1
|
Kubalová M, Schmidtová M, Fendrych M. Unresolved roles of Aux/IAA proteins in auxin responses. PHYSIOLOGIA PLANTARUM 2025; 177:e70221. [PMID: 40265222 PMCID: PMC12015657 DOI: 10.1111/ppl.70221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 04/24/2025]
Abstract
Aux/IAA proteins are well-known as key components of the nuclear auxin signaling pathway, repressing gene transcription when present and enabling gene activation upon their degradation. In this review, we explore the additional roles of Aux/IAA proteins in the known auxin perception pathways-the TIR1/AFBs nuclear as well as in the emerging cytoplasmic and apoplastic pathways. We summarize recent advances in understanding the regulation of Aux/IAA protein stability at the post-translational level, a critical factor in auxin-regulated transcriptional output. We further highlight the roles of auxin-nondegradable non-canonical Aux/IAAs in auxin-mediated transcription and their involvement in apoplastic auxin signalling. Additionally, we discuss the importance of Aux/IAAs for the adenylate cyclase activity of TIR1/AFB receptors and speculate on their involvement in the cytoplasmic auxin pathway. Using Arabidopsis root as a model, this work underscores the central role of Aux/IAA proteins in mediating auxin-driven developmental processes and environmental responses. Key questions for future research are proposed to further unravel the dynamic roles of Aux/IAAs in auxin signaling networks.
Collapse
Affiliation(s)
- Monika Kubalová
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyCharles UniversityPragueCzech Republic
| | - Martina Schmidtová
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
| | - Matyáš Fendrych
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyCharles UniversityPragueCzech Republic
| |
Collapse
|
2
|
Jing X, Zou Q, Yang H. Genome-Wide Identification and Characterization of the Aux/ IAA Gene Family in Strawberry Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:2940. [PMID: 39458886 PMCID: PMC11511250 DOI: 10.3390/plants13202940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Auxin is the first plant hormone found to play a dominant role in fruit growth, from fruit set to fruit ripening. Strawberry plants represent a suitable model for studying auxin's biosynthesis, sensing, and signaling machinery. Aux/IAA genes are a classical rapid auxin-responsive family. However, the Aux/IAA gene family in Fragaria genus is poorly understood. In this study, a total of 287 Aux/IAA genes were identified in the eight strawberry genomes. Their physicochemical properties, domain structure, and cis-regulatory elements revealed the functional multiplicity of the strawberry Aux/IAAs. We used a phylogenetic analysis to classify these genes into 12 classes. In addition, based on synteny analysis, gene duplications, and calculation of the Ka/Ks ratio, we found that segmental duplications promote the evolution of Aux/IAAs in Fragaria species, which is followed by purifying selection. Furthermore, the expression pattern and protein-protein interaction network of these genes in Fragaria vesca revealed various tissue-specific expressions and probable regulatory functions. Taken together, these results provide basic genomic information and a functional analysis of these genes, which will serve to expand our understanding of the direction in which the Aux/IAA gene family is evolving in Fragaria species.
Collapse
Affiliation(s)
- Xiaotong Jing
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324003, China; (X.J.); (Q.Z.)
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324003, China; (X.J.); (Q.Z.)
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Yang
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324003, China; (X.J.); (Q.Z.)
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
3
|
Wang J, Song Y, Wang G, Shi L, Shen Y, Liu W, Xu Y, Lou X, Jia W, Zhang M, Shang W, He S, Wang Z. PoARRO-1 regulates adventitious rooting through interaction with PoIAA27b in Paeonia ostii. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112204. [PMID: 39059631 DOI: 10.1016/j.plantsci.2024.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Adventitious root (AR) formation is a limiting factor in the vegetative propagation of tree peony (Paeonia suffruticosa Andr.). PoARRO-1, which encodes an auxin oxidase involved in AR formation, plays a role in the root development of P. ostii, but its associated molecular regulatory mechanisms are not yet understood. In this study, we examined the role of PoARRO-1 in AR formation in P. ostii. The overexpression of PoARRO-1 in P. ostii test-tube plantlets led to a notable enhancement in both the rooting rate and the average number of ARs in vitro, as well as increased activities of peroxidase (POD), superoxide dismutase (SOD), and indoleacetic acid oxidase (IAAO). PoARRO-1 was involved in the conversion of IAA-Asp and IAA-Glu to OxIAA and promoted IAA oxidation. RNA sequencing analysis revealed that PoARRO-1 overexpression led to upregulation of enzyme activity, auxin metabolism related genes. Further analyses showed that PoARRO-1 interacted with the 1-175 aa position of PoIAA27b to regulate the formation of ARs. We therefore propose that PoARRO-1 interacts with PoIAA27b to promote AR formation, and it may be useful targets for enhancing the in vitro propagation of P. ostii.
