1
|
Mbewe W, Mukasa S, Ochwo-Ssemakula M, Sseruwagi P, Tairo F, Ndunguru J, Duffy S. Cassava brown streak virus evolves with a nucleotide-substitution rate that is typical for the family Potyviridae. Virus Res 2024; 346:199397. [PMID: 38750679 PMCID: PMC11145536 DOI: 10.1016/j.virusres.2024.199397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
The ipomoviruses (family Potyviridae) that cause cassava brown streak disease (cassava brown streak virus [CBSV] and Uganda cassava brown streak virus [UCBSV]) are damaging plant pathogens that affect the sustainability of cassava production in East and Central Africa. However, little is known about the rate at which the viruses evolve and when they emerged in Africa - which inform how easily these viruses can host shift and resist RNAi approaches for control. We present here the rates of evolution determined from the coat protein gene (CP) of CBSV (Temporal signal in a UCBSV dataset was not sufficient for comparable analysis). Our BEAST analysis estimated the CBSV CP evolves at a mean rate of 1.43 × 10-3 nucleotide substitutions per site per year, with the most recent common ancestor of sampled CBSV isolates existing in 1944 (95% HPD, between years 1922 - 1963). We compared the published measured and estimated rates of evolution of CPs from ten families of plant viruses and showed that CBSV is an average-evolving potyvirid, but that members of Potyviridae evolve more quickly than members of Virgaviridae and the single representatives of Betaflexiviridae, Bunyaviridae, Caulimoviridae and Closteroviridae.
Collapse
Affiliation(s)
- Willard Mbewe
- Department of Biological Sciences, Malawi University of Science and Technology, P. O. Box 5196, Limbe, Malawi.
| | - Settumba Mukasa
- School of Agriculture and Environmental Science, Department of Agricultural Production, P. O. Box 7062, Makerere University, Kampala, Uganda
| | - Mildred Ochwo-Ssemakula
- School of Agriculture and Environmental Science, Department of Agricultural Production, P. O. Box 7062, Makerere University, Kampala, Uganda
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Slaam, Tanzania
| | - Fred Tairo
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Slaam, Tanzania
| | - Joseph Ndunguru
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Slaam, Tanzania
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901, United States.
| |
Collapse
|
2
|
Belkina D, Karpova D, Porotikova E, Lifanov I, Vinogradova S. Grapevine Virome of the Don Ampelographic Collection in Russia Has Concealed Five Novel Viruses. Viruses 2023; 15:2429. [PMID: 38140672 PMCID: PMC10747563 DOI: 10.3390/v15122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, an analysis of the virome of 51 grapevines from the Don ampelographic collection named after Ya. I. Potapenko (Russia) was performed using high-throughput sequencing of total RNA. A total of 20 previously described grapevine viruses and 4 viroids were identified. The most detected were grapevine rupestris stem pitting-associated virus (98%), hop stunt viroid (98%), grapevine Pinot gris virus (96%), grapevine yellow speckle viroid 1 (94%), and grapevine fleck virus (GFkV, 80%). Among the economically significant viruses, the most present were grapevine leafroll-associated virus 3 (37%), grapevine virus A (24%), and grapevine leafroll-associated virus 1 (16%). For the first time in Russia, a grapevine-associated tymo-like virus (78%) was detected. After a bioinformatics analysis, 123 complete or nearly complete viral genomes and 64 complete viroid genomes were assembled. An analysis of the phylogenetic relationships with reported global isolates was performed. We discovered and characterized the genomes of five novel grapevine viruses: bipartite dsRNA grapevine alphapartitivirus (genus Alphapartitivirus, family Partitiviridae), bipartite (+) ssRNA grapevine secovirus (genus Fabavirus, family Secoviridae) and three (+) ssRNA grapevine umbra-like viruses 2, -3, -4 (which phylogenetically occupy an intermediate position between representatives of the genus Umbravirus and umbravirus-like associated RNAs).
