1
|
Liu Y, Li P, Yang Y. Advancements in utilizing CD34 + stem cells for repairing diabetic vascular damage. Biochem Biophys Res Commun 2025; 750:151411. [PMID: 39889623 DOI: 10.1016/j.bbrc.2025.151411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Diabetes-related vascular damage is a frequent complication of diabetes that results in structural and functional impairment of blood vessels. This damage significantly heightens the risk of cardiovascular events. CD34+ stem cells have shown great potential in the treatment of diabetes-related vascular damage due to their differentiation and vascular repair capabilities. This article provides a review of the research hotspots on the role and mechanisms of CD34+ stem cells in the repair of diabetes-related vascular damage, including changes in cell quantity and function during diabetes, as well as the latest research on activating, protecting, or repairing these cells to prevent or treat vascular damage. The article also summarizes the impact of diabetes on the mobilization and function of CD34+ stem cells, emphasizing how diabetes negatively affects their ability to promote angiogenesis. These deficits can result in various complications, including issues with small blood vessels, coronary heart disease, foot problems, and retinal complications. On the clinical side, the article highlights the positive effects of CD34+ stem cell therapy in improving vascular function and tissue repair in diabetic patients, while also mentioning the inconsistencies in results between diabetes models and clinical studies, which necessitate further research to optimize treatment strategies. It emphasizes the importance of enhancing the mobilization, homing, and repair capabilities of CD34+ stem cells, as well as combining them with other treatment methods, to develop more effective strategies for treating diabetes-related vascular damage.
Collapse
Affiliation(s)
- Yiting Liu
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Pengyun Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
MacLaughlin KJ, Barton GP, MacLaughlin JE, Lamers JJ, Marcou MD, O’Brien MJ, Braun RK, Eldridge MW. 100% oxygen mobilizes stem cells and up-regulates MIF and APRIL in humans: a new point on the hormetic dose curve. Front Cell Dev Biol 2025; 12:1377203. [PMID: 39974348 PMCID: PMC11836035 DOI: 10.3389/fcell.2024.1377203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/26/2024] [Indexed: 02/21/2025] Open
Abstract
Introduction The aim of the current study was to test normobaric 100% oxygen (NBO) (PiO2 = 713 mmHg) for stem cell mobilization and cytokine modulation. Although current oxygen therapy (PiO2 = 1,473-2,233 mmHg) is well known to mobilize stem cells and modulate cytokine, little is known about NBO and its place on the low dose stimulation phase of the hormetic dose curve of oxygen. We asked the question, will NBO mobilize stem cells and modulate cytokines. A positive outcome presents the potential to create and refine oxygen treatment protocols, expand access, and optimize patient outcomes. Methods Healthy 30-35-year-old volunteers were exposed to 100% normobaric oxygen for 60 min, M-F, for 10 exposures over 2 weeks. Venous blood samples were collected at four time points: 1) prior to the first exposure (serving as the control for each subject), 2) immediately after the first exposure (to measure the acute effect), 3) immediately before the ninth exposure (to measure the chronic effect), and 4) three days after the final exposure (to assess durability). Blinded scientists used flow cytometry to gate and quantify the Stem Progenitor Cells (SPCs). Results CD45dim/CD34+/CD133+ and CD45+/CD34+/CD133+ were significantly mobilized following nine daily one-hour exposures to normobaric 100% oxygen. Conversely CD45-/CD34+/CD133+, CD45-/CD34+/CD133- and CD45-/CD34-/CD133+ phenotypes were downregulated suggesting differentiation into more mature phenotypes. The CD133+ phenotype exhibited a maturing from CD45- to CD45dim stem cells. CD45-/CD34, CD45-/CD31 and CD45-/CD105 were downregulated with no changes in related CD45dim and CD45+ phenotypes. The cytokines "macrophage migration inhibitory factor" (MIF) and "a proliferation inducing ligand" (APRIL) were significantly upregulated. Conclusion This study demonstrates that 100% normobaric oxygen mobilizes stem cells and upregulates the expression of the inflammatory cytokines marking a new point on the low dose stimulation phase of the hormetic dose curve of oxygen.
Collapse
Affiliation(s)
- Kent J. MacLaughlin
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Gregory P. Barton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Julia E. MacLaughlin
- Medical Oxygen Hyperbaric Clinic, The American Center, Madison, WI, United States
| | - Jacob J. Lamers
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Matthew D. Marcou
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Matthew J. O’Brien
- University of Wisconsin School of Medicine and PublicHealth, Madison, WI, United States
| | - Rudolf K. Braun
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Marlowe W. Eldridge
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
3
|
Yang J, Ye W, Wang K, Wang A, Deng J, Chen G, Cai Y, Li Z, Chen Y, Lin D. Empagliflozin promotes skin flap survival by activating AMPK signaling pathway. Eur J Pharmacol 2025; 987:177207. [PMID: 39694175 DOI: 10.1016/j.ejphar.2024.177207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Flaps are widely used in surgical wound repair, yet distal necrosis poses a significant postoperative challenge, stemming from potential factors such as inadequate blood perfusion, inflammation, ischemia/reperfusion (I/R) injury, mitochondrial impairment, and subsequent ferroptosis. Empagliflozin (EMPA), a sodium-glucose cotransporter 2 inhibitor, has pharmacological activities that promote angiogenesis, mitophagy, and inhibit inflammation, I/R injury, and ferroptosis. However, it is unclear whether EMPA can enhance flap survival. Here, we established a modified McFarlane flap model and applied EMPA to demonstrate its mechanism of action. 24 rats were evenly divided into four groups: the control, low-dose EMPA (10 mg/kg), high-dose EMPA (30 mg/kg), and inhibitor groups. Molecular biology experiments demonstrated that EMPA promoted the expression of angiogenesis-related factors vascular endothelial growth factor (VEGF) and CD34. Additionally, it also increased superoxide dismutase (SOD) activity and reduced malondialdehyde (MDA) levels, thus suppressing oxidative stress. EMPA further alleviated inflammation by downregulating the expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In vitro experiments showed that EMPA promoted the proliferation of human umbilical vein endothelial cells (HUVECs) and reduce their reactive oxygen species (ROS) production. Further investigation demonstrated that EMPA improves flap prognosis by inducing the expression of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, further promoting mitophagy and inhibiting ferroptosis. These effects collectively contributed to the survival of the skin flap. Overall, our research elucidates the protective effects of EMPA on flap survival and its specific mechanisms, offering new insights into solving post-transplant flap necrosis.
