1
|
Feng L, Chen H, Qian C, Zhao Y, Wang W, Liu Y, Xu M, Cao J, Zhou T, Wu Q. Resistance, mechanism, and fitness cost of specific bacteriophages for Pseudomonas aeruginosa. mSphere 2024; 9:e0055323. [PMID: 38299825 PMCID: PMC10900902 DOI: 10.1128/msphere.00553-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
The bacteriophage is an effective adjunct to existing antibiotic therapy; however, in the course of bacteriophage therapy, host bacteria will develop resistance to bacteriophages, thus affecting the efficacy. Therefore, it is important to describe how bacteria evade bacteriophage attack and the consequences of the biological changes that accompany the development of bacteriophage resistance before the bacteriophage is applied. The specific bacteriophage vB3530 of Pseudomonas aeruginosa (P. aeruginosa) has stable biological characteristics, short incubation period, strong in vitro cleavage ability, and absence of virulence or resistance genes. Ten bacteriophage-resistant strains (TL3780-R) were induced using the secondary infection approach, and the plaque assay showed that vB3530 was less sensitive to TL3780-R. Identification of bacteriophage adsorption receptors showed that the bacterial surface polysaccharide was probably the adsorption receptor of vB3530. In contrast to the TL3780 parental strain, TL3780-R is characterized by the absence of long lipopolysaccharide chains, which may be caused by base insertion of wzy or deletion of galU. It is also intriguing to observe that, in comparison to the parent strain, the bacteriophage-resistant strains TL3780-R mostly exhibited a large cost of fitness (growth rate, biofilm formation, motility, and ability to produce enhanced pyocyanin). In addition, TL3780-R9 showed increased susceptibility to aminoglycosides and chlorhexidine, which may be connected to the loss and down-regulation of mexX expression. Consequently, these findings fully depicted the resistance mechanism of P. aeruginosa to vB3530 and the fitness cost of bacteriophage resistance, laying a foundation for further application of bacteriophage therapy.IMPORTANCEThe bacteriophage is an effective adjunct to existing antibiotic therapy; However, bacteria also develop defensive mechanisms against bacteriophage attack. Thus, there is an urgent need to deeply understand the resistance mechanism of bacteria to bacteriophages and the fitness cost of bacteriophage resistance so as to lay the foundation for subsequent application of the phage. In this study, a specific bacteriophage vB3530 of P. aeruginosa had stable biological characteristics, short incubation period, strong in vitro cleavage ability, and absence of virulence or resistance genes. In addition, we found that P. aeruginosa may lead to phage resistance due to the deletion of galU and the base insertion of wzy, involved in the synthesis of lipopolysaccharides. Simultaneously, we showed the association with the biological state of the bacteria after bacteria acquire bacteriophage resistance, which is extremely relevant to guide the future application of therapeutic bacteriophages.
