cultivation using various media. The genes related to phytotoxin synthesis and effectors of Psa6 were strictly regulated in the coronatine-inducing mediums (HS and HSC); 14 of 23 effector genes and a hrpL sigma factor gene were induced at 3 h after transferring to the media (early-inducible genes), and phytotoxin synthesis genes such as argD of phaseolotoxin and cfl of coronatine were induced at 6 and 12 h after transferring to the media (late-inducible genes). In contrast, induction of these genes was not observed in the hrp-inducing medium. Next, to examine whether the changes in gene expression in different media is specific to Psa6, we investigated gene expression in other related bacteria. For Psa biovar 1 (Psa1), biovar 3 (Psa3), and P. s. pv. glycinea (Psg), no clear trends were observed in expression behavior across various culture media and incubation times. Therefore, Psa6 seems to exert its virulence efficiently by using two phytotoxins and effectors according to environmental changes. This is not seen in other biovars and pathovars, so it is thought that Psa6 has acquired its own balance of virulence.
Collapse
Affiliation(s)
- Karin Hirose
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.,Faculty of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Fujikawa
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
17
|
Turner SE, Pang YY, O'Malley MR, Weisberg AJ, Fraser VN, Yan Q, Chang JH, Anderson JC. A DeoR-Type Transcription Regulator Is Required for Sugar-Induced Expression of Type III Secretion-Encoding Genes in Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:509-518. [PMID: 31829102 DOI: 10.1094/mpmi-10-19-0290-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The type III secretion system (T3SS) of plant-pathogenic Pseudomonas syringae is essential for virulence. Genes encoding the T3SS are not constitutively expressed and must be induced upon infection. Plant-derived metabolites, including sugars such as fructose and sucrose, are inducers of T3SS-encoding genes, yet the molecular mechanisms underlying perception of these host signals by P. syringae are unknown. Here, we report that sugar-induced expression of type III secretion A (setA), predicted to encode a DeoR-type transcription factor, is required for maximal sugar-induced expression of T3SS-associated genes in P. syringae DC3000. From a Tn5 transposon mutagenesis screen, we identified two independent mutants with insertions in setA. When both setA::Tn5 mutants were cultured in minimal medium containing fructose, genes encoding the T3SS master regulator HrpL and effector AvrRpm1 were expressed at lower levels relative to that of a wild-type strain. Decreased hrpL and avrRpm1 expression also occurred in a setA::Tn5 mutant in response to glucose, sucrose, galactose, and mannitol, demonstrating that setA is genetically required for T3SS induction by many different sugars. Expression of upstream regulators hrpR/S and rpoN was not altered in setA::Tn5, indicating that SetA positively regulates hrpL expression independently of increased transcription of these genes. In addition to decreased response to defined sugar signals, a setA::Tn5 mutant had decreased T3SS deployment during infection and was compromised in its ability to grow in planta and cause disease. These data suggest that SetA is necessary for P. syringae to effectively respond to T3SS-inducing sugar signals encountered during infection.
Collapse
Affiliation(s)
- Sydney E Turner
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
- Honors College, Oregon State University
| | - Yin-Yuin Pang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Megan R O'Malley
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Valerie N Fraser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
- Molecular and Cellular Biology Program, Oregon State University
| | - Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
- Center for Genome Research and Biocomputing, Oregon State University
| | - Jeffrey C Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| |
Collapse
|
18
|
Pseudomonas syringae AlgU Downregulates Flagellin Gene Expression, Helping Evade Plant Immunity. J Bacteriol 2020; 202:JB.00418-19. [PMID: 31740494 DOI: 10.1128/jb.00418-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Flagella power bacterial movement through liquids and over surfaces to access or avoid certain environmental conditions, ultimately increasing a cell's probability of survival and reproduction. In some cases, flagella and chemotaxis are key virulence factors enabling pathogens to gain entry and attach to suitable host tissues. However, flagella are not always beneficial; both plant and animal immune systems have evolved receptors to sense the proteins that make up flagellar filaments as signatures of bacterial infection. Microbes poorly adapted to avoid or counteract these immune functions are unlikely to be successful in host environments, and this selective pressure has driven the evolution of diverse and often redundant pathogen compensatory mechanisms. We tested the role of AlgU, the Pseudomonas extracytoplasmic function sigma factor σE/σ22 ortholog, in regulating flagellar expression in the context of Pseudomonas syringae-plant interactions. We found that AlgU is necessary for downregulating bacterial flagellin expression in planta and that this results in a corresponding reduction in plant immune elicitation. This AlgU-dependent regulation of flagellin gene expression is beneficial to bacterial growth in the course of plant infection, and eliminating the plant's ability to detect flagellin makes this AlgU-dependent function irrelevant for bacteria growing in the apoplast. Together, these results add support to an emerging model in which P. syringae AlgU functions at a key control point that serves to optimize the expression of bacterial functions during host interactions, including minimizing the expression of immune elicitors and concomitantly upregulating beneficial virulence functions.IMPORTANCE Foliar plant pathogens, like Pseudomonas syringae, adjust their physiology and behavior to facilitate host colonization and disease, but the full extent of these adaptations is not known. Plant immune systems are triggered by bacterial molecules, such as the proteins that make up flagellar filaments. In this study, we found that during plant infection, AlgU, a gene expression regulator that is responsive to external stimuli, downregulates expression of fliC, which encodes the flagellin protein, a strong elicitor of plant immune systems. This change in gene expression and resultant change in behavior correlate with reduced plant immune activation and improved P. syringae plant colonization. The results of this study demonstrate the proximate and ultimate causes of flagellar regulation in a plant-pathogen interaction.