Collapse
Affiliation(s)
- Jialong Yang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Weijian Ye
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Kaitao Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - An Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiapeng Deng
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Guodong Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yizhen Cai
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zijie Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medical, Wenzhou Medical University, China
| | - Yiqi Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Dingsheng Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
4
|
Salybekov AA, Hassanpour M, Kobayashi S, Asahara T. Therapeutic application of regeneration-associated cells: a novel source of regenerative medicine. Stem Cell Res Ther 2023; 14:191. [PMID: 37533070 PMCID: PMC10394824 DOI: 10.1186/s13287-023-03428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Chronic diseases with comorbidities or associated risk factors may impair the function of regenerative cells and the regenerative microenvironment. Following this consideration, the vasculogenic conditioning culture (VCC) method was developed to boost the regenerative microenvironment to achieve regeneration-associated cells (RACs), which contain vasculogenic endothelial progenitor cells (EPCs) and anti-inflammatory/anti-immunity cells. Preclinical and clinical studies demonstrate that RAC transplantation is a safe and convenient cell population for promoting ischemic tissue recovery based on its strong vasculogenicity and functionality. The outputs of the scientific reports reviewed in the present study shed light on the fact that RAC transplantation is efficient in curing various diseases. Here, we compactly highlight the universal features of RACs and the latest progress in their translation toward clinics.
Collapse
Affiliation(s)
- Amankeldi A Salybekov
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan.
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan.
| | - Mehdi Hassanpour
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Shuzo Kobayashi
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Takayuki Asahara
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
5
|
The Long Telling Story of "Endothelial Progenitor Cells": Where Are We at Now? Cells 2022; 12:cells12010112. [PMID: 36611906 PMCID: PMC9819021 DOI: 10.3390/cells12010112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Endothelial progenitor cells (EPCs): The name embodies years of research and clinical expectations, but where are we now? Do these cells really represent the El Dorado of regenerative medicine? Here, past and recent literature about this eclectic, still unknown and therefore fascinating cell population will be discussed. This review will take the reader through a temporal journey that, from the first discovery, will pass through years of research devoted to attempts at their definition and understanding their biology in health and disease, ending with the most recent evidence about their pathobiological role in cardiovascular disease and their recent applications in regenerative medicine.
Collapse
|
6
|
Characterization of Endothelial Progenitor Cell: Past, Present, and Future. Int J Mol Sci 2022; 23:ijms23147697. [PMID: 35887039 PMCID: PMC9318195 DOI: 10.3390/ijms23147697] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 02/05/2023] Open
Abstract
Endothelial progenitor cells (EPCs) are currently being studied as candidate cell sources for revascularization strategies. Despite these promising results, widespread clinical acceptance of EPCs for clinical therapies remains hampered by several challenges. The challenges and issues surrounding the use of EPCs and the current paradigm being developed to improve the harvest efficiency and functionality of EPCs for application in regenerative medicine are discussed. It has been observed that controversies have emerged regarding the isolation techniques and classification and origin of EPCs. This manuscript attempts to highlight the concept of EPCs in a sequential manner, from the initial discovery to the present (origin, sources of EPCs, isolation, and identification techniques). Human and murine EPC marker diversity is also discussed. Additionally, this manuscript is aimed at summarizing our current and future prospects regarding the crosstalk of EPCs with the biology of hematopoietic cells and culture techniques in the context of regeneration-associated cells (RACs).
Collapse
|
7
|
Jiang X, Liu H, Pan T, Gu S, Fang Y, Wei Z, Fang G, Chen B, Jiang J, Shi Y, Liu P, Fu W, Dong Z. Long-Term Outcomes of Peripheral Blood Mononuclear Cells in the Treatment of Angiitis-Induced No-Option Critical Limb-Threatening Ischemia. Front Cardiovasc Med 2021; 8:769472. [PMID: 34938786 PMCID: PMC8687358 DOI: 10.3389/fcvm.2021.769472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Peripheral blood mononuclear cells (PBMNCs) showed encouraging short outcomes in the treatment of angiitis-induced no-option critical limb-threatening ischemia (AICLTI) in the pilot study. This study aimed to demonstrate the long-term outcomes of this treatment. Methods: From May 2014 to December 2018, patients diagnosed with AICLTI and treated by autotransplantation of PBMNCs in our center were enrolled and analyzed. The primary endpoint was major amputation-free survival (MAFS), the secondary endpoints included peak pain-free walking time (PPFWT), Wong-Baker FACES pain rating scale score (WFPRSS), labor recovery, ankle-brachial index (ABI), transcutaneous partial oxygen pressure (TcpO2), and SF-36v2 scores. Results: A total of 58 patients were enrolled. During a minimal follow-up of 36 months, the MAFS was 93.1% and the labor competence restored rate was 62.1%. The WFPRSS was decreased from 8.7 ± 1.6 to 1.6 ± 3.2, and PPFWT was significantly improved from 2.9 ± 4.2 min to 16.6 ± 6.9 min. The quality of life was also significantly improved at each follow-up point. Perfusion evaluating parameters, such as ABI and TcPO2, were also significantly improved. No critical adverse event was observed during the treatment and follow-up period. Conclusions: The treatment of AICLTI by autotransplantation of PBMNCs demonstrated encouraging long-term results. It could not only restore labor competence, improve the quality of life, but also significantly reduce the major amputation rate.