Collapse
Affiliation(s)
- Jiange Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yinglong Song
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Guiqing Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Liyun Shi
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuxiao Shen
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Weichao Liu
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yufeng Xu
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Xueyuan Lou
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenqing Jia
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Minhuan Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenqian Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| | - Songlin He
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
4
|
Zhu H, Li H, Yu J, Zhao H, Zhang K, Ge W. Regulatory Mechanisms of ArAux/ IAA13 and ArAux/ IAA16 in the Rooting Process of Acer rubrum. Genes (Basel) 2023; 14:1206. [PMID: 37372386 DOI: 10.3390/genes14061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Acer rubrum is difficult to root during cutting propagation. Auxin/indole-acetic acids (Aux/IAA) proteins, which are encoded by the early response genes of auxin, are transcriptional repressors that play important roles in auxin-mediated root growth and development. In this study, ArAux/IAA13 and ArAux/IAA16, which were significantly differentially expressed after 300 mg/L indole butyric acid treatment, were cloned. Heatmap analysis revealed that they might be associated with the process of adventitious root (AR) growth and development mediated by auxin. Subcellular localization analysis showed that they performed their function in the nucleus. Bimolecular fluorescence complementation assays revealed the interactions between them and two auxin response factor (ARF) proteins, ArARF10 and ArARF18, confirming their relevance to AR growth and development. Overexpression of transgenic plants confirmed that the overexpression of ArAux/IAA13 and ArAux/IAA16 inhibited AR development. These results help elucidate the mechanisms of auxin-mediated AR growth and development during the propagation of A. rubrum and provide a molecular basis for the rooting of cuttings.
Collapse
Affiliation(s)
- Huiyu Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Huiju Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Jiayu Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Hewen Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| | - Kezhong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| | - Wei Ge
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| |
Collapse
|
5
|
Zhang H, Zhao D, Tang Z, Zhang Y, Zhang K, Dong J, Wang F. Exogenous brassinosteroids promotes root growth, enhances stress tolerance, and increases yield in maize. PLANT SIGNALING & BEHAVIOR 2022; 17:2095139. [PMID: 35775499 PMCID: PMC9255028 DOI: 10.1080/15592324.2022.2095139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 05/21/2023]
Abstract
Brassinosteroids (BRs) regulate of maize (Zea mays L.) growth, but the underlying molecular mechanism remains unclear. In this study, we used a multi-disciplinary approach to determine how BRs regulate maize morphology and physiology during development. Treatment with the BRs promoted primary root the elongation and growth during germination, and the early development of lateral roots. BRs treatment during the middle growth stage increased the levels of various stress resistance factors, and enhanced resistance to lodging, likely by protecting the plant against stem rot and sheath rot. BRs had no significant effect on plant height during late growth, but it increased leaf angle and photosynthetic efficiency, as well as yield and quality traits. Our findings increase our understanding of the regulatory effects of BR on maize root growth and development and the mechanism by which BR improves disease resistance, which could further the potential for using BR to improve maize yield.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Dan Zhao
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ziyan Tang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Ying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- Pear Engineering and Technology Research Center of Hebei, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Fengru Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- CONTACT Fengru Wang State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei071001, China
| |
Collapse
|
6
|
Su B, Wu H, Guo Y, Gao H, Wei Z, Zhao Y, Qiu L. GmIAA27 Encodes an AUX/IAA Protein Involved in Dwarfing and Multi-Branching in Soybean. Int J Mol Sci 2022; 23:ijms23158643. [PMID: 35955771 PMCID: PMC9368862 DOI: 10.3390/ijms23158643] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Soybean plant height and branching affect plant architecture and yield potential in soybean. In this study, the mutant dmbn was obtained by treating the cultivar Zhongpin 661 with ethylmethane sulfonate. The dmbn mutant plants were shorter and more branched than the wild type. The genetic analysis showed that the mutant trait was controlled by a semi-dominant gene. The candidate gene was fine-mapped to a 91 kb interval on Chromosome 9 by combining BSA-seq and linkage analysis. Sequence analysis revealed that Glyma.09g193000 encoding an Aux/IAA protein (GmIAA27) was mutated from C to T in the second exon of the coding region, resulting to amino acid substitution of proline to leucine. Overexpression of the mutant type of this gene in Arabidopsis thaliana inhibited apical dominance and promoted lateral branch development. Expression analysis of GmIAA27 and auxin response genes revealed that some GH3 genes were induced. GmIAA27 relies on auxin to interact with TIR1, whereas Gmiaa27 cannot interact with TIR1 owing to the mutation in the degron motif. Identification of this unique gene that controls soybean plant height and branch development provides a basis for investigating the mechanisms regulating soybean plant architecture development.