Collapse
|
19
|
Xie Y, Shao X, Deng X. Regulation of type III secretion system inPseudomonas syringae. Environ Microbiol 2019; 21:4465-4477. [DOI: 10.1111/1462-2920.14779] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yingpeng Xie
- Department of Biomedical SciencesCity University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
| | - Xiaolong Shao
- Department of Biomedical SciencesCity University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
| | - Xin Deng
- Department of Biomedical SciencesCity University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
- Shenzhen Research InstituteCity University of Hong Kong Shenzhen 518057 China
| |
Collapse
|
20
|
Roberts R, Mainiero S, Powell AF, Liu AE, Shi K, Hind SR, Strickler SR, Collmer A, Martin GB. Natural variation for unusual host responses and flagellin-mediated immunity against Pseudomonas syringae in genetically diverse tomato accessions. THE NEW PHYTOLOGIST 2019; 223:447-461. [PMID: 30861136 DOI: 10.1111/nph.15788] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/06/2019] [Indexed: 05/20/2023]
Abstract
The interaction between tomato and Pseudomonas syringae pv tomato (Pst) is a well-developed model for investigating the molecular basis of the plant immune system. There is extensive natural variation in Solanum lycopersicum (tomato) but it has not been fully leveraged to enhance our understanding of the tomato-Pst pathosystem. We screened 216 genetically diverse accessions of cultivated tomato and a wild tomato species for natural variation in their response to three strains of Pst. The host response to Pst was investigated using multiple Pst strains, tomato accessions with available genome sequences, reactive oxygen species (ROS) assays, reporter genes and bacterial population measurements. The screen uncovered a broad range of previously unseen host symptoms in response to Pst, and one of these, stem galls, was found to be simply inherited. The screen also identified tomato accessions that showed enhanced responses to flagellin in bacterial population assays and in ROS assays upon exposure to flagellin-derived peptides, flg22 and flgII-28. Reporter genes confirmed that the host responses were due primarily to pattern recognition receptor-triggered immunity. This study revealed extensive natural variation in tomato for susceptibility and resistance to Pst and will enable elucidation of the molecular mechanisms underlying these host responses.
Collapse
Affiliation(s)
- Robyn Roberts
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | | | - Adrian F Powell
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Alexander E Liu
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Kai Shi
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Sarah R Hind
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | | | - Alan Collmer
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Korea
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
21
|
Lammertz M, Kuhn H, Pfeilmeier S, Malone J, Zipfel C, Kwaaitaal M, Lin NC, Kvitko BH, Panstruga R. Widely Conserved Attenuation of Plant MAMP-Induced Calcium Influx by Bacteria Depends on Multiple Virulence Factors and May Involve Desensitization of Host Pattern Recognition Receptors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:608-621. [PMID: 30664393 DOI: 10.1094/mpmi-10-18-0291-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Successful pathogens must efficiently defeat or delay host immune responses, including those triggered by release or exposure of microbe-associated molecular patterns (MAMPs). Knowledge of the molecular details leading to this phenomenon in genuine plant-pathogen interactions is still scarce. We took advantage of the well-established Arabidopsis thaliana-Pseudomonas syringae pv. tomato DC3000 pathosystem to explore the molecular prerequisites for the suppression of MAMP-triggered host defense by the bacterial invader. Using a transgenic Arabidopsis line expressing the calcium sensor apoaequorin, we discovered that strain DC3000 colonization results in a complete inhibition of MAMP-induced cytosolic calcium influx, a key event of immediate-early host immune signaling. A range of further plant-associated bacterial species is also able to prevent, either partially or fully, the MAMP-triggered cytosolic calcium pattern. Genetic analysis revealed that this suppressive effect partially relies on the bacterial type III secretion system (T3SS) but cannot be attributed to individual members of the currently known arsenal of strain DC3000 effector proteins. Although the phytotoxin coronatine and bacterial flagellin individually are dispensable for the effective inhibition of MAMP-induced calcium signatures, they contribute to the attenuation of calcium influx in the absence of the T3SS. Our findings suggest that the capacity to interfere with early plant immune responses is a widespread ability among plant-associated bacteria that, at least in strain DC3000, requires the combinatorial effect of multiple virulence determinants. This may also include the desensitization of host pattern recognition receptors by the prolonged exposure to MAMPs during bacterial pathogenesis.
Collapse
Affiliation(s)
- Meltem Lammertz
- 1 Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52074 Aachen, Germany
| | - Hannah Kuhn
- 1 Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52074 Aachen, Germany
| | - Sebastian Pfeilmeier
- 2 John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- 3 The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K
| | - Jacob Malone
- 2 John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
- 4 University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Cyril Zipfel
- 3 The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K
| | - Mark Kwaaitaal
- 1 Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52074 Aachen, Germany
| | - Nai-Chun Lin
- 5 Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan, Republic of China; and
| | - Brian H Kvitko
- 6 Department of Plant Pathology, University of Georgia, Athens, GA 30602, U.S.A
| | - Ralph Panstruga
- 1 Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
22
|
Dillon MM, Almeida RN, Laflamme B, Martel A, Weir BS, Desveaux D, Guttman DS. Molecular Evolution of Pseudomonas syringae Type III Secreted Effector Proteins. FRONTIERS IN PLANT SCIENCE 2019; 10:418. [PMID: 31024592 PMCID: PMC6460904 DOI: 10.3389/fpls.2019.00418] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/19/2019] [Indexed: 05/02/2023]
Abstract
Diverse Gram-negative pathogens like Pseudomonas syringae employ type III secreted effector (T3SE) proteins as primary virulence factors that combat host immunity and promote disease. T3SEs can also be recognized by plant hosts and activate an effector triggered immune (ETI) response that shifts the interaction back toward plant immunity. Consequently, T3SEs are pivotal in determining the virulence potential of individual P. syringae strains, and ultimately help to restrict P. syringae pathogens to a subset of potential hosts that are unable to recognize their repertoires of T3SEs. While a number of effector families are known to be present in the P. syringae species complex, one of the most persistent challenges has been documenting the complex variation in T3SE contents across a diverse collection of strains. Using the entire pan-genome of 494 P. syringae strains isolated from more than 100 hosts, we conducted a global analysis of all known and putative T3SEs. We identified a total of 14,613 putative T3SEs, 4,636 of which were unique at the amino acid level, and show that T3SE repertoires of different P. syringae strains vary dramatically, even among strains isolated from the same hosts. We also find substantial diversification within many T3SE families, and in many cases find strong signatures of positive selection. Furthermore, we identify multiple gene gain and loss events for several families, demonstrating an important role of horizontal gene transfer (HGT) in the evolution of P. syringae T3SEs. These analyses provide insight into the evolutionary history of P. syringae T3SEs as they co-evolve with the host immune system, and dramatically expand the database of P. syringae T3SEs alleles.
