1
|
Zhang C, Simón M, Lim H, Tolman NG, Horbal L, Juarez FA, Bhandari A, Montgomery C, John SWM. IOP-induced blood-retinal barrier compromise contributes to RGC death in glaucoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618539. [PMID: 39463998 PMCID: PMC11507889 DOI: 10.1101/2024.10.15.618539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The integrity of the blood-retinal barrier (BRB) has been largely unexplored in glaucoma. We reveal that elevated intraocular pressure (IOP) partially compromises the BRB in two human-relevant inherited mouse models of glaucoma (DBA/2J and Lmx1bV265D). Experimentally increasing IOP in mouse eyes further confirms this. Notably, the compromise induces subtle leakage, happening without bleeding or detected endothelial cell junction disruption, and it precedes neurodegeneration. Leakage occurs from peripheral veins in the retinal ganglion cell layer with a concomitant loss of the transcytosis inhibitor MFSD2A. Importantly, stabilizing β-catenin in retinal endothelial cells prevents both vascular leakage and neurodegeneration in the DBA/2J model. The occurrence of leakage in all 3 high IOP models indicates that BRB compromise may be a common, yet overlooked, mechanism in glaucoma. These findings suggest that IOP-induced BRB compromise plays a critical role in glaucoma, offering a new therapeutic target.
Collapse
|
2
|
Bufi R, Korstanje R. The impact of genetic background on mouse models of kidney disease. Kidney Int 2022; 102:38-44. [DOI: 10.1016/j.kint.2022.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
|
3
|
Deng W, Hedberg-Buenz A, Soukup DA, Taghizadeh S, Wang K, Anderson MG, Garvin MK. AxonDeep: Automated Optic Nerve Axon Segmentation in Mice With Deep Learning. Transl Vis Sci Technol 2021; 10:22. [PMID: 34932117 PMCID: PMC8709929 DOI: 10.1167/tvst.10.14.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Optic nerve damage is the principal feature of glaucoma and contributes to vision loss in many diseases. In animal models, nerve health has traditionally been assessed by human experts that grade damage qualitatively or manually quantify axons from sampling limited areas from histologic cross sections of nerve. Both approaches are prone to variability and are time consuming. First-generation automated approaches have begun to emerge, but all have significant shortcomings. Here, we seek improvements through use of deep-learning approaches for segmenting and quantifying axons from cross-sections of mouse optic nerve. Methods Two deep-learning approaches were developed and evaluated: (1) a traditional supervised approach using a fully convolutional network trained with only labeled data and (2) a semisupervised approach trained with both labeled and unlabeled data using a generative-adversarial-network framework. Results From comparisons with an independent test set of images with manually marked axon centers and boundaries, both deep-learning approaches outperformed an existing baseline automated approach and similarly to two independent experts. Performance of the semisupervised approach was superior and implemented into AxonDeep. Conclusions AxonDeep performs automated quantification and segmentation of axons from healthy-appearing nerves and those with mild to moderate degrees of damage, similar to that of experts without the variability and constraints associated with manual performance. Translational Relevance Use of deep learning for axon quantification provides rapid, objective, and higher throughput analysis of optic nerve that would otherwise not be possible.
Collapse
Affiliation(s)
- Wenxiang Deng
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, USA.,Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| | - Adam Hedberg-Buenz
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - Dana A Soukup
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - Sima Taghizadeh
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, USA
| | - Kai Wang
- Department of Biostatistics, The University of Iowa, Iowa City, IA, USA
| | - Michael G Anderson
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA
| | - Mona K Garvin
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, USA.,Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| |
Collapse
|
4
|
de Groot T, Doty R, Damen L, Baumgarten R, Bressers S, Kraak J, Deen PMT, Korstanje R. Genetic background determines renal response to chronic lithium treatment in female mice. Physiol Genomics 2021; 53:406-415. [PMID: 34378418 DOI: 10.1152/physiolgenomics.00149.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Chronic lithium treatment for bipolar disease causes mainly side effects in the kidney. A subset of lithium users develops nephrogenic diabetes insipidus (NDI), a urinary concentrating disorder, and chronic kidney disease (CKD). Age, lithium dose and duration of treatment are important risk factors, while genetic background might also play an important role. Methods In order to investigate the role of genetics, female mice of 29 different inbred strains were treated for one year with control or lithium chow and urine, blood and kidneys were analysed. Results Chronic lithium treatment increased urine production and/or reduced urine osmolality in 21 strains. Renal histology showed that lithium increased interstitial fibrosis and/or tubular atrophy in eight strains, while in none of the strains glomerular injury was induced. Interestingly, lithium did not elevate urinary albumin-creatinine ratio (ACR) in any strain, while eight strains even demonstrated a lowered ACR. The protective effect on ACR coincided with a similar decrease in urinary IgG levels, a marker of glomerular function, while the adverse effect of lithium on interstitial fibrosis/tubular atrophy coincided with a severe increase in urinary β2-microglobulin (B2M) levels, an indicator of proximal tubule damage. Conclusion Genetic background plays an important role in the development of lithium-induced NDI and chronic renal pathology in female mice. The strong correlation of renal pathology with urinary B2M levels indicates B2M as a promising biomarker for chronic renal damage induced by lithium.