Collapse
Affiliation(s)
- Luozhu Feng
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Department of Clinical Laboratory, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Huanchang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Changrui Qian
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yining Zhao
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weixiang Wang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yan Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mengxin Xu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qing Wu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Gebremichael Y, Crandall J, Mukhopadhyay R, Xu F. Salmonella Subpopulations Identified from Human Specimens Express Heterogenous Phenotypes That Are Relevant to Clinical Diagnosis. Microbiol Spectr 2023; 11:e0167922. [PMID: 36507668 PMCID: PMC9927314 DOI: 10.1128/spectrum.01679-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
Clonal bacterial cells can give rise to functionally heterogeneous subpopulations. This diversification is considered an adaptation strategy that has been demonstrated for several bacterial species, including Salmonella enterica serovar Typhimurium. In previous studies on mouse models infected orally with pure Salmonella cultures, derived bacterial cells collected from animal tissues were found to express heterogenous phenotypes. Here, we show mixed Salmonella populations, apparently derived from the same progenitor, present in human specimens collected at a single disease time point, and in a long-term-infected patient, these Salmonella were no longer expressing surface-exposed antigen epitopes by isolates collected at earlier days of the disease. The subpopulations express different phenotypes related to cell surface antigen expression, motility, biofilm formation, biochemical metabolism, and antibiotic resistance, which can all contribute to pathogenicity. Some of the phenotypes correlate with single nucleotide polymorphisms or other sequence changes in bacterial genomes. These genetic variations can alter synthesis of cell membrane-associated molecules such as lipopolysaccharides and lipoproteins, leading to changes in bacterial surface structure and function. This study demonstrates the limitation of Salmonella diagnostic methods that are based on a single-cell population which may not represent the heterogenous bacterial community in infected humans. IMPORTANCE In animal model systems, heterogenous Salmonella phenotypes were found previously to regulate bacterial infections. We describe in this communication that different Salmonella phenotypes also exist in infected humans at a single disease time point and that their phenotypic and molecular traits are associated with different aspects of pathogenicity. Notably, variation in genes encoding antibiotic resistance and two-component systems were observed from the subpopulations of a patient suffering from persistent salmonellosis. Therefore, clinical and public health interventions of the disease that are based on diagnosis of a single-cell population may miss other subpopulations that can cause residual human infections.
Collapse
Affiliation(s)
- Yismashoa Gebremichael
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - John Crandall
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - Rituparna Mukhopadhyay
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - Fengfeng Xu
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| |
Collapse
|
3
|
Fang Z, Zhou X, Wang X, Shi X. Development of a 3-plex droplet digital PCR for identification and absolute quantification of Salmonella and its two important serovars in various food samples. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
He S, Zhan Z, Shi C, Wang S, Shi X. Ethanol at Subinhibitory Concentrations Enhances Biofilm Formation in Salmonella Enteritidis. Foods 2022; 11:foods11152237. [PMID: 35954005 PMCID: PMC9367854 DOI: 10.3390/foods11152237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/29/2022] Open
Abstract
The survival of Salmonella Enteritidis in the food chain is relevant to its biofilm formation capacity, which is influenced by suboptimal environmental conditions. Here, biofilm formation pattern of this bacterium was assessed in the presence of ethanol at sub-minimal inhibitory concentrations (sub-MICs) by microtiter plate assays, cell characteristic analyses, and gene expression tests. It was observed that ethanol at subinhibitory concentrations (1/4 MIC, 2.5%; 1/2 MIC, 5.0%) was able to stimulate biofilm formation in S. Enteritidis. The OD595 value (optical density at 595 nm) used to quantify biofilm production was increased from 0.14 in control groups to 0.36 and 0.63 under 2.5% and 5.0% ethanol stresses, respectively. Ethanol was also shown to reduce bacterial swimming motility and enhance cell auto-aggregation ability. However, other cell characteristics such as swarming activity, initial attachment and cell surface hydrophobicity were not remarkedly impacted by ethanol. Reverse transcription quantitative real-time PCR (RT-qPCR) analysis further revealed that the luxS gene belonging to a quorum-sensing system was upregulated by 2.49- and 10.08-fold in the presence of 2.5% and 5.0% ethanol, respectively. The relative expression level of other biofilm-related genes (adrA, csgB, csgD, and sdiA) and sRNAs (ArcZ, CsrB, OxyS, and SroC) did not obviously change. Taken together, these findings suggest that decrease in swimming motility and increase in cell auto-aggregation and quorum sensing may result in the enhancement of biofilm formation by S. Enteritidis under sublethal ethanol stress.
Collapse
Affiliation(s)
- Shoukui He
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; (S.H.); (Z.Z.); (C.S.)
| | - Zeqiang Zhan
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; (S.H.); (Z.Z.); (C.S.)
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; (S.H.); (Z.Z.); (C.S.)
| | - Siyun Wang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; (S.H.); (Z.Z.); (C.S.)