Collapse
Affiliation(s)
- Marcus M. Dillon
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Renan N.D. Almeida
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Bradley Laflamme
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Alexandre Martel
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| | - David S. Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Wang J, Shao X, Zhang Y, Zhu Y, Yang P, Yuan J, Wang T, Yin C, Wang W, Chen S, Liang H, Deng X. HrpS Is a Global Regulator on Type III Secretion System (T3SS) and Non-T3SS Genes in Pseudomonas savastanoi pv. phaseolicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1232-1243. [PMID: 29717915 DOI: 10.1094/mpmi-02-18-0035-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The type III secretion system (T3SS) is the main machinery for Pseudomonas savastanoi and other gram-negative bacteria to invade plant cells. HrpR and HrpS form a hetero-hexamer, which activates the expression of HrpL, which induces all T3SS genes by binding to a 'hrp box' in promoters. However, the individual molecular mechanism of HrpR or HrpS has not been fully understood. Through chromatin immunoprecipitation coupled to high-throughput DNA sequencing, we found that HrpR, HrpS, and HrpL had four, 47, and 31 targets on the genome, respectively. HrpS directly bound to the promoter regions of a group of T3SS genes and non-T3SS genes. HrpS independently regulated these genes in a hrpL deletion strain. Additionally, a HrpS-binding motif (GTGCCAAA) was identified, which was verified by electrophoretic mobility shift assay and lux-reporter assay. HrpS also regulated motility and biofilm formation in P. savastanoi. The present study strongly suggests that HrpS alone can work as a global regulator on both T3SS and non-T3SS genes in P. savastanoi. [Formula: see text] Copyright © 2018 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- Jingru Wang
- 1 Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin, 300457, China
| | - Xiaolong Shao
- 1 Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin, 300457, China
| | - Yingchao Zhang
- 1 Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin, 300457, China
| | - Yanan Zhu
- 2 Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, U.S.A
| | - Pan Yang
- 1 Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin, 300457, China
| | - Jian Yuan
- 1 Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin, 300457, China
| | - Tingting Wang
- 3 Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Rd, Kowloon Tong, Hong Kong
| | - Chunyan Yin
- 1 Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin, 300457, China
| | - Wei Wang
- 1 Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin, 300457, China
| | - Sheng Chen
- 4 Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; and
| | - Haihua Liang
- 5 Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China
| | - Xin Deng
- 3 Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Rd, Kowloon Tong, Hong Kong
| |
Collapse
|
24
|
Mwimba M, Karapetyan S, Liu L, Marqués J, McGinnis EM, Buchler NE, Dong X. Daily humidity oscillation regulates the circadian clock to influence plant physiology. Nat Commun 2018; 9:4290. [PMID: 30327472 PMCID: PMC6191426 DOI: 10.1038/s41467-018-06692-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/20/2018] [Indexed: 01/27/2023] Open
Abstract
Early circadian studies in plants by de Mairan and de Candolle alluded to a regulation of circadian clocks by humidity. However, this regulation has not been described in detail, nor has its influence on physiology been demonstrated. Here we report that, under constant light, circadian humidity oscillation can entrain the plant circadian clock to a period of 24 h probably through the induction of clock genes such as CIRCADIAN CLOCK ASSOCIATED 1. Under simulated natural light and humidity cycles, humidity oscillation increases the amplitude of the circadian clock and further improves plant fitness-related traits. In addition, humidity oscillation enhances effector-triggered immunity at night possibly to counter increased pathogen virulence under high humidity. These results indicate that the humidity oscillation regulates specific circadian outputs besides those co-regulated with the light-dark cycle.
Collapse
Affiliation(s)
- Musoki Mwimba
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA
| | - Sargis Karapetyan
- Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA.,Department of Physics, Duke University, Durham, NC, 27708, USA
| | - Lijing Liu
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA
| | - Jorge Marqués
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA
| | - Erin M McGinnis
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA
| | - Nicolas E Buchler
- Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA.,Department of Physics, Duke University, Durham, NC, 27708, USA.,Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA. .,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA.