Collapse
Affiliation(s)
- Theun de Groot
- The Jackson Laboratory, Bar Harbor, Maine, United States.,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rosalinda Doty
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Lars Damen
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Steffi Bressers
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joline Kraak
- The Jackson Laboratory, Bar Harbor, Maine, United States.,Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine, United States
| |
Collapse
|
5
|
Amato R, Lazzara F, Chou TH, Romano GL, Cammalleri M, Dal Monte M, Casini G, Porciatti V. Diabetes Exacerbates the Intraocular Pressure-Independent Retinal Ganglion Cells Degeneration in the DBA/2J Model of Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:9. [PMID: 34232257 PMCID: PMC8267218 DOI: 10.1167/iovs.62.9.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Glaucoma is a multifactorial disease, causing retinal ganglion cells (RGCs) and optic nerve degeneration. The role of diabetes as a risk factor for glaucoma has been postulated but still not unequivocally demonstrated. The purpose of this study is to clarify the effect of diabetes in the early progression of glaucomatous RGC dysfunction preceding intraocular pressure (IOP) elevation, using the DBA/2J mouse (D2) model of glaucoma. Methods D2 mice were injected with streptozotocin (STZ) obtaining a combined model of diabetes and glaucoma (D2 + STZ). D2 and D2 + STZ mice were monitored for weight, glycemia, and IOP from 3.5 to 6 months of age. In addition, the activity of RGC and outer retina were assessed using pattern electroretinogram (PERG) and flash electroretinogram (FERG), respectively. At the end point, RGC density and astrogliosis were evaluated in flat mounted retinas. In addition, Müller cell reactivity was evaluated in retinal cross-sections. Finally, the expression of inflammation and oxidative stress markers were analyzed. Results IOP was not influenced by time or diabetes. In contrast, RGC activity resulted progressively decreased in the D2 group independently from IOP elevation and outer retinal dysfunction. Diabetes exacerbated RGC dysfunction, which resulted independent from variation in IOP and outer retinal activity. Diabetic retinas displayed decreased RGC density and increased glial reactivity given by an increment in oxidative stress and inflammation. Conclusions Diabetes can act as an IOP-independent risk factor for the early progression of glaucoma promoting oxidative stress and inflammation-mediated RGC dysfunction, glial reactivity, and cellular death.