Collapse
Affiliation(s)
- Bohong Su
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (B.S.); (H.W.)
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.G.); (H.G.); (Y.Z.)
| | - Haitao Wu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (B.S.); (H.W.)
| | - Yong Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.G.); (H.G.); (Y.Z.)
| | - Huawei Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.G.); (H.G.); (Y.Z.)
| | - Zhongyan Wei
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Yuyang Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.G.); (H.G.); (Y.Z.)
| | - Lijuan Qiu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (B.S.); (H.W.)
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.G.); (H.G.); (Y.Z.)
- Correspondence: ; Tel.: +86-8210-5843
| |
Collapse
|
7
|
Guo J, Li C, Zhang X, Li Y, Zhang D, Shi Y, Song Y, Li Y, Yang D, Wang T. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110380. [PMID: 32005385 DOI: 10.1016/j.plantsci.2019.110380] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 05/21/2023]
Abstract
Water deficits are a major constraint on maize growth and yield, and deep roots are one of the major mechanisms of drought tolerance. In this study, four root and shoot traits were evaluated within an association panel consisting of 209 diverse maize accessions under well-watered (WW) and water-stressed (WS) conditions. A significant positive correlation was observed between seminal root length (SRL) under WS treatment and the drought tolerance index (DI) of maize seedlings. The transcriptome profiles of maize seminal roots were compared between four drought-tolerant lines and four drought-sensitive lines under both water conditions to identify genes associated with the drought stress response. After drought stress, 343 and 177 common differentially expressed genes (DEGs) were identified in the drought-tolerant group and drought-sensitive group, respectively. In parallel, a coexpression network underlying SRL was constructed on the basis of transcriptome data, and 10 hub genes involved in two significant associated modules were identified. Additionally, a genome-wide association study (GWAS) of the SRL revealed 62 loci for the two water treatments. By integrating the results of the GWAS, the common DEGs and the coexpression network analysis, 7 promising candidate genes were prioritized for further research. Together, our results provide a foundation for the enhanced understanding of seminal root changes in response to drought stress in maize.
Collapse
Affiliation(s)
- Jian Guo
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chunhui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | | | - Yongxiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsu Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanchun Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Deguang Yang
- College of Agriculture, Northeast Agricultural University, Harbin, China.
| | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
8
|
Jiang M, Hu H, Kai J, Traw MB, Yang S, Zhang X. Different knockout genotypes of OsIAA23 in rice using CRISPR/Cas9 generating different phenotypes. PLANT MOLECULAR BIOLOGY 2019; 100:467-479. [PMID: 31004275 PMCID: PMC6586719 DOI: 10.1007/s11103-019-00871-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/11/2019] [Indexed: 05/07/2023]
Abstract
We have isolated several Osiaa23 rice mutants with different knockout genotypes, resulting in different phenotypes, which suggested that different genetic backgrounds or mutation types influence gene function. The Auxin/Indole-3-Acetic Acid (Aux/IAA) gene family performs critical roles in auxin signal transduction in plants. In rice, the gene OsIAA23 (Os06t0597000) is known to affect development of roots and shoots, but previous knockouts in OsIAA23 have been sterile and difficult for research continuously. Here, we isolate new Osiaa23 mutants using the CRISPR/Cas9 system in japonica (Wuyunjing24) and indica (Kasalath) rice, with extensive genome re-sequencing to confirm the absence of off-target effects. In Kasalath, mutants with a 13-amino acid deletion showed profoundly greater dwarfing, lateral root developmental disorder, and fertility deficiency, relative to mutants with a single amino acid deletion, demonstrating that those 13 amino acids in Kasalath are essential to gene function. In Wuyunjing24, we predicted that mutants with a single base-pair frameshift insertion would experience premature termination and strong phenotypic defects, but instead these lines exhibited negligible phenotypic difference and normal fertility. Through RNA-seq, we show here that new mosaic transcripts of OsIAA23 were produced de novo, which circumvented the premature termination and thereby preserved the wild-type phenotype. This finding is a notable demonstration in plants that mutants can mask loss of function CRISPR/Cas9 editing of the target gene through de novo changes in alternative splicing.