- Correspondence:
| |
Collapse
|
5
|
Shang Y, Ye Q, Wu Q, Xiang X, Zha F, Du M, Zhang J. Novel multiplex PCR assays for rapid identification of Salmonella serogroups B, C1, C2, D, E, S. enteritidis, and S. typhimurium. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1445-1453. [PMID: 35332354 DOI: 10.1039/d1ay02163j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Foodborne illnesses caused by Salmonella represent a significant public health problem worldwide. The aim of this study was to establish multiplex PCR (mPCR) for the rapid identification of Salmonella serogroups B, C1, C2, D, and E as well as for the serovars enteritidis and typhimurium. Employing pan-genome analysis and PCR verification, B-rfbJ, C1-9679, C2-pimB, D-rfbJ, E-rfbC, and four genes (SE18636, SE16574, SE2599, and SE13329) were identified as specific target genes for Salmonella serogroups B, C1, C2, D, E, and S. enteritidis, respectively. Thereafter, three novel mPCR assays (one of 3-mPCR and two of 2-mPCR) were successfully developed to identify these bacteria based on the target genes and another S. typhimurium-specific STM4495 gene. The primers targeting C1-9679, C2-pimB, and E-rfbC genes specific to the serogroups C1, C2, and E, respectively, constituted a 3-mPCR, while the other two 2-mPCRs, respectively, consisting primers specific to serogroup D and S. enteritidis (D-rfbJ and SE16574), and serogroup B and S. typhimurium-specific primers (B-rfbJ and STM4495), were also designed. The specificity of each mPCR was further evaluated by using non-target strains. The detection limits of mPCRs were approximately 103-104 CFU mL-1 in pure culture and 104-105 CFU g-1 in spiked chicken meat. In addition, mPCR assays could correctly detect target Salmonella in food samples. These results suggest that specific targets could be mined efficiently through a pan-genome analysis tool, and the novel mPCR assays developed in this study offer a promising technique for rapid and accurate detection of five serogroups of Salmonella (B, C1, C2, D, and E) and two serovars (S. enteritidis and S. typhimurium).
Collapse
Affiliation(s)
- Yuting Shang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China.
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China.
| | - Xinran Xiang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China.
| | - Fei Zha
- State Key Laboratory of Food Science and Technology, National Engineering Research Centre for Functional Foods, Synergetic Innovation Centre of Food Safety, Joint International Research Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Mingzhu Du
- State Key Laboratory of Food Science and Technology, National Engineering Research Centre for Functional Foods, Synergetic Innovation Centre of Food Safety, Joint International Research Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China.
| |
Collapse
|
6
|
Qin X, Liu Y, Shi X. Resistance-Nodulation-Cell Division (RND) Transporter AcrD Confers Resistance to Egg White in Salmonella enterica Serovar Enteritidis. Foods 2021; 11:foods11010090. [PMID: 35010216 PMCID: PMC8750817 DOI: 10.3390/foods11010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022] Open
Abstract
The excellent survival ability of Salmonella enterica serovar Enteritidis (S. Enteritidis) in egg white leads to outbreaks of salmonellosis frequently associated with eggs and egg products. Our previous proteomic study showed that the expression of multidrug efflux RND transporter AcrD in S. Enteritidis was significantly up-regulated (4.06-fold) in response to an egg white environment. In this study, the potential role of AcrD in the resistance of S. Enteritidis to egg white was explored by gene deletion, survival ability test, morphological observation, Caco-2 cell adhesion and invasion. It was found that deletion of acrD had no apparent effect on the growth of S. Enteritidis in Luria-Bertani (LB) broth but resulted in a significant (p < 0.05) decrease in resistance of S. Enteritidis to egg white and a small number of cell lysis. Compared to the wild type, a 2-log population reduction was noticed in the ΔacrD mutant with different initial concentrations after incubation with egg white for 3 days. Furthermore, no significant difference (p > 0.05) in the adhesion and invasion was found between the wild type and ΔacrD mutant in LB broth and egg white, but the invasion ability of the ΔacrD mutant in egg white was significantly (p < 0.05) lower than that in LB broth. This indicates that acrD is involved in virulence in Salmonella. Taken together, these results reveal the importance of AcrD on the resistance of S. Enteritidis to egg white.