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Francesca Lazzara
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States
- Biomedical and Biotechnological Sciences Department, University of Catania, Catania, Italy
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Giovanni Luca Romano
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States
- Biomedical and Biotechnological Sciences Department, University of Catania, Catania, Italy
| | | | | | | | - Vittorio Porciatti
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States
| |
Collapse
|
6
|
Bokhary K, Aljaser F, Abudawood M, Tabassum H, Bakhsh A, Alhammad S, Aleyadhi R, Almajed F, Alsubki R. Role of Oxidative Stress and Severity of Diabetic Retinopathy in Type 1 and Type 2 Diabetes. Ophthalmic Res 2021; 64:613-621. [PMID: 33498043 DOI: 10.1159/000514722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/21/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a sight-threatening complication of diabetes mellitus (DM). Oxidative stress generated on account of hyperglycemic state may lead to retinal abnormalities including DR. OBJECTIVES The aim of the study was to evaluate the status of antioxidant enzymes; superoxide dismutase (SOD), and catalase (CAT), in different stages of DR severity in subjects with type 1 DM (T1DM) and type 2 DM (T2DM). METHODS The cross-sectional study enrolled 148 subjects with T1DM (n = 17), T2DM (n = 96), and nondiabetic controls (n = 35). Subjects with DM were divided into 2 subgroups based on DR severity (mild-to-severe nonproliferative DR [NPDR] and proliferative DR [PDR]), and serum glycated hemoglobin (HbA1c), lipid profile, SOD, and CAT were estimated. RESULTS Both SOD and CAT levels were lower in diabetic subjects than nondiabetic controls. A significant positive correlation was found between HbA1C level and severity of DR (p < 0.0001). Levels of SOD and CAT varied significantly with DR severity in both diabetic groups at p < 0.05. Furthermore, levels of SOD and CAT were found to decrease significantly (p < 0.001) in DR (+) compared to DR (-) patients. Also, increased levels of HbA1c were significantly associated (p < 0.001) with decreased SOD in both subgroups (NPDR and PDR). DR severity was significantly associated with SOD and CAT in the NPDR and PDR subgroups (p < 0.05). CONCLUSION Oxidative stress and decreased antioxidant defenses are associated with DR progression to its PDR stage.
Collapse
Affiliation(s)
- Kholoud Bokhary
- Department of Optometry and Vision Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Feda Aljaser
- Department of Clinical Laboratory Sciences, Chair of Medical and Molecular Genetics, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Manal Abudawood
- Department of Clinical Laboratory Sciences, Chair of Medical and Molecular Genetics, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hajera Tabassum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Afnan Bakhsh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shatha Alhammad
- Department of Optometry and Vision Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rawan Aleyadhi
- Department of Optometry and Vision Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Faisal Almajed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Roua Alsubki
- Department of Clinical Laboratory Sciences, Chair of Medical and Molecular Genetics, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Disturbed glucose and pyruvate metabolism in glaucoma with neuroprotection by pyruvate or rapamycin. Proc Natl Acad Sci U S A 2020; 117:33619-33627. [PMID: 33318177 PMCID: PMC7776900 DOI: 10.1073/pnas.2014213117] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intraocular pressure-sensitive retinal ganglion cell degeneration is a hallmark of glaucoma, the leading cause of irreversible blindness. Here, we used RNA-sequencing and metabolomics to examine early glaucoma in DBA/2J mice. We demonstrate gene expression changes that significantly impact pathways mediating the metabolism and transport of glucose and pyruvate. Subsequent metabolic studies characterized an intraocular pressure (IOP)-dependent decline in retinal pyruvate levels coupled to dysregulated glucose metabolism prior to detectable optic nerve degeneration. Remarkably, retinal glucose levels were elevated 50-fold, consistent with decreased glycolysis but possibly including glycogen mobilization and other metabolic changes. Oral supplementation of the glycolytic product pyruvate strongly protected from neurodegeneration in both rat and mouse models of glaucoma. Investigating further, we detected mTOR activation at the mechanistic nexus of neurodegeneration and metabolism. Rapamycin-induced inhibition of mTOR robustly prevented glaucomatous neurodegeneration, supporting a damaging role for IOP-induced mTOR activation in perturbing metabolism and promoting glaucoma. Together, these findings support the use of treatments that limit metabolic disturbances and provide bioenergetic support. Such treatments provide a readily translatable strategy that warrants investigation in clinical trials.
Collapse
|
8
|
Hou Y, Lan J, Zhang F, Wu X. Expression profiles and potential corneal epithelial wound healing regulation targets of high-mobility group box 1 in diabetic mice. Exp Eye Res 2020; 202:108364. [PMID: 33227295 DOI: 10.1016/j.exer.2020.108364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
Abstract
As a damage-associated molecular pattern molecule, high-mobility group box 1 protein (HMGB1) is involved in diabetes and its complications. However, the role of HMGB1 in diabetic keratopathy is not yet understood. The purpose of this study was to investigate the potential roles of HMGB1 in the development of diabetic keratopathy as well as potential strategies to block HMGB1 in order to prompt epithelial wound healing and nerve regeneration in diabetic corneas. The results demonstrated that diabetic keratopathy developed in mice over the duration of the diabetic condition with typical symptoms, including damaged ocular surfaces and corneal nerves. The diabetic corneas had significantly increased protein expression levels of HMGB1 and its receptors-the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4)-compared to the age-matched normal corneas (P < 0.05). Corneal HMGB1 levels significantly increased during the corneal wound healing process of the diabetic mice, peaking on the first day after the wound was created and then decreasing to the unwounded level on the seventh day. Exogenous HMGB1 peptide significantly retarded wound and nerve healing, while glycyrrhizin (an HMGB1 inhibitor) significantly prompted wound and nerve healing. Further, the western blot results confirmed that RAGE and TLR4 were also involved in corneal wound and nerve healing. In conclusion, these data showed that HMGB1 and its related receptors are highly involved in the development of diabetic keratopathy. This finding indicates that the blockage of HMGB1 might serve as a strategy to prompt diabetic corneal and nerve wound healing.