| |
Collapse
|
25
|
Santamaría-Hernando S, Rodríguez-Herva JJ, Martínez-García PM, Río-Álvarez I, González-Melendi P, Zamorano J, Tapia C, Rodríguez-Palenzuela P, López-Solanilla E. Pseudomonas syringae pv. tomato exploits light signals to optimize virulence and colonization of leaves. Environ Microbiol 2018; 20:4261-4280. [PMID: 30058114 DOI: 10.1111/1462-2920.14331] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/13/2018] [Accepted: 06/17/2018] [Indexed: 11/30/2022]
Abstract
Light is pervasive in the leaf environment, creating opportunities for both plants and pathogens to cue into light as a signal to regulate plant-microbe interactions. Light enhances plant defences and regulates opening of stomata, an entry point for foliar bacterial pathogens such as Pseudomonas syringae pv. tomato DC3000 (PsPto). The effect of light perception on gene expression and virulence was investigated in PsPto. Light induced genetic reprogramming in PsPto that entailed significant changes in stress tolerance and virulence. Blue light-mediated up-regulation of type three secretion system genes and red light-mediated down-regulation of coronatine biosynthesis genes. Cells exposed to white light, blue light or darkness before inoculation were more virulent when inoculated at dawn than dusk probably due to an enhanced entry through open stomata. Exposure to red light repressed coronatine biosynthesis genes which could lead to a reduced stomatal re-opening and PsPto entry. Photoreceptor were required for the greater virulence of light-treated and dark-treated PsPto inoculated at dawn as compared to dusk, indicating that these proteins sense the absence of light and contribute to priming of virulence in the dark. These results support a model in which PsPto exploits light changes to maximize survival, entry and virulence on plants.
Collapse
Affiliation(s)
- Saray Santamaría-Hernando
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - José J Rodríguez-Herva
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.,Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| | - Pedro M Martínez-García
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Isabel Río-Álvarez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.,Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| | - Jaime Zamorano
- Departamento de Astrofísica y CC. de la Atmósfera, Universidad Complutense, Madrid, Spain
| | - Carlos Tapia
- Departamento de Astrofísica y CC. de la Atmósfera, Universidad Complutense, Madrid, Spain
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.,Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.,Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| |
Collapse
|
26
|
Wei H, Collmer A. Defining essential processes in plant pathogenesis with Pseudomonas syringae pv. tomato DC3000 disarmed polymutants and a subset of key type III effectors. MOLECULAR PLANT PATHOLOGY 2018; 19:1779-1794. [PMID: 29277959 PMCID: PMC6638048 DOI: 10.1111/mpp.12655] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/10/2017] [Accepted: 12/20/2017] [Indexed: 05/22/2023]
Abstract
Pseudomonas syringae pv. tomato DC3000 and its derivatives cause disease in tomato, Arabidopsis and Nicotiana benthamiana. The primary virulence factors include a repertoire of 29 effector proteins injected into plant cells by the type III secretion system and the phytotoxin coronatine. The complete repertoire of effector genes and key coronatine biosynthesis genes have been progressively deleted and minimally reassembled to reconstitute basic pathogenic ability in N. benthamiana, and in Arabidopsis plants that have mutations in target genes that mimic effector actions. This approach and molecular studies of effector activities and plant immune system targets have highlighted a small subset of effectors that contribute to essential processes in pathogenesis. Most notably, HopM1 and AvrE1 redundantly promote an aqueous apoplastic environment, and AvrPtoB and AvrPto redundantly block early immune responses, two conditions that are sufficient for substantial bacterial growth in planta. In addition, disarmed DC3000 polymutants have been used to identify the individual effectors responsible for specific activities of the complete repertoire and to more effectively study effector domains, effector interplay and effector actions on host targets. Such work has revealed that AvrPtoB suppresses cell death elicitation in N. benthamiana that is triggered by another effector in the DC3000 repertoire, highlighting an important aspect of effector interplay in native repertoires. Disarmed DC3000 polymutants support the natural delivery of test effectors and infection readouts that more accurately reveal effector functions in key pathogenesis processes, and enable the identification of effectors with similar activities from a broad range of other pathogens that also defeat plants with cytoplasmic effectors.
Collapse
Affiliation(s)
- Hai‐Lei Wei
- School of Integrative Plant ScienceSection of Plant Pathology and Plant–Microbe Biology, Cornell UniversityIthacaNY14853USA
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of AgricultureInstitute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Alan Collmer
- School of Integrative Plant ScienceSection of Plant Pathology and Plant–Microbe Biology, Cornell UniversityIthacaNY14853USA
| |
Collapse
|
27
|
Lovelace AH, Smith A, Kvitko BH. Pattern-Triggered Immunity Alters the Transcriptional Regulation of Virulence-Associated Genes and Induces the Sulfur Starvation Response in Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:750-765. [PMID: 29460676 DOI: 10.1094/mpmi-01-18-0008-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pattern-triggered immunity (PTI) can confer broad defense against diverse microbes and pathogens with disparate lifestyles through the detection of microbial extracellular signatures by surface-exposed pattern recognition receptors. However, unlike recognition of pathogen effectors by cytosolic resistance proteins, PTI is typically not associated with a host-cell programmed cell death response. Although host PTI signaling has been extensively studied, the mechanisms by which it restricts microbial colonization are poorly understood. We sought to gain insight into the mechanisms of PTI action by using bacterial transcriptomics analysis during exposure to PTI. Here, we describe a method for bacterial cell extraction from inoculated leaves that was used to analyze a time course of genome-wide transcriptional responses in the pathogen Pseudomonas syringae pv. tomato DC3000 during early naïve host infection and exposure to pre-induced PTI in Arabidopsis thaliana. Our analysis revealed early transcriptional regulation of important bacterial metabolic processes and host interaction pathways. We observed peak induction of P. syringae virulence genes at 3 h postinoculation and that exposure to PTI was associated with significant reductions in the expression of virulence genes. We also observed the induction of P. syringae sulfur starvation response genes such as sulfate and sulfonate importers only during exposure to PTI.