Collapse
Affiliation(s)
- Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Yanhong Liu
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA;
| | - Xianming Shi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
7
|
Zhou X, Liu B, Liu Y, Shi C, Fratamico PM, Zhang L, Wang D, Zhang J, Cui Y, Xu P, Shi X. Two homologous Salmonella serogroup C1-specific genes are required for flagellar motility and cell invasion. BMC Genomics 2021; 22:507. [PMID: 34225670 PMCID: PMC8259012 DOI: 10.1186/s12864-021-07759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Background Salmonella is a major bacterial pathogen associated with a large number of outbreaks of foodborne diseases. Many highly virulent serovars that cause human illness belong to Salmonella serogroup C1, and Salmonella ser. Choleraesuis is a prominent cause of invasive infections in Asia. Comparative genomic analysis in our previous study showed that two homologous genes, SC0368 and SC0595 in Salmonella ser. Choleraesuis were unique to serogroup C1. In this study, two single-deletion mutants (Δ0368 and Δ0595) and one double-deletion mutant (Δ0368Δ0595) were constructed based on the genome. All these mutants and the wild-type strain were subjected to RNA-Seq analysis to reveal functional relationships of the two serogroup C1-specific genes. Results Data from RNA-Seq indicated that deletion of SC0368 resulted in defects in motility through repression of σ28 in flagellar regulation Class 3. Consistent with RNA-Seq data, results from transmission electron microcopy (TEM) showed that flagella were not present in △0368 and △0368△0595 mutants resulting in both swimming and swarming defects. Interestingly, the growth rates of two non-motile mutants △0368 and △0368△0595 were significantly greater than the wild-type, which may be associated with up-regulation of genes encoding cytochromes, enhancing bacterial proliferation. Moreover, the △0595 mutant was significantly more invasive in Caco-2 cells as shown by bacterial enumeration assays, and the expression of lipopolysaccharide (LPS) core synthesis-related genes (rfaB, rfaI, rfaQ, rfaY, rfaK, rfaZ) was down-regulated only in the △0368△0595 mutant. In addition, this study also speculated that these two genes might be contributing to serotype conversion for Salmonella C1 serogroup based on their apparent roles in biosynthesis of LPS and the flagella. Conclusion A combination of biological and transcriptomic (RNA-Seq) analyses has shown that the SC0368 and SC0595 genes are involved in biosynthesis of flagella and complete LPS, as well as in bacterial growth and virulence. Such information will aid to revealing the role of these specific genes in bacterial physiology and evolution within the serogroup C1. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07759-z.
Collapse
Affiliation(s)
- Xiujuan Zhou
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Yanhong Liu
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pina M Fratamico
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Lida Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dapeng Wang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianhua Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Cui
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Xu
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Ge H, Zhang K, Gu D, Chen X, Wang X, Li G, Zhu H, Chang Y, Zhao G, Pan Z, Jiao X, Hu M. The rfbN gene of Salmonella Typhimurium mediates phage adsorption by modulating biosynthesis of lipopolysaccharide. Microbiol Res 2021; 250:126803. [PMID: 34146940 DOI: 10.1016/j.micres.2021.126803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 01/21/2023]
Abstract
The study of the interaction mechanism between bacteriophage and host is helpful in promoting development of bacteriophage applications. The mechanism of the interaction with the phage was studied by constructing the rfbN gene deletion and complemented with strains of Salmonella enterica subspecies enterica serovar Typhimurium (Salmonella Typhimurium, S. Typhimurium) D6. The rfbN gene deletion strain could not be lysed by phage S55 and led to a disorder of lipopolysaccharide (LPS) biosynthesis, which changed from the smooth type to rough type. Also, the RfbN protein lacking any of the three-segment amino acid (aa) sequences (90-120 aa, 121-158 aa, and 159-194 aa) produces the same result. Transmission electron microscopy and confocal microscopy assays demonstrated that phage S55 dramatically reduced adsorption to the rfbN deletion strain as compared to the wild strain D6. After co-incubation of the S55 with the purified smooth LPS, D6 could not be lysed, indicating that the smooth LPS binds to the S55 in vitro and then inhibits the cleavage activity of the S55. To sum up, the rfbN gene affects phage adsorption by regulating LPS synthesis. Furthermore, the functioning of the RfbN protein requires the involvement of multiple structures. To the best of our knowledge, this study is the first report of the involvement of the bacterial rfbN gene involved in the phage-adsorption process.