Collapse
Affiliation(s)
- Yuzhen Hou
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Jie Lan
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Fan Zhang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
9
|
Jung KI, Woo JE, Park CK. Intraocular pressure fluctuation and neurodegeneration in the diabetic rat retina. Br J Pharmacol 2020; 177:3046-3059. [PMID: 32087615 PMCID: PMC7279969 DOI: 10.1111/bph.15033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Early retinal neurodegeneration occurs as one of the complications of diabetes even before clinically detectable diabetic vascular retinopathy. The pathogenesis of retinal diabetic neuropathy is still not well understood. We investigated the serial changes or fluctuations in intraocular pressure (IOP) and examined their roles in the pathogenesis of neuronal degeneration in diabetic retina. EXPERIMENTAL APPROACH Male Sprague Dawley rats with streptozotocin-induced diabetes were treated with ophthalmic preparations of brinzolamide, latanoprost, both drugs (combined treatment) or saline for 8 weeks. IOP was measured daily under general anaesthesia using a rebound tonometer. Antegrade axoplasmic flow in the optic nerve was assessed with a fluorescent substrate. Immunohistochemical staining, TUNEL assays and western blots were also used. KEY RESULTS The fluctuation of IOP was higher in the diabetes group than in the normal control or the combined treatment group. Diabetes-induced apoptosis of retinal ganglion cells was decreased by combined treatment. Increased expression of glial fibrillary acidic protein or Iba-1 in the retina or optic nerve head, induced by diabetes, was attenuated only by the combined treatment. Intercellular adhesion molecule-1 was increased in diabetic rats but not in the combined treatment group. Diabetes-induced loss of antegrade axoplasmic transport was partially relieved with combined treatment. CONCLUSION AND IMPLICATIONS Elevated IOP fluctuations seemed to be associated with the gliosis, neuroinflammation, and neurodegeneration induced by diabetes. The loss of retinal ganglion cells might be relieved by IOP-lowering medication. The improvement of unstable perfusion pressure could play a role in neuroprotection in the diabetic retina.
Collapse
Affiliation(s)
- Kyoung In Jung
- Department of Ophthalmology, Seoul St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Jung Eun Woo
- Department of Ophthalmology, Seoul St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Chan Kee Park
- Department of Ophthalmology, Seoul St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulKorea
| |
Collapse
|
10
|
Potilinski MC, Lorenc V, Perisset S, Gallo JE. Mechanisms behind Retinal Ganglion Cell Loss in Diabetes and Therapeutic Approach. Int J Mol Sci 2020; 21:ijms21072351. [PMID: 32231131 PMCID: PMC7177797 DOI: 10.3390/ijms21072351] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes produces several changes in the body triggered by high glycemia. Some of these changes include altered metabolism, structural changes in blood vessels and chronic inflammation. The eye and particularly the retinal ganglion cells (RGCs) are not spared, and the changes eventually lead to cell loss and visual function impairment. Understanding the mechanisms resulting in RGC damage and loss from diabetic retinopathy is essential to find an effective treatment. This review focuses mainly on the signaling pathways and molecules involved in RGC loss and the potential therapeutic approaches for the prevention of this cell death. Throughout the manuscript it became evident that multiple factors of different kind are responsible for RGC damage. This shows that new therapeutic agents targeting several factors at the same time are needed. Alpha-1 antitrypsin as an anti-inflammatory agent may become a suitable option for the treatment of RGC loss because of its beneficial interaction with several signaling pathways involved in RGC injury and inflammation. In conclusion, alpha-1 antitrypsin may become a potential therapeutic agent for the treatment of RGC loss and processes behind diabetic retinopathy.