Collapse
Affiliation(s)
- Amelia H Lovelace
- 1 Department of Plant Pathology, University of Georgia, Athens, GA, U.S.A.; and
| | - Amy Smith
- 1 Department of Plant Pathology, University of Georgia, Athens, GA, U.S.A.; and
| | - Brian H Kvitko
- 1 Department of Plant Pathology, University of Georgia, Athens, GA, U.S.A.; and
- 2 The Plant Center, University of Georgia
| |
Collapse
|
28
|
Wei HL, Zhang W, Collmer A. Modular Study of the Type III Effector Repertoire in Pseudomonas syringae pv. tomato DC3000 Reveals a Matrix of Effector Interplay in Pathogenesis. Cell Rep 2018; 23:1630-1638. [PMID: 29742421 DOI: 10.1016/j.celrep.2018.04.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/05/2018] [Accepted: 04/06/2018] [Indexed: 02/01/2023] Open
Abstract
The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered innate immune system of Nicotiana benthamiana and other plants by injecting a complex repertoire of type III secretion effector (T3E) proteins. Effectorless polymutant DC3000D36E was used with a modularized system for native delivery of the 29 DC3000 T3Es singly and in pairs. Assays of the performance of this T3E library in N. benthamiana leaves revealed a matrix of T3E interplay, with six T3Es eliciting death and eight others variously suppressing the death activity of the six. The T3E library was also interrogated for effects on DC3000D36E elicitation of a reactive oxygen species burst, for growth in planta, and for T3Es that reversed these effects. Pseudomonas fluorescens and Agrobacterium tumefaciens heterologous delivery systems yielded notably different sets of death-T3Es. The DC3000D36E T3E library system highlights the importance of 13 T3Es and their interplay in interactions with N. benthamiana.
Collapse
Affiliation(s)
- Hai-Lei Wei
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wei Zhang
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alan Collmer
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
29
|
Abstract
An accurate and complete roster of the Type III effector (T3E) proteins translocated by the P. syringae Type III secretion system (T3SS) into host cells is critical to understanding the pathogen's interactions with plants. The adenylate cyclase (Cya) reporter offers a highly sensitive and robust assay for monitoring the translocation of T3Es. T3Es are fused to the calmodulin-dependent adenylate-cyclase domain of CyaA. The T3E targets Cya for translocation through the T3SS into the host cell at which point it is activated by calmodulin and converts adenosine triphosphate into cyclic adenosine monophosphate (cAMP). The T3SS translocation-dependent increase in cAMP concentration in plant cells is then measured with an enzyme-linked immunosorbent assay kit. The Cya reporter can be used to determine whether a candidate protein is translocated by T3SS or to measure relative levels of T3SS translocation in a semiquantitative manner.
Collapse
|
30
|
Ca 2+-Induced Two-Component System CvsSR Regulates the Type III Secretion System and the Extracytoplasmic Function Sigma Factor AlgU in Pseudomonas syringae pv. tomato DC3000. J Bacteriol 2018; 200:JB.00538-17. [PMID: 29263098 DOI: 10.1128/jb.00538-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/12/2017] [Indexed: 11/20/2022] Open
Abstract
Two-component systems (TCSs) of bacteria regulate many different aspects of the bacterial life cycle, including pathogenesis. Most TCSs remain uncharacterized, with no information about the signal(s) or regulatory targets and/or role in bacterial pathogenesis. Here, we characterized a TCS in the plant-pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 composed of the histidine kinase CvsS and the response regulator CvsR. CvsSR is necessary for virulence of P. syringae pv. tomato DC3000, since ΔcvsS and ΔcvsR strains produced fewer symptoms than the wild type (WT) and demonstrated reduced growth on multiple hosts. We discovered that expression of cvsSR is induced by Ca2+ concentrations found in leaf apoplastic fluid. Thus, Ca2+ can be added to the list of signals that promote pathogenesis of P. syringae pv. tomato DC3000 during host colonization. Through chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) and global transcriptome analysis (RNA-seq), we discerned the CvsR regulon. CvsR directly activated expression of the type III secretion system regulators, hrpR and hrpS, that regulate P. syringae pv. tomato DC3000 virulence in a type III secretion system-dependent manner. CvsR also indirectly repressed transcription of the extracytoplasmic sigma factor algU and production of alginate. Phenotypic analysis determined that CvsSR inversely regulated biofilm formation, swarming motility, and cellulose production in a Ca2+-dependent manner. Overall, our results show that CvsSR is a key regulatory hub critical for interaction with host plants.IMPORTANCE Pathogenic bacteria must be able to react and respond to the surrounding environment, make use of available resources, and avert or counter host immune responses. Often, these abilities rely on two-component systems (TCSs) composed of interacting proteins that modulate gene expression. We identified a TCS in the plant-pathogenic bacterium Pseudomonas syringae that responds to the presence of calcium, which is an important signal during the plant defense response. We showed that when P. syringae is grown in the presence of calcium, this TCS regulates expression of factors contributing to disease. Overall, our results provide a better understanding of how bacterial pathogens respond to plant signals and control systems necessary for eliciting disease.
Collapse
|
31
|
Kunkel BN, Harper CP. The roles of auxin during interactions between bacterial plant pathogens and their hosts. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:245-254. [PMID: 29272462 DOI: 10.1093/jxb/erx447] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant pathogens have evolved several strategies to manipulate the biology of their hosts to facilitate colonization, growth to high levels in plant tissue, and production of disease. One of the less well known of these strategies is the synthesis of plant hormones and hormone analogs, and there is growing evidence that modulation of host hormone signaling is important during pathogenesis. Several plant pathogens produce the auxin indole-3-acetic acid (IAA) and/or virulence factors that modulate host auxin signaling. Auxin is well known for being involved in many aspects of plant growth and development, but recent findings have revealed that elevated IAA levels or enhanced auxin signaling can also promote disease development in some plant-pathogen interactions. In addition to stimulating plant cell growth during infection by gall-forming bacteria, auxin and auxin signaling can antagonize plant defense responses. Auxin can also act as a microbial signaling molecule to impact the biology of some pathogens directly. In this review, we summarize recent progress towards elucidating the roles that auxin production, modification of host auxin signaling, and direct effects of auxin on pathogens play during pathogenesis, with emphasis on the impacts of auxin on interactions with bacterial pathogens.