Collapse
Affiliation(s)
- Haojie Ge
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Kai Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Dan Gu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiang Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xin Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Guiqin Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongji Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yingyan Chang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ge Zhao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xin'an Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Maozhi Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
9
|
Dong R, Qin X, He S, Zhou X, Cui Y, Shi C, He Y, Shi X. DsrA confers resistance to oxidative stress in Salmonella enterica serovar Typhimurium. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens 2019; 9:pathogens9010006. [PMID: 31861540 PMCID: PMC7168646 DOI: 10.3390/pathogens9010006] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
The major constituent of the outer membrane of Gram-negative bacteria is lipopolysaccharide (LPS), which is comprised of lipid A, core oligosaccharide, and O antigen, which is a long polysaccharide chain extending into the extracellular environment. Due to the localization of LPS, it is a key molecule on the bacterial cell wall that is recognized by the host to deploy an immune defence in order to neutralize invading pathogens. However, LPS also promotes bacterial survival in a host environment by protecting the bacteria from these threats. This review explores the relationship between the different LPS glycoforms of the opportunistic pathogen Pseudomonas aeruginosa and the ability of this organism to cause persistent infections, especially in the genetic disease cystic fibrosis. We also discuss the role of LPS in facilitating biofilm formation, antibiotic resistance, and how LPS may be targeted by new antimicrobial therapies.
Collapse
|
11
|
Jiao Y, Xia Z, Zhou X, Guo Y, Guo R, Kang X, Wu K, Sun J, Xu X, Jiao X, Pan Z, Liu X. Signature-tagged mutagenesis screening revealed the role of lipopolysaccharide biosynthesis gene rfbH in smooth-to-rough transition in Salmonella Enteritidis. Microbiol Res 2018; 212-213:75-79. [PMID: 29853170 DOI: 10.1016/j.micres.2018.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 11/15/2022]
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis, SE) is a major cause of foodborne diseases for humans. The completeness of the O-chain antigen of Lipopolysaccharide (LPS) determines whether a S. Enteritidis strain is smooth or rough. However, genes that are involved in the synthesis of LPS and rough-smooth variation are not completely understood. In this study, we used monoclonal antibody against O-antigens (O9 mAb) to identify novel factors that are involved in LPS synthesis and rough variation in S. Enteritidis by using signature-tagged mutagenesis (STM) technique. Our results showed that transposon insertion in the gene rfbH led to different LPS phenotype, auto-aggregation characteristic, motility and resistance to environmental stress compared with SE wild-type strain C50041. In addition, sera tests showed that rfbH mutant does not elicit specific antibodies against O-antigens in vaccinated animals. Taken together, the S. Enteritidis rfbH gene is implicated in LPS biosynthesis, rough variation, sera distinguishable reaction, motility and stress resistance. The rfbH mutant strain could be potentially used as a distinguishable vaccine or a live vector to deliver drugs and antibodies in vivo.