Collapse
Affiliation(s)
- María Constanza Potilinski
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Valeria Lorenc
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Sofía Perisset
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Juan Eduardo Gallo
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
- Departamento de Oftalmologia, Hospital Universitario Austral, Av. Juan Perón 1500, 1629 Pilar, Buenos Aires, Argentina
- Correspondence: ; Tel.: +54-91164038725
| |
Collapse
|
11
|
Nakhoul N, Thawko T, Farber E, Dahan I, Tadmor H, Nakhoul R, Hanut A, Salameh G, Shagrawy I, Nakhoul F. The Therapeutic Effect of Active Vitamin D Supplementation in Preventing the Progression of Diabetic Nephropathy in a Diabetic Mouse Model. J Diabetes Res 2020; 2020:7907605. [PMID: 33294462 PMCID: PMC7714593 DOI: 10.1155/2020/7907605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes and is the leading cause of end-stage renal disease (ESRD) and replacement therapy worldwide. Vitamin D levels in DN patients are very low due to the decrease in the synthesis and activity of 1-α hydroxylase in the proximal tubule cells and decrease in the vitamin D receptor abundance. To date, few studies have shown the antioxidant effects of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] on hyperglycemia-induced renal injury. The selective activator of the vitamin D receptor, paricalcitol, reduces proteinuria and slows the progression of kidney injury. The precise mechanism through which vitamin D affects diabetic status and provides kidney protection remains to be determined. METHODS Diabetes mellitus (DM) was induced in 94 8-week-old DBA/2J mice by intraperitoneal injection of streptozotocin (STZ). DM mice were randomly divided into receiving vehicle or treatment with paricalcitol, the active vitamin D analog, 1 week after DM induction or paricalcitol treatment 3 weeks after DM induction. An additional control group of healthy wild-type mice was not treated. Urine albumin, blood urea nitrogen, and creatinine levels were measured before and at the end of the paricalcitol treatment. Periodic acid-Schiff, immunohistochemistry staining, and western blot of the renal tissues of vitamin D receptor, villin, nephrin, and podocin expressions, were analyzed. RESULTS Paricalcitol treatment restored villin, nephrin, and podocin protein levels that were downregulated upon DM induction, and reduced fibronectin protein level. Vitamin D receptor activation by paricalcitol may reduce proteinuria of DN in mice and alleviate high-glucose-induced injury of kidney podocytes by regulating the key molecules such nephrin-podocin. CONCLUSIONS Paricalcitol treatment was associated with improved structural changes in type 1 diabetic mice including upregulation of vitamin D receptor expression, and decreased fibrosis markers such as fibronectin. These effects may contribute to the consistent benefit of vitamin D analog to slow the deterioration in glomerular function and reduce the risk of ESRD in patients with type 1 and 2 diabetes mellitus. Our results suggest that additional use of paricalcitol may be beneficial in treating patients with diabetes under standard therapeutic strategies.