Collapse
Affiliation(s)
- Xiaolang Jiang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianyue Pan
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shiyang Gu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Fang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Wei
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Fang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Chen
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junhao Jiang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shi
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Dong
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Distal Arterialized Venous Supercharging Improves Perfusion and Survival in an Extended Dorsal Three-Perforasome Perforator Flap Rat Model. Plast Reconstr Surg 2021; 147:957e-966e. [PMID: 34019505 DOI: 10.1097/prs.0000000000007990] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Perforator flaps are commonly applied for a variety of skin defects. Many strategies (e.g., hyperbaric oxygen and preconditioning) have been investigated to improve flap survival, but a postoperative 2.03 to 18.2 percent flap necrosis frequency remains a major complication. The authors hypothesized that a distal arterialized venous supercharged (DAVS) flap procedure might improve perfusion and survival in an extended three-perforasome perforator flap rat model and rescue flap ischemia intraoperatively. METHODS One hundred twenty male Sprague-Dawley rats (200 to 300 g) were divided into the thoracodorsal artery (TDA) flap group and the DAVS flap group (n = 60 per group). An approximately 11 × 2.5-cm2 flap based on the TDA perforasome was designed in the TDA flap. A DAVS flap was designed based on the TDA flap and supercharged by anastomosing the rat caudal artery with the deep circumflex iliac vein. At postoperative times 1, 3, 6, and 12 hours and 1, 3, 5, and 7 days, perfusion and angiography were compared. On day 7, flap viability and angiogenesis were assessed using histology and Western blotting. RESULTS The DAVS flap showed a higher survival rate compared with the TDA flap (100 percent versus 81.93 ± 5.38 percent; p < 0.001). All blood flow ratios of deep circumflex iliac artery to TDA perforasome and of choke zone II to choke zone I were higher in the DAVS flap (all p < 0.05). Angiography qualitatively revealed that choke vessels in choke zone II dilated earlier and extensively in the DAVS flap group. CD34+ vessels (68.66 ± 12.53/mm2 versus 36.82 ± 8.99/mm2; p < 0.001) and vascular endothelial growth factor protein level (0.22 ± 0.03 versus 0.11 ± 0.03; p < 0.001) were significantly increased in the DAVS flap group. CONCLUSIONS The DAVS procedure improves three-perforasome perforator flap survival and can be used for rescuing flap ischemia intraoperatively. Further study is needed before possible clinical adoption for reconstructive operations.
Collapse
|
9
|
Luo X, Zhao B, Chen B, Chen H, Han T, Bsoul NBN, Yan H. Trans-Cinnamaldehyde Increases Random Pattern Flap Survival Through Activation of the Nitric Oxide Pathway. Drug Des Devel Ther 2021; 15:679-688. [PMID: 33628013 PMCID: PMC7899309 DOI: 10.2147/dddt.s297458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background The application of random pattern skin flaps is limited in plastic surgery reconstruction due to necrosis. Trans-cinnamaldehyde has antibacterial, anticancer, and antioxidant properties. In this study, we aimed to investigate the effect of trans-cinnamaldehyde on skin flap survival and its possible mechanism regarding nitric oxide. Materials and Methods One hundred forty male Sprague-Dawley rats were randomly divided into seven groups (n = 20 each group). After the dorsal flap was raised, different doses of trans-cinnamaldehyde (10, 20, and 30 mg/kg) were immediately given by oral gavage in the three different groups. To assess the possible involvement of the nitric oxide system, NG-nitro-L-arginine methyl ester (L-NAME, a nonselective nitric oxide synthase inhibitor) was used in this study. All flap samples were incised on postoperative day 7. Results Our results showed that flap survival was increased significantly in the 20 mg/kg (P < 0.001) trans-cinnamaldehyde (TC) group compared to the control group or 30 mg/kg TC group. This protective function was restrained by coadministration of L-NAME with 20 mg/kg TC. The results of histopathology, laser Doppler, arteriography mediated with oxide–gelatine, and fluorescent staining all showed a significant increase in capillary count, collagen deposition, angiogenesis, and flap perfusion. Immunohistochemistry results revealed a significant increase in the expression of CD34, eNOS, and VEGF. Conclusion Trans-cinnamaldehyde increased flap survival through the nitric oxide synthase pathway and contributed to angiogenesis. A concentration of 20 mg/kg trans-cinnamaldehyde was recommended in this study.
Collapse
Affiliation(s)
- Xiaobin Luo
- Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Orthopedics of Zhejiang Province, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Bin Zhao
- Department of Post Anaesthesia Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Baoxia Chen
- Department of Post Anaesthesia Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Hongyu Chen
- Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Orthopedics of Zhejiang Province, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Tao Han
- Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Orthopedics of Zhejiang Province, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Najeeb Bassam Najeeb Bsoul
- Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Orthopedics of Zhejiang Province, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Hede Yan
- Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Orthopedics of Zhejiang Province, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| |
Collapse
|
10
|
I T, Ueda Y, Wörsdörfer P, Sumita Y, Asahina I, Ergün S. Resident CD34-positive cells contribute to peri-endothelial cells and vascular morphogenesis in salivary gland after irradiation. J Neural Transm (Vienna) 2020; 127:1467-1479. [PMID: 33025085 PMCID: PMC7578140 DOI: 10.1007/s00702-020-02256-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Salivary gland (SG) hypofunction is a common post-radiotherapy complication. Besides the parenchymal damage after irradiation (IR), there are also effects on mesenchymal stem cells (MSCs) which were shown to contribute to regeneration and repair of damaged tissues by differentiating into stromal cell types or releasing vesicles and soluble factors supporting the healing processes. However, there are no adequate reports about their roles during SG damage and regeneration so far. Using an irradiated SG mouse model, we performed certain immunostainings on tissue sections of submandibular glands at different time points after IR. Immunostaining for CD31 revealed that already one day after IR, vascular impairment was induced at the level of capillaries. In addition, the expression of CD44—a marker of acinar cells—diminished gradually after IR and, by 20 weeks, almost disappeared. In contrast, the number of CD34-positive cells significantly increased 4 weeks after IR and some of the CD34-positive cells were found to reside within the adventitia of arteries and veins. Laser confocal microscopic analyses revealed an accumulation of CD34-positive cells within the area of damaged capillaries where they were in close contact to the CD31-positive endothelial cells. At 4 weeks after IR, a fraction of the CD34-positive cells underwent differentiation into α-SMA-positive cells, which suggests that they may contribute to regeneration of smooth muscle cells and/or pericytes covering the small vessels from the outside. In conclusion, SG-resident CD34-positive cells represent a population of progenitors that could contribute to new vessel formation and/or remodeling of the pre-existing vessels after IR and thus, might be an important player during SG tissue healing.