Collapse
Affiliation(s)
- Daria Belkina
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| | - Daria Karpova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| | - Elena Porotikova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
| | - Ilya Lifanov
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
| | - Svetlana Vinogradova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| |
Collapse
|
3
|
Shen J, Guo J, Chen X, Cai W, Du Z, Zhang Y. The Spatial Diffusion of Cherry Leaf Roll Virus Revealed by a Bayesian Phylodynamic Analysis. Viruses 2022; 14:v14102179. [PMID: 36298735 PMCID: PMC9612246 DOI: 10.3390/v14102179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Cherry leaf roll virus (CLRV) is an important plant pathogen that causes severe and detrimental effects on cherry and other fruit plants. Despite recent progress in plant pathology, molecular biology, and population genetics of CLRV, the spatiotemporal spread of this virus remains poorly studied. In this study, we employed a Bayesian phylodynamics framework to investigate the spatial diffusion patterns of CLRV by analyzing the coat protein gene sequences of 81 viral isolates collected from five different countries. Consistent with the trade of cherry, our Bayesian phylodynamic analyses pointed to viral origins in New Zealand and identified multiple migration pathways between Germany and other countries, suggesting that Germany has played an important role in CLRV transmission. The results of our study will be useful in developing sustainable management strategies to control this pathogen.
Collapse
Affiliation(s)
- Jianguo Shen
- Fujian Key Laboratory for Technology Research of Inspection and Quarantine, Technology Center of Fuzhou Customs District, Fuzhou 350001, China
- Correspondence: (J.S.); (Y.Z.)
| | - Jing Guo
- Fujian Key Laboratory for Technology Research of Inspection and Quarantine, Technology Center of Fuzhou Customs District, Fuzhou 350001, China
| | - Xihong Chen
- Fujian Key Laboratory for Technology Research of Inspection and Quarantine, Technology Center of Fuzhou Customs District, Fuzhou 350001, China
| | - Wei Cai
- Fujian Key Laboratory for Technology Research of Inspection and Quarantine, Technology Center of Fuzhou Customs District, Fuzhou 350001, China
| | - Zhenguo Du
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongjiang Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100121, China
- Correspondence: (J.S.); (Y.Z.)
| |
Collapse
|
4
|
Thompson JR. Analysis of the genome of grapevine red blotch virus and related grabloviruses indicates diversification prior to the arrival of Vitis vinifera in North America. J Gen Virol 2022; 103. [PMID: 36205485 DOI: 10.1099/jgv.0.001789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study 163 complete whole-genome sequences of the emerging pathogen grapevine red blotch virus (GRBV; genus Grablovirus, family Geminiviridae) were used to reconstruct phylogenies using Bayesian analyses on time-tipped (heterochronous) data. Using different combinations of priors, Bayes factors identified heterochronous datasets (3×200 million chains) generated from strict clock and exponential tree priors as being the most robust. Substitution rates of 3.2×10-5 subsitutions per site per year (95% HPD 4.3-2.1×10-5) across the whole of the GRBV genome were estimated, suggesting ancestral GRBV diverged from ancestral wild Vitis latent virus 1 around 9 000 years ago, well before the first documented arrival of Vitis vinifera in North America. Whole-genome analysis of GRBV isolates in a single infected field-grown grapevine across 12 years identified 12 single nucleotide polymorphisms none of which were fixed substitutions: an observation not discordant with the in silico estimate. The substitution rate estimated here is lower than those estimated for other geminiviruses and is the first for a woody-host-infecting geminivirus.
Collapse
Affiliation(s)
- Jeremy R Thompson
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,Present address: Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland 1140, New Zealand
| |
Collapse
|
5
|
Larrea-Sarmiento A, Geering AD, Olmedo-Velarde A, Wang X, Borth W, Matsumoto TK, Suzuki JY, Wall MM, Melzer M, Moyle R, Sharman M, Hu J, Thomas JE. Genome sequence of pineapple secovirus B, a second sadwavirus reported infecting Ananas comosus. Arch Virol 2022; 167:2801-2804. [PMID: 36269415 PMCID: PMC9741570 DOI: 10.1007/s00705-022-05590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
Abstract
The complete genome sequence of pineapple secovirus B (PSV-B), a new virus infecting pineapple (Ananas comosus) on the island of Oahu, Hawaii, was determined by high-throughput sequencing (HTS). The genome comprises two RNAs that are 5,956 and 3,808 nt long, excluding the 3'-end poly-A tails, both coding for a single large polyprotein. The RNA1 polyprotein contains five conserved domains associated with replication, while the RNA2 polyprotein is cleaved into the movement protein and coat protein. PSV-B is representative of a new species in the subgenus Cholivirus (genus Sadwavirus; family Secoviridae), as the level of amino acid sequence identity to recognized members of this subgenus in the Pro-Pol and coat protein regions is below currently valid species demarcation thresholds.