Collapse
Affiliation(s)
- Nakhoul Nakhoul
- The Diabetes & Metabolism Lab, Baruch Padeh Poriya Medical Center, Lower Galilee, Israel
- Ophthalmology, Baruch Padeh Poriya Medical Center, Lower Galilee, Israel
| | - Tina Thawko
- The Diabetes & Metabolism Lab, Baruch Padeh Poriya Medical Center, Lower Galilee, Israel
| | - Evgeny Farber
- Nephrology & Hypertension Division, Baruch Padeh Poriya Medical Center, Lower Galilee, Israel
| | - Inbal Dahan
- The Diabetes & Metabolism Lab, Baruch Padeh Poriya Medical Center, Lower Galilee, Israel
| | - Hagar Tadmor
- The Diabetes & Metabolism Lab, Baruch Padeh Poriya Medical Center, Lower Galilee, Israel
| | | | - Anaam Hanut
- Nephrology & Hypertension Division, Bar-Ilan University, Ramat Gan, Israel
| | - Ghasan Salameh
- The Diabetes & Metabolism Lab, Baruch Padeh Poriya Medical Center, Lower Galilee, Israel
| | - Ibrahim Shagrawy
- Pathology Division, Baruch Padeh Poriya Medical Center, Lower Galilee, Israel
| | - Farid Nakhoul
- The Diabetes & Metabolism Lab, Baruch Padeh Poriya Medical Center, Lower Galilee, Israel
- Nephrology & Hypertension Division, Baruch Padeh Poriya Medical Center, Lower Galilee, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
12
|
Apryatin SA, Mzhel'skaya KV, Trusov NV, Balakina AS, Soto KS, Beketova NA, Kosheleva OV, Gmoshinskii IV, Nikityuk DB. Biochemical and Morphological Parameters of Inbred/Outbred Lines and DBCB Tetrahybrid Mouse in High-Sugar In Vivo Model of Metabolic Syndrome. Bull Exp Biol Med 2018; 166:96-101. [PMID: 30417297 DOI: 10.1007/s10517-018-4296-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 11/29/2022]
Abstract
Integral, biochemical, and morphological parameters and concentrations of vitamins, particularly lipid soluble vitamins, were analyzed in female mice of inbred DBA/2J line, outbred ICR-1 (CD-1) line, and DBCB tetrahybrid mice on the in vivo model of metabolic syndrome induced by consumption of 30% sucrose for 2 days. In contrast to inbred and outbred lines, DBCB tetrahybrid mice developed abdominal obesity, hypercholesterolemia, and pronounced morphological picture of fatty liver disease. The lipid-coupled transport of vitamin E to the liver is also enhanced in these animals, which compensated decreased supply of vitamin E to the liver under conditions of high-sugar ration. The observed interstrain differences can be related to genetic features of the used mouse lines and DBCB tetrahybrid mice and require further genomic, transcriptomic, proteomic, and morphological studies. The results of the study based on the in vivo model of metabolic syndrome allow identifying the key biomarkers for complex diagnostics and prognosis of metabolic syndrome complications, such as nonalcoholic steatosis of the liver.
Collapse
Affiliation(s)
- S A Apryatin
- Federal Research Center of Nutrition and Biotechnology, Moscow, Russia.
| | - K V Mzhel'skaya
- Federal Research Center of Nutrition and Biotechnology, Moscow, Russia
| | - N V Trusov
- Federal Research Center of Nutrition and Biotechnology, Moscow, Russia
| | - A S Balakina
- Federal Research Center of Nutrition and Biotechnology, Moscow, Russia
| | - Kh S Soto
- Federal Research Center of Nutrition and Biotechnology, Moscow, Russia
| | - N A Beketova
- Federal Research Center of Nutrition and Biotechnology, Moscow, Russia
| | - O V Kosheleva
- Federal Research Center of Nutrition and Biotechnology, Moscow, Russia
| | - I V Gmoshinskii
- Federal Research Center of Nutrition and Biotechnology, Moscow, Russia
| | - D B Nikityuk
- Federal Research Center of Nutrition and Biotechnology, Moscow, Russia
| |
Collapse
|
13
|
Francis AW, Wanek J, Shahidi M. Assessment of Global and Local Alterations in Retinal Layer Thickness in Ins2 (Akita) Diabetic Mice by Spectral Domain Optical Coherence Tomography. J Ophthalmol 2018; 2018:7253498. [PMID: 29675273 PMCID: PMC5838457 DOI: 10.1155/2018/7253498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/24/2017] [Indexed: 12/27/2022] Open
Abstract
PURPOSE/AIM The Ins2 (Akita) mouse is a spontaneous diabetic mouse model with a heterozygous mutation in the insulin 2 gene that results in sustained hyperglycemia. The purpose of the study was to assess global and local retinal layer thickness alterations in Akita mice by analysis of spectral domain optical coherence tomography (SD-OCT) images. MATERIALS AND METHODS SD-OCT imaging was performed in Akita and wild-type mice at 12 and 24 weeks of age. Inner retinal thickness (IRT), outer retinal thickness (ORT), total retinal thickness (TRT), and photoreceptor outer segment length (OSL) were measured. Mean global thickness values were compared between Akita and wild-type mice. Local thickness variations in Akita mice were assessed based on normative values in wild-type mice. RESULTS Akita mice had higher blood glucose levels and lower body weights (p < 0.001). On average, IRT, ORT, and TRT were approximately 2% lower in Akita mice than in wild-type mice (p ≤ 0.02). In Akita mice, the percent difference between retinal areas with thickness below and above normative values for IRT, ORT, and TRT was 22%, 32%, and 38%, respectively. CONCLUSIONS These findings support the use of the Akita mouse model to study the retinal neurodegenerative effects of hyperglycemia.