Collapse
Affiliation(s)
- Yang Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zemiao Xia
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaohui Zhou
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, 61 North Eagleville Road, Unit-3089, Mansfield, CT, USA
| | - Yaxin Guo
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Rongxian Guo
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xilong Kang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Kaiyue Wu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jun Sun
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Division of Gastroenterology and Hepatology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Xiulong Xu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Xiufan Liu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
12
|
Eeckhaut V, Haesebrouck F, Ducatelle R, Van Immerseel F. Oral vaccination with a live Salmonella Enteritidis/Typhimurium bivalent vaccine in layers induces cross-protection against caecal and internal organ colonization by a Salmonella Infantis strain. Vet Microbiol 2018; 218:7-12. [PMID: 29685223 DOI: 10.1016/j.vetmic.2018.03.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 01/06/2023]
Abstract
Salmonella is an important zoonotic agent, and poultry products remain one of the main sources of infection for humans. Salmonella Infantis is an emerging serotype in poultry worldwide, reflected by an increased prevalence in poultry flocks, on broiler meat and in human foodborne illness cases. In the current study, the efficacy of oral administration of a live monovalent Salmonella Enteritidis and a live bivalent Salmonella Enteritidis/Typhimurium vaccine, against a Salmonella Enteritidis and Infantis infection, was determined. Oral administration of the live vaccines to day-old chickens caused a decrease in caecal colonization by Salmonella Enteritidis, but not Infantis, at day 7, when challenged at day 2. Vaccination with the bivalent vaccine at day 1 resulted in a decreased spleen colonization by both Salmonella Infantis and Enteritidis. Twice (at day 1 and week 6) and thrice vaccination (at day 1, week 6 and 16) of laying hens with the bivalent vaccine resulted in a decreased caecal colonization by Salmonella Enteritidis and Infantis, and significantly lower oviduct colonization levels by Salmonella Enteritidis. These data show cross-protection against Salmonella Infantis by oral administration of live vaccine strains belonging to other serogroups.
Collapse
Affiliation(s)
- Venessa Eeckhaut
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| |
Collapse
|
13
|
Zhao X, Dai Q, Jia R, Zhu D, Liu M, Wang M, Chen S, Sun K, Yang Q, Wu Y, Cheng A. Two Novel Salmonella Bivalent Vaccines Confer Dual Protection against Two Salmonella Serovars in Mice. Front Cell Infect Microbiol 2017; 7:391. [PMID: 28929089 PMCID: PMC5591321 DOI: 10.3389/fcimb.2017.00391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/22/2017] [Indexed: 12/12/2022] Open
Abstract
Non-typhoidal Salmonella includes thousands of serovars that are leading causes of foodborne diarrheal illness worldwide. In this study, we constructed three bivalent vaccines for preventing both Salmonella Typhimurium and Salmonella Newport infections by using the aspartate semialdehyde dehydrogenase (Asd)-based balanced-lethal vector-host system. The constructed Asd+ plasmid pCZ11 carrying a subset of the Salmonella Newport O-antigen gene cluster including the wzx-wbaR-wbaL-wbaQ-wzy-wbaW-wbaZ genes was introduced into three Salmonella Typhimurium mutants: SLT19 (Δasd) with a smooth LPS phenotype, SLT20 (Δasd ΔrfbN) with a rough LPS phenotype, and SLT22 (Δasd ΔrfbN ΔpagL::T araC PBADrfbN) with a smooth LPS phenotype when grown with arabinose. Immunoblotting demonstrated that SLT19 harboring pCZ11 [termed SLT19 (pCZ11)] co-expressed the homologous and heterologous O-antigens; SLT20 (pCZ11) exclusively expressed the heterologous O-antigen; and when arabinose was available, SLT22 (pCZ11) expressed both types of O-antigens, while in the absence of arabinose, SLT22 (pCZ11) expressed only the heterologous O-antigen. Exclusive expression of the heterologous O-antigen in Salmonella Typhimurium decreased the swimming ability of the bacterium and its susceptibility to polymyxin B. Next, the crp gene was deleted from the three recombinant strains for attenuation purposes, generating the three bivalent vaccine strains SLT25 (pCZ11), SLT26 (pCZ11), and SLT27 (pCZ11), respectively. Groups of BALB/c mice (12 mice/group) were orally immunized with 109 CFU of each vaccine strain twice at an interval of 4 weeks. Compared with a mock immunization, immunization with all three vaccine strains induced significant serum IgG responses against both Salmonella Typhimurium and Salmonella Newport LPS. The bacterial loads in the mouse tissues were significantly lower in the three vaccine-strain-immunized groups than in the mock group after either Salmonella Typhimurium or Salmonella Newport lethal challenge. All of the mice in the three vaccine-immunized groups survived the lethal Salmonella Typhimurium challenge. In contrast, SLT26 (pCZ11) and SLT27 (pCZ11) conferred full protection against lethal Salmonella Newport challenge, but SLT25 (pCZ11) provided only 50% heterologous protection. Thus, we developed two novel Salmonella bivalent vaccines, SLT26 (pCZ11) and SLT27 (pCZ11), suggesting that the delivery of a heterologous O-antigen in attenuated Salmonella strains is a prospective approach for developing Salmonella vaccines with broad serovar coverage.
Collapse
Affiliation(s)
- Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Qinlong Dai
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kunfeng Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
14
|
Jiao Y, Guo R, Tang P, Kang X, Yin J, Wu K, Geng S, Li Q, Sun J, Xu X, Zhou X, Gan J, Jiao X, Liu X, Pan Z. Signature-tagged mutagenesis screening revealed a novel smooth-to-rough transition determinant of Salmonella enterica serovar Enteritidis. BMC Microbiol 2017; 17:48. [PMID: 28253852 PMCID: PMC5335844 DOI: 10.1186/s12866-017-0951-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/08/2017] [Indexed: 11/25/2022] Open
Abstract
Background Salmonella enterica serovar Enteritidis (S. Enteritidis) has emerged as one of the most important food-borne pathogens for humans. Lipopolysaccharide (LPS), as a component of the outer membrane, is responsible for the virulence and smooth-to-rough transition in S. Enteritidis. In this study, we screened S. Enteritidis signature-tagged transposon mutant library using monoclonal antibody against somatic O9 antigen (O9 MAb) and O9 factor rabbit antiserum to identify novel genes that are involved in smooth-to-rough transition. Results A total of 480 mutants were screened and one mutant with transposon insertion in rfbG gene had smooth-to-rough transition phenotype. In order to verify the role of rfbG gene, an rfbG insertion or deletion mutant was constructed using λ-Red recombination system. Phenotypic and biological analysis revealed that rfbG insertion or deletion mutants were similar to the wild-type strain in growth rate and biochemical properties, but the swimming motility was reduced. SE Slide Agglutination test and ELISA test showed that rfbG mutants do not stimulate animals to produce agglutinating antibody. In addition, the half-lethal dose (LD50) of the rfbG deletion mutant strain was 106.6 -fold higher than that of the parent strain in a mouse model when injected intraperitoneally. Conclusions These data indicate that the rfbG gene is involved in smooth-to-rough transition, swimming motility and virulence of S. Enteritidis. Furthermore, somatic O-antigen antibody-based approach to screen signature-tagged transposon mutants is feasible to clarify LPS biosynthesis and to find suitable markers in DIVA-vaccine research.
Collapse
Affiliation(s)
- Yang Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Rongxian Guo
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Peipei Tang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Xilong Kang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Junlei Yin
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Kaiyue Wu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Shizhong Geng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Jun Sun
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Division of Gastroenterology and Hepatology Department of Medicine, University of Illinois at Chicago, 840 S Wood Street, Room 704 CSB, 60612, Chicago, IL, USA
| | - Xiulong Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Xiaohui Zhou
- Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, 61 North Eagleville Road, Unit-3089, Mansfield, CT, USA
| | - Junji Gan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Xiufan Liu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|