Collapse
Affiliation(s)
- Mengmeng Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Huaying Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Kai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Milton Brian Traw
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
9
|
Wang L, Xu K, Li Y, Cai W, Zhao Y, Yu B, Zhu Y. Genome-Wide Identification of the Aux/IAA Family Genes (MdIAA) and Functional Analysis of MdIAA18 for Apple Tree Ideotype. Biochem Genet 2019; 57:709-733. [PMID: 30997626 DOI: 10.1007/s10528-019-09919-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 04/01/2019] [Indexed: 11/26/2022]
Abstract
The Aux/IAA (auxin/indole-3-acetic acid) gene family is one of the early auxin-responsive gene families, which play a central role in auxin response. Few reports are involved in Aux/IAA genes in fruit trees, especially in apple (Malus × domestica Borkh.). A total of 33 MdIAA members were identified, of which 27 members contained four conserved domains, whereas the others lost one or two conserved domains. Several cis-elements in promoters of MdIAAs were predicted responsive to hormones and abiotic stress. Tissue-specific expression patterns of MdIAAs in different apple tree ideotypes were investigated by quantitative real-time PCR. A large number of MdIAAs were highly expressed in leaf buds and reproductive organs, and MdIAAs clustered in same group showed similar expression profiles. Overexpression of MdIAA18 in Arabidopsis resulted in compact phenotype. These results indicated that MdIAA genes may be involved in vegetative and reproductive growth of apple. Taken together, the results provide useful clues to reveal the function of MdIAAs in apple and control apple tree architecture by manipulation of MdIAAs.
Collapse
Affiliation(s)
- Limin Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Ke Xu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongzhou Li
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Wenbo Cai
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yanan Zhao
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Boyang Yu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yuandi Zhu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
10
|
He F, Xu C, Fu X, Shen Y, Guo L, Leng M, Luo K. The MicroRNA390/ TRANS-ACTING SHORT INTERFERING RNA3 Module Mediates Lateral Root Growth under Salt Stress via the Auxin Pathway. PLANT PHYSIOLOGY 2018; 177:775-791. [PMID: 29717017 PMCID: PMC6001319 DOI: 10.1104/pp.17.01559] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/18/2018] [Indexed: 05/21/2023]
Abstract
Salt-induced developmental plasticity in a plant root system strongly depends on auxin signaling. However, the molecular events underlying this process are poorly understood. MicroRNA390 (miR390), trans-actin small interfering RNAs (tasiRNAs), and AUXIN RESPONSE FACTORs (ARFs) form a regulatory module involved in controlling lateral root (LR) growth. Here, we found that miR390 expression was strongly induced by exposure to salt during LR formation in poplar (Populus spp.) plants. miR390 overexpression stimulated LR development and increased salt tolerance, whereas miR390 knockdown caused by a short tandem target mimic repressed LR growth and compromised salt resistance. ARF3.1, ARF3.2, and ARF4 expression was inhibited significantly by the presence of salt, and transcript abundance was decreased dramatically in the miR390-overexpressing line but increased in the miR390-knockdown line. Constitutive expression of ARF4m harboring mutated trans-acting small interfering ARF-binding sites removed the salt resistance of the miR390 overexpressors. miR390 positively regulated auxin signaling in LRs subjected to salt, but ARF4 inhibited auxin signaling. Salinity stabilized the poplar Aux/IAA repressor INDOLE-3-ACETIC ACID17.1, and overexpression of an auxin/salt-resistant form of this repressor suppressed LR growth in miR390-overexpressing and ARF4-RNA interfering lines in the presence of salt. Thus, the miR390/TAS3/ARFs module is a key regulator, via modulating the auxin pathway, of LR growth in poplar subjected to salt stress.