Collapse
Affiliation(s)
- Andrew W. Francis
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Justin Wanek
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahnaz Shahidi
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Impact of aromatase absence on murine intraocular pressure and retinal ganglion cells. Sci Rep 2018; 8:3280. [PMID: 29459742 PMCID: PMC5818491 DOI: 10.1038/s41598-018-21475-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/31/2018] [Indexed: 12/14/2022] Open
Abstract
We hypothesize that aromatase, an enzyme that regulates estrogen production, plays a significant role in the control of intraocular pressure (IOP) and retinal ganglion cells (RGCs). To begin to test our hypothesis, we examined the impact of aromatase absence, which completely eliminates estrogen synthesis, in male and female mice. Studies were performed with adult, age-matched wild type (WT) and aromatase knockout (ArKO) mice. IOP was measured in a masked fashion in both eyes of conscious mice at 12 and 24 weeks of age. Retinas were obtained and processed for RGC counting with a confocal microscope. IOP levels in both 12- and 24-week old female ArKO mice were significantly higher than those of age- and sex-matched WT controls. The mean increase in IOP was 7.9% in the 12-week-, and 19.7% in the 24-week-old mice, respectively. These changes were accompanied by significant 9% and 7% decreases in RGC numbers in the ArKO female mice, relative to controls, at 12- and 24-weeks, respectively. In contrast, aromatase deficiency did not lead to an increased IOP in male mice. There was a significant reduction in RGC counts in the 12-, but not 24-, week-old male ArKO mice, as compared to their age- and sex-matched WT controls. Overall, our findings show that aromatase inhibition in females is associated with elevated IOP and reduced RGC counts.
Collapse
|
15
|
Meng B, Li H, Sun X, Qu W, Yang B, Cheng F, Shi L, Yuan H. σ-1 receptor stimulation protects against pressure-induced damage through InsR-MAPK signaling in human trabecular meshwork cells. Mol Med Rep 2017; 16:617-624. [PMID: 28560459 PMCID: PMC5482118 DOI: 10.3892/mmr.2017.6647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/21/2017] [Indexed: 01/27/2023] Open
Abstract
The purpose of the present study was to investigate the protective effect of the σ-1 receptor (Sig-1R) agonist (+)‑pentazocin (PTZ) on pressure-induced apoptosis and death of human trabecular meshwork cells (hTMCs). The expression levels of Sig‑1R and insulin receptor (InsR) were examined in hTMCs. Cells were cultured under a pressure of 0, 20, 40, 60 and 80 mmHg for 48 h, and under 80 mmHg for 44 h, after which the cells were treated with (+)‑PTZ (20 µM), N-(2-(3,4-dichlorophenyl)ethyl)-N‑methyl-2‑(dimethylamino) ethylamine (BD‑1063; 20 µM) administered 30 min prior to (+)‑PTZ, or BD‑1063 (20 µM) and then exposed to 80 mmHg again until the 48 h time‑point. The changes of the cells were observed by optical and electron microscopy, the apoptosis and death of hTMCs were detected by ethidium bromide/acridine orange dual staining assay and the expression of Sig‑1R and InsR by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The phosphorylation of extracellular signal‑regulated kinase (ERK), an important downstream protein of the InsR‑mitogen‑activated protein kinases (MAPK) signaling pathway, was also detected by western blot analysis when (+)‑PTZ and BD‑1063 were added to the 80 mmHg‑treated cells. Sig‑1Rs and InsRs were expressed in hTMCs. The apoptosis and death of hTMCs increased from 40 mmHg with 50% cell death when the pressure was at 80 mmHg and the structure of the cells noticeably changed. The expression of Sig‑1R and InsR increased along with the elevation of pressure. (+)‑PTZ decreased the apoptosis and death of hTMCs and increased the expression of Sig‑1R and InsR, and the phosphorylation of ERK. Such effects were blocked by BD‑1063. The present study suggested that Sig‑1R agonist (+)‑PTZ can protect hTMCs from pressure‑induced apoptosis and death by activating InsR and the MAPK signal pathway.