Collapse
Affiliation(s)
- Takashi I
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany. .,Unit of Translational Medicine, Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Yuichiro Ueda
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Yoshinori Sumita
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Izumi Asahina
- Unit of Translational Medicine, Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Chen C, Dai P, Nan L, Lu R, Wang X, Tian Y, Zhang X, Gao Y, Zheng S, Zhang Y. Isolation and characterization of endothelial progenitor cells from canine bone marrow. Biotech Histochem 2020; 96:85-93. [PMID: 32476489 DOI: 10.1080/10520295.2020.1762001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Endothelial progenitor cells (EPC) are located predominantly in the bone marrow. These cells are useful for treating human vascular diseases; they also are a possible target for restricting blood vessel growth for tumors. Little is known about canine EPC. We investigated a bone marrow EPC isolation method that combines the whole bone marrow culture method and the differential adherent speed method using stillborn canines. MTT proliferation, flow cytometry detection, Dil-ac-LDL uptake, FITC-UEA-1 binding and matrigel assays were used to identify and characterize EPC. We isolated two types of EPC: early EPC and late EPC. We found that isolated cells produced typical colony and cobblestone morphology, and were positive for CD31, CD34, CD133 and VEGFR-2. Significant differences were observed in the intensity of expression between early and late EPC, which suggests their different roles during angiogenesis and vasculogenesis. Both early and late EPC were positive for Dil-ac-LDL and FITC-UEA-1, and displayed tube formation when re-suspended in matrigel, both of which are important functional criteria for identifying EPC. Our method is a novel, effective and efficient way to produce enriched EPC.
Collapse
Affiliation(s)
- Chen Chen
- College of Veterinary Medicine, Northwest A & F University , Yangling, Shaanxi, China.,Department of General, Visceral, Transplantation and Vascular Surgery, University Hospital of LMU Munich , Munich, Germany
| | - Pengxiu Dai
- College of Veterinary Medicine, Northwest A & F University , Yangling, Shaanxi, China
| | - Liangliang Nan
- College of Veterinary Medicine, Northwest A & F University , Yangling, Shaanxi, China.,Institute for Infectious Diseases and Zoonoses, LMU Munich , Munich, Germany
| | - Ruiqing Lu
- College of Veterinary Medicine, Northwest A & F University , Yangling, Shaanxi, China
| | - Xiuyuan Wang
- College of Veterinary Medicine, Northwest A & F University , Yangling, Shaanxi, China
| | - Yuanyuan Tian
- College of Veterinary Medicine, Northwest A & F University , Yangling, Shaanxi, China
| | - Xinke Zhang
- College of Veterinary Medicine, Northwest A & F University , Yangling, Shaanxi, China
| | - Yongping Gao
- College of Veterinary Medicine, Northwest A & F University , Yangling, Shaanxi, China
| | - Shuxin Zheng
- College of Veterinary Medicine, Northwest A & F University , Yangling, Shaanxi, China
| | - Yihua Zhang
- College of Veterinary Medicine, Northwest A & F University , Yangling, Shaanxi, China
| |
Collapse
|
12
|
Hung HS, Hsu SH. Surface Modification by Nanobiomaterials for Vascular Tissue Engineering Applications. Curr Med Chem 2020; 27:1634-1646. [DOI: 10.2174/0929867325666180914104633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/17/2017] [Accepted: 06/16/2017] [Indexed: 12/13/2022]
Abstract
Treatment of cardiovascular disease has achieved great success using artificial implants,
particularly synthetic-polymer made grafts. However, thrombus formation and
restenosis are the current clinical problems need to be conquered. New biomaterials, modifying
the surface of synthetic vascular grafts, have been created to improve long-term patency
for the better hemocompatibility. The vascular biomaterials can be fabricated from synthetic
or natural polymers for vascular tissue engineering. Stem cells can be seeded by different
techniques into tissue-engineered vascular grafts in vitro and implanted in vivo to repair the
vascular tissues. To overcome the thrombogenesis and promote the endothelialization
effect, vascular biomaterials employing nanotopography are more bio-mimic to the native tissue
made and have been engineered by various approaches such as prepared as a simple surface
coating on the vascular biomaterials. It has now become an important and interesting
field to find novel approaches to better endothelization of vascular biomaterials. In this article,
we focus to review the techniques with better potential improving endothelization and summarize
for vascular biomaterial application. This review article will enable the development
of biomaterials with a high degree of originality, innovative research on novel techniques for
surface fabrication for vascular biomaterials application.
Collapse
Affiliation(s)
- Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan, China
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, China
| |
Collapse
|
13
|
Wang X, Zhan E, Lu G, Mu Q, Zhang T, Yang N. Sphingosine-1-Phosphate Improves the Biological Features of Mouse Bone Marrow-Derived EPCs Partially through PI3K/AKT/eNOS/NO Pathway. Molecules 2019; 24:molecules24132404. [PMID: 31261859 PMCID: PMC6651153 DOI: 10.3390/molecules24132404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 01/31/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid, is recognized as a critical regulator in physiological and pathophysiological processes of atherosclerosis (AS). However, the underlying mechanism remains unclear. As the precursor cells of endothelial cells (ECs), endothelial progenitor cells (EPCs) can prevent AS development through repairing endothelial monolayer impaired by proatherogenic factors. The present study investigated the effects of S1P on the biological features of mouse bone marrow-derived EPCs and the underlying mechanism. The results showed that S1P improved cell viability, adhesion, and nitric oxide (NO) release of EPCs in a bell-shaped manner, and migration and tube formation dose-dependently. The aforementioned beneficial effects of S1P on EPCs could be inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor of LY294002 and nitric oxide synthase (NOS) inhibitor of N’-nitro-L-arginine-methyl ester hydrochloride (L-NAME). The inhibitor of LY294002 inhibited S1P-stimulated activation of phosphorylated protein kinase B (AKT) (p-AKT) and endothelial nitric oxide synthase (eNOS) (p-eNOS), and down-regulated the level of eNOS significantly. The results suggest that S1P improves the biological features of EPCs partially through PI3K/AKT/eNOS/NO signaling pathway.