Collapse
Affiliation(s)
- Adriana Larrea-Sarmiento
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI USA
| | - Andrew D.W. Geering
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, The University of Queensland, Ecosciences Precinct, 4001 Brisbane, QLD GPO Box 267, Australia
| | - Alejandro Olmedo-Velarde
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI USA
| | - Xupeng Wang
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI USA
| | - Wayne Borth
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI USA
| | - Tracie K Matsumoto
- Department of Agriculture, Agricultural Research Service, United States, Daniel K. Inouye U. S. Pacific Basin Agricultural Research Center, Hilo, HI USA
| | - Jon Y Suzuki
- Department of Agriculture, Agricultural Research Service, United States, Daniel K. Inouye U. S. Pacific Basin Agricultural Research Center, Hilo, HI USA
| | - Marisa M Wall
- Department of Agriculture, Agricultural Research Service, United States, Daniel K. Inouye U. S. Pacific Basin Agricultural Research Center, Hilo, HI USA
| | - Michael Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI USA
| | - Richard Moyle
- School of Agriculture and Food Sciences, The University of Queensland, 4072 St Lucia, QLD Australia
| | - Murray Sharman
- Department of Agriculture and Fisheries, Ecosciences Precinct, 4001 Brisbane, QLD GPO Box 267, Australia
| | - John Hu
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI USA
| | - John E. Thomas
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, The University of Queensland, Ecosciences Precinct, 4001 Brisbane, QLD GPO Box 267, Australia
| |
Collapse
|
6
|
Stewart LR, Willman M, Marty D, Cole AE, Willie K. Critical residues for proteolysis activity of maize chlorotic dwarf virus (MCDV) 3C-like protease and comparison of activity of orthologous waikavirus proteases. Virology 2021; 567:57-64. [PMID: 34998226 DOI: 10.1016/j.virol.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Maize chlorotic dwarf virus (MCDV) encodes a 3C-like protease that cleaves the N-terminal polyprotein (R78) as previously demonstrated. Here, we examined amino acid residues required for catalytic activity of the protease, including those in the predicted catalytic triad, amino acid residues H2667, D2704, and C2798, as well as H2817 hypothesized to be important in substrate binding. These and other residues were targeted for mutagenesis and tested for proteolytic cleavage activity on the N-terminal 78 kDa MCDV-S polyprotein substrate to identify mutants that abolished catalytic activity. Mutations that altered the predicted catalytic triad residues and H2817 disrupted MCDV-S protease activity, as did mutagenesis of a conserved tyrosine residue, Y2774. The protease activity and R78 cleavage of orthologs from divergent MCDV isolates MCDV-Tn and MCDV-M1, and other waikavirus species including rice tungro spherical virus (RTSV) and bellflower vein chlorosis virus (BVCV) were also examined.
Collapse
Affiliation(s)
- Lucy R Stewart
- USDA ARS Foreign Disease-Weed Science Research Unit, Frederick, MD, 21702, USA.