Collapse
Affiliation(s)
- Barbara N Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
32
|
Butcher BG, Bao Z, Wilson J, Stodghill P, Swingle B, Filiatrault M, Schneider D, Cartinhour S. The ECF sigma factor, PSPTO_1043, in Pseudomonas syringae pv. tomato DC3000 is induced by oxidative stress and regulates genes involved in oxidative stress response. PLoS One 2017; 12:e0180340. [PMID: 28700608 PMCID: PMC5507510 DOI: 10.1371/journal.pone.0180340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 06/14/2017] [Indexed: 01/14/2023] Open
Abstract
The bacterial plant pathogen Pseudomonas syringae adapts to changes in the environment by modifying its gene expression profile. In many cases, the response is mediated by the activation of extracytoplasmic function (ECF) sigma factors that direct RNA polymerase to transcribe specific sets of genes. In this study we focus on PSPTO_1043, one of ten ECF sigma factors in P. syringae pv. tomato DC3000 (DC3000). PSPTO_1043, together with PSPTO_1042, encode an RpoERsp/ChrR-like sigma/anti-sigma factor pair. Although this gene pair is unique to the P. syringae group among the pseudomonads, homologous genes can be found in photosynthetic genera such as Rhodospirillum, Thalassospira, Phaeospirillum and Parvibaculum. Using ChIP-Seq, we detected 137 putative PSPTO_1043 binding sites and identified a likely promoter motif. We characterized 13 promoter candidates, six of which regulate genes that appear to be found only in P. syringae. PSPTO_1043 responds to the presence of singlet oxygen (1O2) and tert-butyl hydroperoxide (tBOOH) and several of the genes regulated by PSPTO_1043 appear to be involved in response to oxidative stress.
Collapse
Affiliation(s)
- Bronwyn G. Butcher
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
| | - Zhongmeng Bao
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
| | - Janet Wilson
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
| | - Paul Stodghill
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
- * E-mail:
| | - Bryan Swingle
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
| | - Melanie Filiatrault
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
| | - David Schneider
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
| | - Samuel Cartinhour
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
| |
Collapse
|
33
|
Chakravarthy S, Butcher BG, Liu Y, D'Amico K, Coster M, Filiatrault MJ. Virulence of Pseudomonas syringae pv. tomato DC3000 Is Influenced by the Catabolite Repression Control Protein Crc. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:283-294. [PMID: 28384054 DOI: 10.1094/mpmi-09-16-0196-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pseudomonas syringae infects diverse plant species and is widely used as a model system in the study of effector function and the molecular basis of plant diseases. Although the relationship between bacterial metabolism, nutrient acquisition, and virulence has attracted increasing attention in bacterial pathology, it is largely unexplored in P. syringae. The Crc (catabolite repression control) protein is a putative RNA-binding protein that regulates carbon metabolism as well as a number of other factors in the pseudomonads. Here, we show that deletion of crc increased bacterial swarming motility and biofilm formation. The crc mutant showed reduced growth and symptoms in Arabidopsis and tomato when compared with the wild-type strain. We have evidence that the crc mutant shows delayed hypersensitive response (HR) when infiltrated into Nicotiana benthamiana and tobacco. Interestingly, the crc mutant was more susceptible to hydrogen peroxide, suggesting that, in planta, the mutant may be sensitive to reactive oxygen species generated during pathogen-associated molecular pattern-triggered immunity (PTI). Indeed, HR was further delayed when PTI-induced tissues were challenged with the crc mutant. The crc mutant did not elicit an altered PTI response in plants compared with the wild-type strain. We conclude that Crc plays an important role in growth and survival during infection.
Collapse
Affiliation(s)
- Suma Chakravarthy
- 1 School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A.; and
| | - Bronwyn G Butcher
- 1 School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A.; and
| | - Yingyu Liu
- 1 School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A.; and
| | - Katherine D'Amico
- 1 School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A.; and
- 2 Emerging Pests & Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, U.S.A
| | - Matthew Coster
- 1 School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A.; and
| | - Melanie J Filiatrault
- 1 School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A.; and
- 2 Emerging Pests & Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, U.S.A
| |
Collapse
|
34
|
Zhou T, Yin C, Zhang Y, Shi H, Wang J, Sun L, Shao X, Gao R, Wang W, Deng X. Lon Protease Is Involved in RhpRS-Mediated Regulation of Type III Secretion in Pseudomonas syringae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:807-814. [PMID: 27657922 DOI: 10.1094/mpmi-06-16-0114-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pseudomonas syringae depends on the type III secretion system (T3SS) to directly translocate effectors into host cells. Previously, we reported a nonpathogenic rhpS mutant, suggesting that the two-component transduction system rhpRS is an important regulator of T3SS in P. syringae. rhpRS regulates itself and a variety of downstream genes under an inverted repeat element promoter in a phosphorylation-dependent manner. Here, we identify lon as a suppressor of the rhpS mutant through transposon screening. A lon/rhpS double mutant restored the phenotypes of the rhpS mutant. The expression level of lon was higher in rhpS and other T3SS-deficient mutants than the wild-type strain, suggesting a negative feedback mechanism between lon and T3SS genes. lon was also induced by a novel T3SS inhibitor, acetate, which substantially compromises the activation of T3SS genes in minimal medium and bacterial growth in host plants.