Collapse
Affiliation(s)
- Xia Wang
- School of Public Health and Management, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center of Prediction and Governance of Major Social Risks in Shandong, Weifang Medical University, Weifang 261053, China
| | - Enxin Zhan
- Institute of Preschool Education, Jinan Preschool Education College, Jinan 250307, China
| | - Guohua Lu
- Department of Psychology, Weifang Medical University, Weifang 261053, China
| | - Qingjie Mu
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Tianliang Zhang
- Experimental Center for Medical Research, Weifang Medical University, Weifang 261053, China.
| | - Nana Yang
- Experimental Center for Medical Research, Weifang Medical University, Weifang 261053, China.
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
14
|
Dong Z, Pan T, Fang Y, Wei Z, Gu S, Fang G, Liu Y, Luo Y, Liu H, Zhang T, Hu M, Guo D, Xu X, Chen B, Jiang J, Yang J, Shi Z, Zhu T, Shi Y, Liu P, Fu W. Purified CD34 + cells versus peripheral blood mononuclear cells in the treatment of angiitis-induced no-option critical limb ischaemia: 12-Month results of a prospective randomised single-blinded non-inferiority trial. EBioMedicine 2018; 35:46-57. [PMID: 30172703 PMCID: PMC6156701 DOI: 10.1016/j.ebiom.2018.08.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Peripheral blood mononuclear cells (PBMNCs) and purified CD34+ cells (PCCs) are increasingly being used at treating no-option critical limb ischaemia (NO-CLI). We aimed to compare the efficacies and uncover the advantages associated with each treatment approach. METHODS A randomised single-blinded non-inferiority trial (Number: NCT 02089828) was performed. NO-CLI patients were 1:1 randomised to the PBMNCs and PCCs groups, and compared in relation to safety and efficacy outcomes. The primary efficacy outcomes included major amputation and total amputation over 12 months. The major amputation-free survival (MAFS) and total amputation-free survival (TAFS) rates were calculated. FINDINGS Fifty patients (25 per group, 47 with thromboangiitis obliterans and 3 with other angiitis) were enrolled, with a median follow-up period of 24.5 months (interquartile range: 17-34 months). One patient in the PCCs group was lost at 2 months and one major amputation occurred in the PBMNCs group at 3 months post-transplantation. The total amputation rates at 6 months post-transplantation were 28.0% in the PCCs group and 16.0% in the PBMNCs group (p = 0.343), and remained unchanged at 12 months. The groups did not differ regarding the MAFS and TAFS (Breslow-Wilcoxon test: p = 0.3014 and p = 0.3414). The PCCs group had a significantly higher probability of rest pain relief than the PBMNCs group (Breslow-Wilcoxon test: p = 0.0454). INTERPRETATION PCCs was not inferior to PBMNCs at limb salvage in the treatment of angiitis-induced NO-CLI and appeared to induce earlier ischaemia relief. Each cell type had specific advantages. These outcomes require verification from longer-term trials involving larger numbers of patients. FUND: Training program for outstanding academic leaders of Shanghai health and family planning system (Hundred Talent Program,Grant No. 2018BR40); China National Natural Science Funds (Grant No. 30801122); The excellent core member training programme at Zhongshan Hospital, Fudan University, China (Grant No. 2015ZSYXGG02); and Zhongshan Funds for the Institute of Vascular Surgery, Fudan University, China. CLINICAL TRIAL REGISTRATION This study is registered with ClinicalTrials.gov (NCT 02089828).
Collapse
Affiliation(s)
- Zhihui Dong
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China.
| | - Tianyue Pan
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Yuan Fang
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Zheng Wei
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shiyang Gu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Fang
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Yifan Liu
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Yang Luo
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Hao Liu
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Tiejun Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Meiyu Hu
- Core Lab of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Daqiao Guo
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Xin Xu
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Bin Chen
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Junhao Jiang
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Jue Yang
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Zhenyu Shi
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Ting Zhu
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Yun Shi
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, and Institute of Vascular Surgery, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Kim DY, Jung SY, Kim YJ, Kang S, Park JH, Ji ST, Jang WB, Lamichane S, Lamichane BD, Chae YC, Lee D, Chung JS, Kwon SM. Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018. [PMID: 29520173 PMCID: PMC5840079 DOI: 10.4196/kjpp.2018.22.2.203] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions. However, the role of mitochondrial dynamics in hypoxia-induced angiogenesis remains to be elucidated. In this study, we demonstrated that hypoxia-induced mitochondrial fission accelerates EPCs bioactivities. We first investigated the effect of hypoxia on EPC-mediated angiogenesis. Cell migration, invasion, and tube formation was significantly increased under hypoxic conditions; expression of EPC surface markers was unchanged. And mitochondrial fission was induced by hypoxia time-dependent manner. We found that hypoxia-induced mitochondrial fission was triggered by dynamin-related protein Drp1, specifically, phosphorylated DRP1 at Ser637, a suppression marker for mitochondrial fission, was impaired in hypoxia time-dependent manner. To confirm the role of DRP1 in EPC-mediated angiogenesis, we analyzed cell bioactivities using Mdivi-1, a selective DRP1 inhibitor, and DRP1 siRNA. DRP1 silencing or Mdivi-1 treatment dramatically reduced cell migration, invasion, and tube formation in EPCs, but the expression of EPC surface markers was unchanged. In conclusion, we uncovered a novel role of mitochondrial fission in hypoxia-induced angiogenesis. Therefore, we suggest that specific modulation of DRP1-mediated mitochondrial dynamics may be a potential therapeutic strategy in EPC-mediated tumor angiogenesis.