| | - Matthew Willman
- USDA ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | - DeeMarie Marty
- USDA ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | | | - Kristen Willie
- USDA ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| |
Collapse
|
7
|
Tabassum A, Ramesh SV, Zhai Y, Iftikhar R, Olaya C, Pappu HR. Viruses Without Borders: Global Analysis of the Population Structure, Haplotype Distribution, and Evolutionary Pattern of Iris Yellow Spot Orthotospovirus (Family Tospoviridae, Genus Orthotospovirus). Front Microbiol 2021; 12:633710. [PMID: 34616369 PMCID: PMC8488366 DOI: 10.3389/fmicb.2021.633710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Iris yellow spot, caused by Iris yellow spot orthotospovirus (IYSV) (Genus: Orthotospovirus, Family: Tospoviridae), is an important disease of Allium spp. The complete N gene sequences of 142 IYSV isolates of curated sequence data from GenBank were used to determine the genetic diversity and evolutionary pattern. In silico restriction fragment length polymorphism (RFLP) analysis, codon-based maximum likelihood studies, genetic differentiation and gene flow within the populations of IYSV genotypes were investigated. Bayesian phylogenetic analysis was carried out to estimate the evolutionary rate. In silico RFLP analysis of N gene sequences categorized IYSV isolates into two major genotypes viz., IYSV Netherlands (IYSVNL; 55.63%), IYSV Brazil (IYSVBR; 38.73%) and the rest fell in neither group [IYSV other (IYSVother; 5.63%)]. Phylogenetic tree largely corroborated the results of RFLP analysis and the IYSV genotypes clustered into IYSVNL and IYSVBR genotypes. Genetic diversity test revealed IYSVother to be more diverse than IYSVNL and IYSVBR. IYSVNL and IYSVBR genotypes are under purifying selection and population expansion, whereas IYSVother showed decreasing population size and hence appear to be under balancing selection. IYSVBR is least differentiated from IYSVother compared to IYSVNL genotype based on nucleotide diversity. Three putative recombinant events were found in the N gene of IYSV isolates based on RDP analysis, however, RAT substantiated two among them. The marginal likelihood mean substitution rate was 5.08 × 10–5 subs/site/year and 95% highest posterior density (HPD) substitution rate between 5.11 × 10–5 and 5.06 × 10–5. Findings suggest that IYSV continues to evolve using population expansion strategies. The substitution rates identified are similar to other plant RNA viruses.
Collapse
Affiliation(s)
- Afsha Tabassum
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - S V Ramesh
- Indian Council of Agricultural Research-Central Plantation Crops Research Institute, Kasaragod, India
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Romana Iftikhar
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Cristian Olaya
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
8
|
Hily JM, Poulicard N, Kubina J, Reynard JS, Spilmont AS, Fuchs M, Lemaire O, Vigne E. Metagenomic analysis of nepoviruses: diversity, evolution and identification of a genome region in members of subgroup A that appears to be important for host range. Arch Virol 2021; 166:2789-2801. [PMID: 34370094 PMCID: PMC8421298 DOI: 10.1007/s00705-021-05111-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/01/2021] [Indexed: 11/26/2022]
Abstract
Data mining and metagenomic analysis of 277 open reading frame sequences of bipartite RNA viruses of the genus Nepovirus, family Secoviridae, were performed, documenting how challenging it can be to unequivocally assign a virus to a particular species, especially those in subgroups A and C, based on some of the currently adopted taxonomic demarcation criteria. This work suggests a possible need for their amendment to accommodate pangenome information. In addition, we revealed a host-dependent structure of arabis mosaic virus (ArMV) populations at a cladistic level and confirmed a phylogeographic structure of grapevine fanleaf virus (GFLV) populations. We also identified new putative recombination events in members of subgroups A, B and C. The evolutionary specificity of some capsid regions of ArMV and GFLV that were described previously and biologically validated as determinants of nematode transmission was circumscribed in silico. Furthermore, a C-terminal segment of the RNA-dependent RNA polymerase of members of subgroup A was predicted to be a putative host range determinant based on statistically supported higher π (substitutions per site) values for GFLV and ArMV isolates infecting Vitis spp. compared with non-Vitis-infecting ArMV isolates. This study illustrates how sequence information obtained via high-throughput sequencing can increase our understanding of mechanisms that modulate virus diversity and evolution and create new opportunities for advancing studies on the biology of economically important plant viruses.
Collapse
Affiliation(s)
- J M Hily
- IFV, Le Grau-Du-Roi, France.