Collapse
Affiliation(s)
- Fu He
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Changzheng Xu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaokang Fu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yun Shen
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Guo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Mi Leng
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Hochholdinger F, Yu P, Marcon C. Genetic Control of Root System Development in Maize. TRENDS IN PLANT SCIENCE 2018; 23:79-88. [PMID: 29170008 DOI: 10.1016/j.tplants.2017.10.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 05/21/2023]
Abstract
The maize root system comprises structurally and functionally different root types. Mutant analyses have revealed that root-type-specific genetic regulators intrinsically determine the maize root system architecture. Molecular cloning of these genes has demonstrated that key elements of auxin signal transduction, such as LOB domain (LBD) and Aux/IAA proteins, are instrumental for seminal, shoot-borne, and lateral root initiation. Moreover, genetic analyses have demonstrated that genes related to exocytotic vesicle docking, cell wall loosening, and cellulose synthesis and organization control root hair elongation. The identification of upstream regulators, protein interaction partners, and downstream targets of these genes together with cell-type-specific transcriptome analyses have provided novel insights into the regulatory networks controlling root development and architecture in maize.
Collapse
Affiliation(s)
- Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany.
| | - Peng Yu
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
12
|
Wu W, Liu Y, Wang Y, Li H, Liu J, Tan J, He J, Bai J, Ma H. Evolution Analysis of the Aux/IAA Gene Family in Plants Shows Dual Origins and Variable Nuclear Localization Signals. Int J Mol Sci 2017; 18:E2107. [PMID: 28991190 PMCID: PMC5666789 DOI: 10.3390/ijms18102107] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/27/2017] [Accepted: 10/01/2017] [Indexed: 11/28/2022] Open
Abstract
The plant hormone auxin plays pivotal roles in many aspects of plant growth and development. The auxin/indole-3-acetic acid (Aux/IAA) gene family encodes short-lived nuclear proteins acting on auxin perception and signaling, but the evolutionary history of this gene family remains to be elucidated. In this study, the Aux/IAA gene family in 17 plant species covering all major lineages of plants is identified and analyzed by using multiple bioinformatics methods. A total of 434 Aux/IAA genes was found among these plant species, and the gene copy number ranges from three (Physcomitrella patens) to 63 (Glycine max). The phylogenetic analysis shows that the canonical Aux/IAA proteins can be generally divided into five major clades, and the origin of Aux/IAA proteins could be traced back to the common ancestor of land plants and green algae. Many truncated Aux/IAA proteins were found, and some of these truncated Aux/IAA proteins may be generated from the C-terminal truncation of auxin response factor (ARF) proteins. Our results indicate that tandem and segmental duplications play dominant roles for the expansion of the Aux/IAA gene family mainly under purifying selection. The putative nuclear localization signals (NLSs) in Aux/IAA proteins are conservative, and two kinds of new primordial bipartite NLSs in P. patens and Selaginella moellendorffii were discovered. Our findings not only give insights into the origin and expansion of the Aux/IAA gene family, but also provide a basis for understanding their functions during the course of evolution.
Collapse
Affiliation(s)
- Wentao Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
- Innovation Experimental College, Northwest A&F University, Xianyang 712100, China.
| | - Yaxue Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
- Innovation Experimental College, Northwest A&F University, Xianyang 712100, China.
| | - Yuqian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
- Innovation Experimental College, Northwest A&F University, Xianyang 712100, China.
| | - Huimin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
- Innovation Experimental College, Northwest A&F University, Xianyang 712100, China.
| | - Jiaxi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
- Innovation Experimental College, Northwest A&F University, Xianyang 712100, China.
| | - Jiaxin Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
- Innovation Experimental College, Northwest A&F University, Xianyang 712100, China.
| | - Jiadai He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
- Innovation Experimental College, Northwest A&F University, Xianyang 712100, China.
| | - Jingwen Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
- Innovation Experimental College, Northwest A&F University, Xianyang 712100, China.