Collapse
Affiliation(s)
- Da Yeon Kim
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Seok Yun Jung
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Yeon Ju Kim
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Songhwa Kang
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Ji Hye Park
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Seung Taek Ji
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Woong Bi Jang
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Shreekrishna Lamichane
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Babita Dahal Lamichane
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Young Chan Chae
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Dongjun Lee
- Department of Medical Science, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Joo Seop Chung
- Division of Hemato-Oncology, Department of Internal Medicine, Pusan National University Hospital Medical Research Institute, Busan 49241, Korea
| | - Sang-Mo Kwon
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| |
Collapse
|
16
|
Turajane T, Chaveewanakorn U, Fongsarun W, Aojanepong J, Papadopoulos KI. Avoidance of Total Knee Arthroplasty in Early Osteoarthritis of the Knee with Intra-Articular Implantation of Autologous Activated Peripheral Blood Stem Cells versus Hyaluronic Acid: A Randomized Controlled Trial with Differential Effects of Growth Factor Addition. Stem Cells Int 2017; 2017:8925132. [PMID: 29056974 PMCID: PMC5625803 DOI: 10.1155/2017/8925132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/25/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023] Open
Abstract
In this randomized controlled trial, in early osteoarthritis (OA) that failed conservative intervention, the need for total knee arthroplasty (TKA) and WOMAC scores were evaluated, following a combination of arthroscopic microdrilling mesenchymal cell stimulation (MCS) and repeated intra-articular (IA) autologous activated peripheral blood stem cells (AAPBSCs) with growth factor addition (GFA) and hyaluronic acid (HA) versus IA-HA alone. Leukapheresis-harvested AAPBSCs were administered as three weekly IA injections combined with HA and GFA (platelet-rich plasma [PRP] and granulocyte colony-stimulating factor [hG-CSF]) and MCS in group 1 and in group 2 but without hG-CSF while group 3 received IA-HA alone. Each group of 20 patients was evaluated at baseline and at 1, 6, and, 12 months. At 12 months, all patients in the AAPBSC groups were surgical intervention free compared to three patients needing TKA in group 3 (p < 0.033). Total WOMAC scores showed statistically significant improvements at 6 and 12 months for the AAPBSC groups versus controls. There were no notable adverse events. We have shown avoidance of TKA in the AAPBSC groups at 12 months and potent, early, and sustained symptom alleviation through GFA versus HA alone. Differential effects of hG-CSF were noted with an earlier onset of symptom alleviation throughout.
Collapse
Affiliation(s)
- Thana Turajane
- Department of Orthopedic Surgery, Police General Hospital, Bangkok, Thailand
| | | | | | - Jongjate Aojanepong
- Department of Gynecology and Obstetrics, Police General Hospital, Bangkok, Thailand
| | | |
Collapse
|
17
|
Zhang T, Ma G, Zhang Y, Huo H, Zhao Y. miR-599 inhibits proliferation and invasion of glioma by targeting periostin. Biotechnol Lett 2017; 39:1325-1333. [PMID: 28597372 DOI: 10.1007/s10529-017-2365-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To explore the molecular mechanism of microRNA-599(miR-599) in the migration and invasion of glioma. RESULT Clinicopathological characteristics of 33 patients were analyzed. Based on reverse transcription-PCR, miR-599 was down-regulated in glioma tissues compared with adjacent normal brain tissues (P < 0.001). Moreover, negative correlations between miR-599 and periostin protein expression in glioma tissues (P < 0.01) and necrosis by magnetic resonance imaging (P < 0.05) were observed. Transwell and wound healing assays showed that overexpression of miR-599 inhibited glioma cell migration and invasion. miR-599 down-regulated periostin expression by targeting the 3'-untranslated region. Additionally, re-expression of periostin partial reversed the suppressive effect of miR-599 on migration and invasion in vitro and in vivo. CONCLUSION microRNA-599 inhibits proliferation and invasion by down-regulating periostin expression in vitro and in vivo.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Basic Medical Science; School of Information Science and Engineering, Central South University, Changsha, Hunan Province, 410078, China
| | - Guangtao Ma
- Department of Neurosurgery, Daqing Oil Field General Hospital, Daqing, Heilongjiang Province, 163000, China
| | - Yan Zhang
- Department of The Heart of Non-invasive Examination, Daqing Oil Field General Hospital, Daqing, Heilongjiang Province, 163000, China
| | - Hongda Huo
- Daqing Convalescence Hospital, Daqing, Heilongjiang Province, 163000, China
| | - Yuqian Zhao
- School of Information Science and Engineering, Central South University, Tongzipo Road No.172, Changsha, Hunan Province, 410078, China.
| |
Collapse
|
18
|
Detection of intrathrombotic endothelial progenitor cells and its application to thrombus age estimation in a murine deep vein thrombosis model. Int J Legal Med 2017; 131:1633-1638. [PMID: 28828642 DOI: 10.1007/s00414-017-1668-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/11/2017] [Indexed: 01/19/2023]
Abstract
Endothelial progenitor cells (EPCs), a newly identified cell type, are bone marrow-derived progenitor cells that co-express stem cell markers and Flk-1 (one of the receptors for vascular endothelial growth factor). In this study, double-color immunofluorescence analysis was performed using anti-CD34 and anti-Flk-1 antibodies in order to examine the time-dependent intrathrombotic appearance of EPCs, using the thrombi of DVT model mice with different thrombus ages (1-21 days). In thrombus cross-section specimens with an age of less than 3 days, CD34+/Flk-1+ EPCs were not detected. EPCs were initially observed in wounds aged 5 days, and their number was increased in thrombi with the advance of thrombus ages. The number of EPCs was the largest in the 10-day thrombus. Moreover, all 15 samples aged 7-14 days had an EPC number of more than 10, and, in 9 of them, the number of intrathrombotic EPCs was over 20. In contrast, in all thrombus samples aged 21 days, the number of intrathrombotic EPCs was less than 20. However, in three of them, the intrathrombotic EPC number was ≥ 10. These observations suggested that an intrathrombotic EPC number exceeding 20 would indicate a thrombus age of approximately 7-14 days.