- Université de Strasbourg, INRAE, SVQV, UMR-A 1131, F-68000, Colmar, France.
| | - N Poulicard
- PHIM, Université Montpellier, IRD, INRAE, Cirad, SupAgro, Montpellier, France
| | - J Kubina
- Université de Strasbourg, INRAE, SVQV, UMR-A 1131, F-68000, Colmar, France
| | - J S Reynard
- Institute for Plant Production Science, Agroscope, 1260, Nyon, Switzerland
| | | | - M Fuchs
- Cornell University, Geneva, NY, USA
| | - O Lemaire
- Université de Strasbourg, INRAE, SVQV, UMR-A 1131, F-68000, Colmar, France
| | - E Vigne
- Université de Strasbourg, INRAE, SVQV, UMR-A 1131, F-68000, Colmar, France.
| |
Collapse
|
9
|
Galbraith DA, Fuller ZL, Ray AM, Brockmann A, Frazier M, Gikungu MW, Martinez JFI, Kapheim KM, Kerby JT, Kocher SD, Losyev O, Muli E, Patch HM, Rosa C, Sakamoto JM, Stanley S, Vaudo AD, Grozinger CM. Investigating the viral ecology of global bee communities with high-throughput metagenomics. Sci Rep 2018; 8:8879. [PMID: 29891995 PMCID: PMC5995813 DOI: 10.1038/s41598-018-27164-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/29/2018] [Indexed: 01/25/2023] Open
Abstract
Bee viral ecology is a fascinating emerging area of research: viruses exert a range of effects on their hosts, exacerbate impacts of other environmental stressors, and, importantly, are readily shared across multiple bee species in a community. However, our understanding of bee viral communities is limited, as it is primarily derived from studies of North American and European Apis mellifera populations. Here, we examined viruses in populations of A. mellifera and 11 other bee species from 9 countries, across 4 continents and Oceania. We developed a novel pipeline to rapidly and inexpensively screen for bee viruses. This pipeline includes purification of encapsulated RNA/DNA viruses, sequence-independent amplification, high throughput sequencing, integrated assembly of contigs, and filtering to identify contigs specifically corresponding to viral sequences. We identified sequences for (+)ssRNA, (−)ssRNA, dsRNA, and ssDNA viruses. Overall, we found 127 contigs corresponding to novel viruses (i.e. previously not observed in bees), with 27 represented by >0.1% of the reads in a given sample, and 7 contained an RdRp or replicase sequence which could be used for robust phylogenetic analysis. This study provides a sequence-independent pipeline for viral metagenomics analysis, and greatly expands our understanding of the diversity of viruses found in bee communities.
Collapse
Affiliation(s)
- David A Galbraith
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences Pennsylvania State University, University Park, PA, USA.
| | - Zachary L Fuller
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences Pennsylvania State University, University Park, PA, USA.,Department of Biology, Pennsylvania State University, University Park, PA, USA.,Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Allyson M Ray
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences Pennsylvania State University, University Park, PA, USA
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Maryann Frazier
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences Pennsylvania State University, University Park, PA, USA
| | - Mary W Gikungu
- Department of Zoology, National Museums of Kenya, Nairobi, Kenya
| | | | - Karen M Kapheim
- Department of Biology, Utah State University, Logan, UT, USA.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Jeffrey T Kerby
- Neukom Institute for Computational Science, Dartmouth College, Hanover, NH, USA
| | - Sarah D Kocher
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Oleksiy Losyev
- Department of Beekeeping, The National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Elliud Muli
- The International Center of Insect Physiology and Ecology, Nairobi, Kenya
| | - Harland M Patch
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences Pennsylvania State University, University Park, PA, USA
| | - Cristina Rosa
- Department of Plant Pathology, Pennsylvania State University, University Park, PA, USA
| | - Joyce M Sakamoto
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences Pennsylvania State University, University Park, PA, USA
| | - Scott Stanley
- Division of Pediatric Hematology and Oncology, Pennsylvania State University Children's Hospital, Hershey, PA, USA
| | - Anthony D Vaudo