Collapse
Affiliation(s)
- Tianhong Zhou
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China
| | - Chunyan Yin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China
| | - Yingchao Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China
| | - Heng Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China
| | - Jingru Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China
| | - Linbo Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China
| | - Xiaolong Shao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China
| | - Ruxia Gao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China
| | - Xin Deng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China
| |
Collapse
|
35
|
Indole-3-acetic acid in plant-pathogen interactions: a key molecule for in planta bacterial virulence and fitness. Res Microbiol 2016; 167:774-787. [PMID: 27637152 DOI: 10.1016/j.resmic.2016.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/06/2016] [Accepted: 09/01/2016] [Indexed: 11/22/2022]
Abstract
The plant pathogenic bacterium Pseudomonas savastanoi, the causal agent of olive and oleander knot disease, uses the so-called "indole-3-acetamide pathway" to convert tryptophan to indole-3-acetic acid (IAA) via a two-step pathway catalyzed by enzymes encoded by the genes in the iaaM/iaaH operon. Moreover, pathovar nerii of P. savastanoi is able to conjugate IAA to lysine to generate the less biologically active compound IAA-Lys via the enzyme IAA-lysine synthase encoded by the iaaL gene. Interestingly, iaaL is now known to be widespread in many Pseudomonas syringae pathovars, even in the absence of the iaaM and iaaH genes for IAA biosynthesis. Here, two knockout mutants, ΔiaaL and ΔiaaM, of strain Psn23 of P. savastanoi pv. nerii were produced. Pathogenicity tests using the host plant Nerium oleander showed that ΔiaaL and ΔiaaM were hypervirulent and hypovirulent, respectively and these features appeared to be related to their differential production of free IAA. Using the Phenotype Microarray approach, the chemical sensitivity of these mutants was shown to be comparable to that of wild-type Psn23. The main exception was 8 hydroxyquinoline, a toxic compound that is naturally present in plant exudates and is used as a biocide, which severely impaired the growth of ΔiaaL and ΔiaaM, as well as growth of the non-pathogenic mutant ΔhrpA, which lacks a functional Type Three Secretion System (TTSS). According to bioinformatics analysis of the Psn23 genome, a gene encoding a putative Multidrug and Toxic compound Extrusion (MATE) transporter, was found upstream of iaaL. Similarly to iaaL and iaaM, its expression appeared to be TTSS-dependent. Moreover, auxin-responsive elements were identified for the first time in the modular promoters of both the iaaL gene and the iaaM/iaaH operon of P. savastanoi, suggesting their IAA-inducible transcription. Gene expression analysis of several genes related to TTSS, IAA metabolism and drug resistance confirmed the presence of a concerted regulatory network in this phytopathogen among virulence, fitness and drug efflux.
Collapse
|
36
|
Rufián JS, Sánchez-Romero MA, López-Márquez D, Macho AP, Mansfield JW, Arnold DL, Ruiz-Albert J, Casadesús J, Beuzón CR. Pseudomonas syringae Differentiates into Phenotypically Distinct Subpopulations During Colonization of a Plant Host. Environ Microbiol 2016; 18:3593-3605. [PMID: 27516206 DOI: 10.1111/1462-2920.13497] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/09/2016] [Indexed: 11/28/2022]
Abstract
Bacterial microcolonies with heterogeneous sizes are formed during colonization of Phaseolus vulgaris by Pseudomonas syringae. Heterogeneous expression of structural and regulatory components of the P. syringae type III secretion system (T3SS), essential for colonization of the host apoplast and disease development, is likewise detected within the plant apoplast. T3SS expression is bistable in the homogeneous environment of nutrient-limited T3SS-inducing medium, suggesting that subpopulation formation is not a response to different environmental cues. T3SS bistability is reversible, indicating a non-genetic origin, and the T3SSHIGH and T3SSLOW subpopulations show differences in virulence. T3SS bistability requires the transcriptional activator HrpL, the double negative regulatory loop established by HrpV and HrpG, and may be enhanced through a positive feedback loop involving HrpA, the main component of the T3SS pilus. To our knowledge, this is the first example of phenotypic heterogeneity in the expression of virulence determinants during colonization of a non-mammalian host.
Collapse
Affiliation(s)
- José S Rufián
- Depto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain
| | | | - Diego López-Márquez
- Depto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain
| | - Alberto P Macho
- Depto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain
| | - John W Mansfield
- Faculty of Natural Sciences, Imperial College, London, SW7 2AZ, UK
| | - Dawn L Arnold
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Javier Ruiz-Albert
- Depto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, 1095, Spain
| | - Carmen R Beuzón
- Depto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain.