Collapse
|
19
|
Wang JY, Ye S, Zhong H. The role of bone marrow microenvironment in platelet production and their implications for the treatment of thrombocytopenic diseases. ACTA ACUST UNITED AC 2017; 22:630-639. [PMID: 28569613 DOI: 10.1080/10245332.2017.1333274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Impaired platelet production has been found to be an important pathological mechanism of thrombocytopenia in many diseases. Platelet generation is a complex process that mainly occurs in the bone marrow, and thus is closely regulated by the bone marrow microenvironment. This review attempts to summarize the most current knowledge referring the role of bone marrow microenvironment in the regulation of platelet production. METHODS The effects of multiple microenvironment ingredients in regulating megakaryopoiesis and thrombocytopoiesis have been discussed. Abnormalities of these components in thrombocytopenic diseases are also described. DISCUSSIONS Thrombocytopenia is a common clinical manifestation of a variety of diseases. The functional importance of platelets has driven the developments of a broad range of studies. Platelet generation mainly occurs within the bone marrow, where the cells, soluble factors, and extracellular matrix proteins collaboratively form a complex regulatory network, directing megakaryocytic proliferation and differentiation. Alteration in any part of the regulating network may result in defective platelet formation, and eventually lead to thrombocytopenia. A variety of thrombocytopenic diseases have been found to be related with the disregulated bone marrow microenvironment. Identification of the variations of these niche ingredients in certain diseases has facilitated the developments of multiple therapeutic regimes. Further studies that can combine these niche factors with their downstream regulatory factors will be beneficial for developing more effective therapies. CONCLUSIONS Further definition of the role of bone marrow microenvironment in platelet generation may deepen our understanding of the underlying mechanisms as well as provide new therapeutic targets for thrombocytopenic diseases.
Collapse
Affiliation(s)
- Jun-Ying Wang
- a Department of Hematology, South Campus Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , PR China
| | - Shuang Ye
- b Department of Rheumatology, South Campus Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , PR China
| | - Hua Zhong
- a Department of Hematology, South Campus Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , PR China
| |
Collapse
|
20
|
Madaric J, Klepanec A, Valachovicova M, Mistrik M, Bucova M, Olejarova I, Necpal R, Madaricova T, Paulis L, Vulev I. Characteristics of responders to autologous bone marrow cell therapy for no-option critical limb ischemia. Stem Cell Res Ther 2016; 7:116. [PMID: 27530339 PMCID: PMC4987968 DOI: 10.1186/s13287-016-0379-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/16/2016] [Accepted: 07/27/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The present study investigated factors associated with therapeutic benefits after autologous bone marrow cell (BMC) therapy in patients with "no-option" critical limb ischemia (CLI). METHODS AND RESULTS Sixty-two patients with advanced CLI (Rutherford category 5 or 6) not eligible for revascularization were randomized to treatment with 40 ml of autologous BMCs (SmartPreP2) by local intramuscular (n = 32) or intra-arterial (n = 30) application. The primary endpoint was limb salvage and wound healing at 12 months. Seven patients (11 %) died during the follow-up from reasons unrelated to stem cell therapy. The BMC product of patients with limb salvage and wound healing (33/55) was characterized by a higher CD34(+) cell count (p = 0.001), as well as a higher number of total bone marrow mononuclear cells (BM-MNCs) (p = 0.032), than that of nonresponders (22/55). Patients with limb salvage and wound healing were younger (p = 0.028), had lower C-reactive protein levels (p = 0.038), and had higher transcutaneous oxygen pressure (tcpO2) (p = 0.003) before cell application than nonresponders. All patients with major tissue loss at baseline (Rutherford 6 stage of CLI, n = 5) showed progression of limb ischemia and required major limb amputation. In the multiple binary logistic regression model, the number of applied CD34(+) cells (p = 0.046) and baseline tcpO2 (p = 0.031) were independent predictors of limb salvage and wound healing. The number of administrated BM-MNCs strongly correlated with decreased peripheral leukocyte count after 6 months in surviving patients with limb salvage (p = 0.0008). CONCLUSION Patients who benefited from autologous BMC therapy for "no-option" CLI were treated with high doses of CD34(+) cells. The absolute number of applied BM-MNCs correlated with the improvement of inflammation. We hypothesize that the therapeutic benefit of cell therapy for peripheral artery disease is the result of synergistic effects mediated by a mixture of active cells with regenerative potential. Patients at the most advanced stage of CLI do not appear to be suitable candidates for cell therapy. TRIAL REGISTRATION The study was approved and registered by the ISRCTN registry. TRIAL REGISTRATION ISRCTN16096154 . Registered: 26 July 2016.
Collapse
Affiliation(s)
- Juraj Madaric
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia. .,Slovak Medical University, Bratislava, Slovakia.
| | - Andrej Klepanec
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia
| | | | - Martin Mistrik
- Clinic of Haematology and Transfusiology, Faculty Hospital, Bratislava, Slovakia
| | - Maria Bucova
- Institute of Imunology, Faculty of Medicine Comenius University, Bratislava, Slovakia
| | - Ingrid Olejarova
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia
| | - Roman Necpal
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia
| | - Terezia Madaricova
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine Comenius University, Bratislava, Slovakia
| | - Ivan Vulev
- National Institute of Cardiovascular Diseases, Slovak Medical University, Pod Krasnou horkou 1, 833 48, Bratislava, Slovakia.,Slovak Medical University, Bratislava, Slovakia
| |
Collapse
|
21
|
Bone marrow niche in immune thrombocytopenia: a focus on megakaryopoiesis. Ann Hematol 2016; 95:1765-76. [PMID: 27236577 DOI: 10.1007/s00277-016-2703-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 05/23/2016] [Indexed: 12/18/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by increased bleeding tendency and thrombocytopenia. In fact, the precise pathogenesis of this disease is still not clear. Megakaryopoiesis involves complete differentiation of megakaryocyte (MK) progenitors to functional platelets. This complex process occurs in specific bone marrow (BM) niches composed of several hematopoietic and non-hematopoietic cell types, soluble factors, and extracellular matrix proteins. These specialized microenvironments sustain MK maturation and localization to sinusoids as well as platelet release into circulation. However, MKs in ITP patients show impaired maturation and signs of degradation. Intrinsic defects in MKs and their extrinsic environment have been implicated in altered megakaryopoiesis in this disease. In particular, aberrant expression of miRNAs directing MK proliferation, differentiation, and platelet production; defective MK apoptosis; and reduced proliferation and differentiation rate of the MSC compartment observed in these patients may account for BM defects in ITP. Furthermore, insufficient production of thrombopoietin is another likely reason for ITP development. Therefore, identifying the signaling pathways and transcription factors influencing the interaction between MKs and BM niche in ITP patients will contribute to increased platelet production in order to prevent incomplete MK maturation and destruction as well as BM fibrosis and apoptosis in ITP. In this review, we will examine the interaction and role of BM niches in orchestrating megakaryopoiesis in ITP patients and discuss how these factors can be exploited to improve the quality of patient treatment and prognosis.