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences Pennsylvania State University, University Park, PA, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
10
|
Rodamilans B, Shan H, Pasin F, García JA. Plant Viral Proteases: Beyond the Role of Peptide Cutters. FRONTIERS IN PLANT SCIENCE 2018; 9:666. [PMID: 29868107 PMCID: PMC5967125 DOI: 10.3389/fpls.2018.00666] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/30/2018] [Indexed: 05/23/2023]
Abstract
Almost half of known plant viral species rely on proteolytic cleavages as key co- and post-translational modifications throughout their infection cycle. Most of these viruses encode their own endopeptidases, proteases with high substrate specificity that internally cleave large polyprotein precursors for the release of functional sub-units. Processing of the polyprotein, however, is not an all-or-nothing process in which endopeptidases act as simple peptide cutters. On the contrary, spatial-temporal modulation of these polyprotein cleavage events is crucial for a successful viral infection. In this way, the processing of the polyprotein coordinates viral replication, assembly and movement, and has significant impact on pathogen fitness and virulence. In this mini-review, we give an overview of plant viral proteases emphasizing their importance during viral infections and the varied functionalities that result from their proteolytic activities.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Hongying Shan
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fabio Pasin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Koloniuk I, Přibylová J, Fránová J. Molecular characterization and complete genome of a novel nepovirus from red clover. Arch Virol 2018; 163:1387-1389. [PMID: 29397455 DOI: 10.1007/s00705-018-3742-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/03/2018] [Indexed: 11/30/2022]
Abstract
During high throughput sequencing (HTS) of leaves from a symptomatic red clover plant, a new RNA virus, tentatively named red clover nepovirus A (RCNVA), was discovered. The complete genomic sequence was determined and characterized. Particularly noteworthy was that RCNVA shares high sequence identities in RNA1 with a group of phylogenetically related nepoviruses while homologies in the RNA2 segments are markedly lower. Based on the genomic organization and phylogenetic attributes, RCNVA should be classified as a novel virus of the genus Nepovirus (subfamily Comovirinae, family Secoviridae, order Picornavirales).
Collapse
Affiliation(s)
- Igor Koloniuk
- Department of Plant Virology, Biology Centre, Institute of Plant Molecular Biology, The Czech Academy of Sciences, v.v.i., Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Jaroslava Přibylová
- Department of Plant Virology, Biology Centre, Institute of Plant Molecular Biology, The Czech Academy of Sciences, v.v.i., Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Jana Fránová
- Department of Plant Virology, Biology Centre, Institute of Plant Molecular Biology, The Czech Academy of Sciences, v.v.i., Branišovská 31, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
12
|
Fuchs M, Schmitt-Keichinger C, Sanfaçon H. A Renaissance in Nepovirus Research Provides New Insights Into Their Molecular Interface With Hosts and Vectors. Adv Virus Res 2016; 97:61-105. [PMID: 28057260 DOI: 10.1016/bs.aivir.2016.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nepoviruses supplied seminal landmarks to the historical trail of plant virology. Among the first agriculturally relevant viruses recognized in the late 1920s and among the first plant viruses officially classified in the early 1970s, nepoviruses also comprise the first species for which a soil-borne ectoparasitic nematode vector was identified. Early research on nepoviruses shed light on the genome structure and expression, biological properties of the two genomic RNAs, and mode of transmission. In recent years, research on nepoviruses enjoyed an extraordinary renaissance. This resurgence provided new insights into the molecular interface between viruses and their plant hosts, and between viruses and dagger nematode vectors to advance our understanding of some of the major steps of the infectious cycle. Here we examine these recent findings, highlight ongoing work, and offer some perspectives for future research.