| |
Collapse
|
37
|
Ishiga Y, Ichinose Y. Pseudomonas syringae pv. tomato OxyR Is Required for Virulence in Tomato and Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:119-31. [PMID: 26554736 DOI: 10.1094/mpmi-09-15-0204-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reactive oxygen species (ROS) have been shown to have a crucial role in plant defense responses and signaling pathways. In addition, ROS also have direct toxicity against pathogens. However, the molecular mechanisms of plant ROS in the direct effects against pathogens is still unclear. To investigate the function of plant ROS in the interactions of plant and bacterial pathogens, we focused on oxyR, encoding an oxidative stress-regulated transcription factor in Pseudomonas syringae pv. tomato DC3000 (DC3000), and generated an ΔoxyR mutant. The DC3000 ΔoxyR mutant showed high sensitivity to oxidative stress in comparison with wild type and the complemented line. The host plants of DC3000, including tomato and Arabidopsis inoculated with the ΔoxyR mutant, clearly showed reduced disease symptoms as well as reduced bacterial populations. Expression profiles of DC3000 genes revealed that OxyR could regulate the expression of genes encoding ROS-detoxifying enzymes, including catalases (KatB and KatG), in response to ROS. We also demonstrated that the expression of katB could be regulated by OxyR during the infection of DC3000 in Arabidopsis. These results suggest that OxyR has an important role in the virulence of DC3000 by regulating the expression of genes related to oxidative stress.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- 1 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yuki Ichinose
- 2 Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| |
Collapse
|
38
|
Castillo-Lizardo MG, Aragón IM, Carvajal V, Matas IM, Pérez-Bueno ML, Gallegos MT, Barón M, Ramos C. Contribution of the non-effector members of the HrpL regulon, iaaL and matE, to the virulence of Pseudomonas syringae pv. tomato DC3000 in tomato plants. BMC Microbiol 2015; 15:165. [PMID: 26285820 PMCID: PMC4544800 DOI: 10.1186/s12866-015-0503-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The phytohormone indole-3-acetic acid (IAA) is widely distributed among plant-associated bacteria. Certain strains of the Pseudomonas syringae complex can further metabolize IAA into a less biologically active amino acid conjugate, 3-indole-acetyl-ε-L-lysine, through the action of the iaaL gene. In P. syringae and Pseudomonas savastanoi strains, the iaaL gene is found in synteny with an upstream gene, here called matE, encoding a putative MATE family transporter. In P. syringae pv. tomato (Pto) DC3000, a pathogen of tomato and Arabidopsis plants, the HrpL sigma factor controls the expression of a suite of virulence-associated genes via binding to hrp box promoters, including that of the iaaL gene. However, the significance of HrpL activation of the iaaL gene in the virulence of Pto DC3000 is still unclear. RESULTS A conserved hrp box motif is found upstream of the iaaL gene in the genomes of P. syringae strains. However, although the promoter region of matE is only conserved in genomospecies 3 of this bacterial group, we showed that this gene also belongs to the Pto DC3000 HrpL regulon. We also demonstrated that the iaaL gene is transcribed both independently and as part of an operon with matE in this pathogen. Deletion of either the iaaL or the matE gene resulted in reduced fitness and virulence of Pto DC3000 in tomato plants. In addition, we used multicolor fluorescence imaging to visualize the responses of tomato plants to wild-type Pto DC3000 and to its ΔmatE and ΔiaaL mutants. Activation of secondary metabolism prior to the development of visual symptoms was observed in tomato leaves after bacterial challenges with all strains. However, the observed changes were strongest in plants challenged by the wild-type strain, indicating lower activation of secondary metabolism in plants infected with the ΔmatE or ΔiaaL mutants. CONCLUSIONS Our results provide new evidence for the roles of non-type III effector genes belonging to the Pto DC3000 HrpL regulon in virulence.
Collapse
Affiliation(s)
- Melissa G Castillo-Lizardo
- Área de Genética, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Campus de Teatinos, 29071, Málaga, Spain.,German Center for Neurodegenerative Diseases, DZNE, Otfried-Müller-Straße, 27, 72076, Tübingen, Germany
| | - Isabel M Aragón
- Área de Genética, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Campus de Teatinos, 29071, Málaga, Spain
| | - Vivian Carvajal
- Estación Experimental del Zaidín, CSIC (EEZ-CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Isabel M Matas
- Área de Genética, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Campus de Teatinos, 29071, Málaga, Spain.,Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, Navarra, Spain
| | - María Luisa Pérez-Bueno
- Estación Experimental del Zaidín, CSIC (EEZ-CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - María-Trinidad Gallegos
- Estación Experimental del Zaidín, CSIC (EEZ-CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Matilde Barón
- Estación Experimental del Zaidín, CSIC (EEZ-CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Cayo Ramos
- Área de Genética, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Campus de Teatinos, 29071, Málaga, Spain.
| |
Collapse
|
39
|
Wei HL, Chakravarthy S, Mathieu J, Helmann TC, Stodghill P, Swingle B, Martin GB, Collmer A. Pseudomonas syringae pv. tomato DC3000 Type III Secretion Effector Polymutants Reveal an Interplay between HopAD1 and AvrPtoB. Cell Host Microbe 2015; 17:752-62. [PMID: 26067603 PMCID: PMC4471848 DOI: 10.1016/j.chom.2015.05.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/05/2015] [Accepted: 04/17/2015] [Indexed: 11/20/2022]
Abstract
The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered plant innate immune system by injecting a complex repertoire of type III secretion effector (T3E) proteins. Beyond redundancy and interplay, individual T3Es may interact with multiple immunity-associated proteins, rendering their analysis challenging. We constructed a Pst DC3000 polymutant lacking all 36 T3Es and restored individual T3Es or their mutants to explore the interplay among T3Es. The weakly expressed T3E HopAD1 was sufficient to elicit immunity-associated cell death in Nicotiana benthamiana. HopAD1-induced cell death was suppressed partially by native AvrPtoB and completely by AvrPtoBM3, which has mutations disrupting its E3 ubiquitin ligase domain and two known domains for interacting with immunity-associated kinases. AvrPtoBM3 also gained the ability to interact with the immunity-kinase MKK2, which is required for HopAD1-dependent cell death. Thus, AvrPtoB has alternative, competing mechanisms for suppressing effector-triggered plant immunity. This approach allows the deconvolution of individual T3E activities.
Collapse
Affiliation(s)
- Hai-Lei Wei
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Suma Chakravarthy
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Johannes Mathieu
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Tyler C Helmann
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Paul Stodghill
- United States Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853, USA
| | - Bryan Swingle
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA; United States Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853, USA
| | - Gregory B Martin
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA; Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.
| | - Alan Collmer
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|