Collapse
Affiliation(s)
- Bo Meng
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hongyi Li
- Department of Ophthalmology and Otorhinolaryngology, Hospital of Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China
| | - Xian Sun
- Department of Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Wei Qu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Binbin Yang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Fang Cheng
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Liping Shi
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Huiping Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
16
|
Hymowitz MB, Chang D, Feinberg EB, Roy S. Increased Intraocular Pressure and Hyperglycemic Level in Diabetic Patients. PLoS One 2016; 11:e0151833. [PMID: 27002725 PMCID: PMC4803191 DOI: 10.1371/journal.pone.0151833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/05/2016] [Indexed: 11/30/2022] Open
Abstract
Purpose To determine whether hyperglycemic levels as determined from high hemoglobin A1c (HbA1c) levels influence intraocular pressure (IOP) in patients with non-proliferative diabetic retinopathy (NPDR). Methods A retrospective chart review was performed on subjects with a diagnosis of NPDR and a corresponding HbA1c level measured within 90 days before or after an IOP measurement over a two-year period. Exclusion criteria included a diagnosis of glaucoma or treatment with IOP lowering medications or oral or topical steroids. Results Using 14.5mmHg as a baseline mean value for IOP, 42 subjects had an IOP < 14.5mmHg and mean HbA1c of 8.1±1.1, while 72 subjects had an IOP ≥ 14.5mmHg and a mean HbA1c of 9.0±2.1. Although there was an overlap in the confidence intervals, a significant difference (P = 0.01) in the mean HbA1c level was observed in regression analysis between the two groups. Importantly, diabetic subjects with elevated HbA1c levels rarely (<1%) exhibited reduced IOP levels. Conclusions Diabetic subjects with elevated HbA1c levels exhibited significantly higher IOPs compared to those with lower HbA1c levels. Findings from this study indicate an association between hyperglycemia and elevated IOP and that poor glycemic control may contribute to increased IOP levels in long-term diabetic patients.
Collapse
Affiliation(s)
- Maggie B Hymowitz
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Donny Chang
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Edward B Feinberg
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sayon Roy
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
17
|
Ko MK, Kim EK, Gonzalez JM, Tan JC. Dose- and time-dependent effects of actomyosin inhibition on live mouse outflow resistance and aqueous drainage tissues. Sci Rep 2016; 6:21492. [PMID: 26884319 PMCID: PMC4756686 DOI: 10.1038/srep21492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 01/26/2016] [Indexed: 11/13/2022] Open
Abstract
Actomyosin contractility modulates outflow resistance of the aqueous drainage tissues and intraocular pressure, a key pathogenic factor of glaucoma. We established methodology to reliably analyze the effect of latrunculin-B (Lat-B)-induced actin depolymerization on outflow physiology in live mice. A voltage-controlled microperfusion system for delivering drugs and simultaneously analyzing outflow resistance was tested in live C57BL/6 mice. Flow rate and perfusion pressure were reproducible within a coefficient of variation of 2%. Outflow facility for phosphate-buffered saline (0.0027 ± 0.00036 μL/min/mmHg; mean ± SD) and 0.02% ethanol perfusions (Lat-B vehicle; 0.0023 ± 0.0005 μL/min/mmHg) were similar and stable over 2 hours (p > 0.1 for change), indicating absence of a ‘washout’ artifact seen in larger mammals. Outflow resistance changed in graded fashion, decreasing dose- and time-dependently over 2 hours for Lat-B doses of 2.5 μM (p = 0.29), 5 μM (p = 0.039) and 10 μM (p = 0.001). Resulting outflow resistance was about 10 times lower with 10 μM Lat-B than vehicle control. The filamentous actin network was decreased and structurally altered in the ciliary muscle (46 ± 5.6%) and trabecular meshwork (37 ± 8.3%) of treated eyes relative to vehicle controls (p < 0.005; 5 μM Lat-B). Mouse actomyosin contractile mechanisms are important to modulating aqueous outflow resistance, mirroring mechanisms in primates. We describe approaches to reliably probe these mechanisms in vivo.
Collapse
Affiliation(s)
- MinHee K Ko
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Eun Kyoung Kim
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jose M Gonzalez
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - James C Tan
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|