Collapse
Affiliation(s)
- M Fuchs
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, United States.
| | - C Schmitt-Keichinger
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - H Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| |
Collapse
|
13
|
Hamelin FM, Allen LJS, Prendeville HR, Hajimorad MR, Jeger MJ. The evolution of plant virus transmission pathways. J Theor Biol 2016; 396:75-89. [PMID: 26908348 DOI: 10.1016/j.jtbi.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/30/2015] [Accepted: 02/12/2016] [Indexed: 01/12/2023]
Abstract
The evolution of plant virus transmission pathways is studied through transmission via seed, pollen, or a vector. We address the questions: under what circumstances does vector transmission make pollen transmission redundant? Can evolution lead to the coexistence of multiple virus transmission pathways? We restrict the analysis to an annual plant population in which reproduction through seed is obligatory. A semi-discrete model with pollen, seed, and vector transmission is formulated to investigate these questions. We assume vector and pollen transmission rates are frequency-dependent and density-dependent, respectively. An ecological stability analysis is performed for the semi-discrete model and used to inform an evolutionary study of trade-offs between pollen and seed versus vector transmission. Evolutionary dynamics critically depend on the shape of the trade-off functions. Assuming a trade-off between pollen and vector transmission, evolution either leads to an evolutionarily stable mix of pollen and vector transmission (concave trade-off) or there is evolutionary bi-stability (convex trade-off); the presence of pollen transmission may prevent evolution of vector transmission. Considering a trade-off between seed and vector transmission, evolutionary branching and the subsequent coexistence of pollen-borne and vector-borne strains is possible. This study contributes to the theory behind the diversity of plant-virus transmission patterns observed in nature.
Collapse
Affiliation(s)
- Frédéric M Hamelin
- Department of Ecology, Agrocampus Ouest, UMR1349 IGEPP, F-35042 Rennes, France.
| | - Linda J S Allen
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-1042, USA
| | - Holly R Prendeville
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA
| | - M Reza Hajimorad
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996-4560, USA
| | - Michael J Jeger
- Division of Ecology and Evolution, Centre for Environmental Policy, Imperial College London, SL5 7PY, UK
| |
Collapse
|
14
|
Gao F, Lin W, Shen J, Liao F. Genetic diversity and molecular evolution of arabis mosaic virus based on the CP gene sequence. Arch Virol 2016; 161:1047-51. [PMID: 26758729 DOI: 10.1007/s00705-015-2729-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/14/2015] [Indexed: 11/24/2022]
Abstract
Arabis mosaic virus (ArMV) is a virus with a wide host range. In this study, the genetic diversity of ArMV and the molecular mechanisms underlying its evolution were investigated using the coat protein (CP) sequence. Of the 33 ArMV isolates studied, three were found to be recombinants. The other 30 recombination-free ArMV isolates could be separated into two major lineages with a significant F ST value (0.384) and tended to cluster according to their geographical origin. Different evolutionary constraints were detected for the two linages, pointing to a role of natural selection in the differentiation of ArMV.
Collapse
Affiliation(s)
- Fangluan Gao
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Wuzhen Lin
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Jianguo Shen
- Inspection and Quarantine Technology Center, Fujian Exit-Entry, Inspection and Quarantine Bureau, Fuzhou, 350001, People's Republic of China
| | - Furong Liao
- Inspection and Quarantine Technology Center, Xiamen Exit-Entry Inspection and Quarantine Bureau, Xiamen, 361012, People's Republic of China.
| |
Collapse
|
15
|
van der Vlugt RAA, Verbeek M, Dullemans AM, Wintermantel WM, Cuellar WJ, Fox A, Thompson JR. Torradoviruses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:485-512. [PMID: 26047567 DOI: 10.1146/annurev-phyto-080614-120021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Torradoviruses are an example of a group of recently discovered plant viruses. The first description of Tomato torrado virus, now the type member of the newly established genus Torradovirus within the family Secoviridae, was published in 2007 and was quickly followed by findings of other torradoviruses, initially all on tomato. Their characterization led to the development of tools that allowed recognition of still other torradoviruses, only very recently found on non-tomato crops, which indicates these viruses have a much wider host range and diversity than previously believed. This review describes the characteristics of this newly emerged group of plant viruses. It looks in detail at taxonomic relationships and specific characteristics in their genomes and encoded proteins. Furthermore, it discusses their epidemiology, including host range, semipersistent transmission by whitefly vectors, and impact on diverse cropping systems.
Collapse
|
16
|
|