Collapse
|
22
|
Bakhashab S, Ahmed FW, Schulten HJ, Bashir A, Karim S, Al-Malki AL, Gari MA, Abuzenadah AM, Chaudhary AG, Alqahtani MH, Lary S, Ahmed F, Weaver JU. Metformin improves the angiogenic potential of human CD34⁺ cells co-incident with downregulating CXCL10 and TIMP1 gene expression and increasing VEGFA under hyperglycemia and hypoxia within a therapeutic window for myocardial infarction. Cardiovasc Diabetol 2016; 15:27. [PMID: 26861446 PMCID: PMC4748498 DOI: 10.1186/s12933-016-0344-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/26/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in patients with diabetes mellitus (DM). To identify the most effective treatment for CVD, it is paramount to understand the mechanism behind cardioprotective therapies. Although metformin has been shown to reduce CVD in Type-2 DM clinical trials, the underlying mechanism remains unexplored. CD34(+) cell-based therapies offer a new treatment approach to CVD. The aim of this study was to investigate the effect of metformin on the angiogenic properties of CD34(+) cells under conditions mimicking acute myocardial infarction in diabetes. METHODS CD34(+) cells were cultured in 5.5 or 16.5 mmol/L glucose ± 0.01 mmol/L metformin and then additionally ± 4 % hypoxia. The paracrine function of CD34(+) cell-derived conditioned medium was assessed by measuring pro-inflammatory cytokines, vascular endothelial growth factor A (VEGFA), and using an in vitro tube formation assay for angiogenesis. Also, mRNA of CD34(+) cells was assayed by microarray and genes of interest were validated by qRT-PCR. RESULTS Metformin increased in vitro angiogenesis under hyperglycemia-hypoxia and augmented the expression of VEGFA. It also reduced the angiogenic-inhibitors, chemokine (C-X-C motif) ligand 10 (CXCL10) and tissue inhibitor of metalloproteinase 1 (TIMP1) mRNAs, which were upregulated under hyperglycemia-hypoxia. In addition metformin, increased expression of STEAP family member 4 (STEAP4) under euglycemia, indicating an anti-inflammatory effect. CONCLUSIONS Metformin has a dual effect by simultaneously increasing VEGFA and reducing CXCL10 and TIMP1 in CD34(+) cells in a model of the diabetic state combined with hypoxia. Therefore, these angiogenic inhibitors are promising therapeutic targets for CVD in diabetic patients. Moreover, our data are commensurate with a vascular protective effect of metformin and add to the understanding of underlying mechanisms.
Collapse
Affiliation(s)
- Sherin Bakhashab
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia.
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Fahad W Ahmed
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne, UK.
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Ayat Bashir
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | - Mamdooh A Gari
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Adel M Abuzenadah
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammed H Alqahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sahira Lary
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Jolanta U Weaver
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne, UK.
| |
Collapse
|
23
|
Kachamakova-Trojanowska N, Bukowska-Strakova K, Zukowska M, Dulak J, Jozkowicz A. The real face of endothelial progenitor cells - Circulating angiogenic cells as endothelial prognostic marker? Pharmacol Rep 2015; 67:793-802. [PMID: 26321283 DOI: 10.1016/j.pharep.2015.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 02/08/2023]
Abstract
Endothelial progenitor cells (EPCs) have been extensively studied for almost 19 years now and were considered as a potential marker for endothelial regeneration ability. On the other hand, circulating endothelial cells (CEC) were studied as biomarker for endothelial injury. Yet, in the literature, there is also huge incoherency in regards to terminology and protocols used. This results in misleading conclusions on the role of so called "EPCs", especially in the clinical field. The discrepancies are mainly due to strong phenotypic overlap between EPCs and circulating angiogenic cells (CAC), therefore changes in "EPC" terminology have been suggested. Other factors leading to inconsistent results are varied definitions of the studied populations and the lack of universal data reporting, which could strongly affect data interpretation. The current review is focused on controversies concerning the use of "EPCs"/CAC and CEC as putative endothelial diagnostic markers.
Collapse
Affiliation(s)
- Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Zukowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
24
|
Malara A, Abbonante V, Di Buduo CA, Tozzi L, Currao M, Balduini A. The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control. Cell Mol Life Sci 2015; 72:1517-36. [PMID: 25572292 PMCID: PMC4369169 DOI: 10.1007/s00018-014-1813-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
Megakaryocytes are rare cells found in the bone marrow, responsible for the everyday production and release of millions of platelets into the bloodstream. Since the discovery and cloning, in 1994, of their principal humoral factor, thrombopoietin, and its receptor c-Mpl, many efforts have been directed to define the mechanisms underlying an efficient platelet production. However, more recently different studies have pointed out new roles for megakaryocytes as regulators of bone marrow homeostasis and physiology. In this review we discuss the interaction and the reciprocal regulation of megakaryocytes with the different cellular and extracellular components of the bone marrow environment. Finally, we provide evidence that these processes may concur to the reconstitution of the bone marrow environment after injury and their deregulation may lead to the development of a series of inherited or acquired pathologies.
Collapse
Affiliation(s)
- Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Christian A. Di Buduo
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Lorenzo Tozzi
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Manuela Currao
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|