| | - Haoli Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
| |
Collapse
|
13
|
Yu P, Gutjahr C, Li C, Hochholdinger F. Genetic Control of Lateral Root Formation in Cereals. TRENDS IN PLANT SCIENCE 2016; 21:951-961. [PMID: 27524642 DOI: 10.1016/j.tplants.2016.07.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/19/2016] [Accepted: 07/28/2016] [Indexed: 05/03/2023]
Abstract
Cereals form complex root systems composed of different root types. Lateral root formation is a major determinant of root architecture and is instrumental for the efficient uptake of water and nutrients. Positioning and patterning of lateral roots and cell types involved in their formation are unique in monocot cereals. Recent discoveries advanced the molecular understanding of the intrinsic genetic control of initiation and elongation of lateral roots in cereals by distinct, in part root-type-specific genetic programs. Moreover, molecular networks modulating the plasticity of lateral root formation in response to water and nutrient availability and arbuscular mycorrhizal fungal colonization have been identified. These novel discoveries provide a better mechanistic understanding of postembryonic lateral root development in cereals.
Collapse
Affiliation(s)
- Peng Yu
- China Agricultural University, College of Resources and Environmental Science, Department of Plant Nutrition, 100193 Beijing, China; University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, 53113 Bonn, Germany
| | | | - Chunjian Li
- China Agricultural University, College of Resources and Environmental Science, Department of Plant Nutrition, 100193 Beijing, China.
| | - Frank Hochholdinger
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, 53113 Bonn, Germany.
| |
Collapse
|
14
|
Tai H, Lu X, Opitz N, Marcon C, Paschold A, Lithio A, Nettleton D, Hochholdinger F. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1123-35. [PMID: 26628518 PMCID: PMC4753849 DOI: 10.1093/jxb/erv513] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots.
Collapse
Affiliation(s)
- Huanhuan Tai
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Xin Lu
- Experimental Medicine and Therapy Research, University of Regensburg, D-93053 Regensburg, Germany
| | - Nina Opitz
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Caroline Marcon
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Anja Paschold
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Andrew Lithio
- Department of Statistics, Iowa State University, Ames, IA 50011-1210, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA 50011-1210, USA
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| |
Collapse
|
15
|
Zhang Y, Marcon C, Tai H, von Behrens I, Ludwig Y, Hey S, Berendzen KW, Hochholdinger F. Conserved and unique features of the homeologous maize Aux/IAA proteins ROOTLESS WITH UNDETECTABLE MERISTEM 1 and RUM1-like 1. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1137-47. [PMID: 26672614 PMCID: PMC4753850 DOI: 10.1093/jxb/erv519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEM 1) is a key regulator of lateral and seminal root formation. An ancient maize genome duplication resulted in the emergence of its homeolog rum1-like1 (rul1), which displays 92% amino acid sequence identity with RUM1. Both, RUL1 and RUM1 exhibit the canonical four domain structure of Aux/IAA proteins. Moreover, both are localized to the nucleus, are instable and have similar short half-lives of ~23min. Moreover, RUL1 and RUM1 can be stabilized by specific mutations in the five amino acid degron sequence of domain II. In addition, proteins encoded by both genes interact in vivo with auxin response factors (ARFs) such as ZmARF25 and ZmARF34 in protoplasts. Although it was demonstrated that RUL1 and RUM1 can homo and heterodimerize in vivo, rul1 expression is independent of rum1. Moreover, on average rul1 expression is ~84-fold higher than rum1 in the 12 tested tissues and developmental stages, although the relative expression levels in different root tissues are very similar. While RUM1 and RUL1 display conserved biochemical properties, yeast-two-hybrid in combination with BiFC experiments identified a RUM1-associated protein 1 (RAP1) that specifically interacts with RUM1 but not with RUL1. This suggests that RUM1 and RUL1 are at least in part interwoven into different molecular networks.
Collapse
Affiliation(s)
- Yanxiang Zhang
- Center for Molecular Cell and Systems Biology, College of Life Science, Fujian Agriculture & Forestry University, 350002 Fuzhou, China Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Caroline Marcon
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Huanhuan Tai
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Inga von Behrens
- ZMBP, Center for Plant Molecular Biology, General Genetics, University of Tuebingen, 72076 Tuebingen, Germany
| | - Yvonne Ludwig
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Stefan Hey
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Kenneth W Berendzen
- ZMBP, Center for Plant Molecular Biology, Central Facilities, University of Tuebingen, 72076 Tuebingen, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
16
|
Mattiello L, Riaño-Pachón DM, Martins MCM, da Cruz LP, Bassi D, Marchiori PER, Ribeiro RV, Labate MTV, Labate CA, Menossi M. Physiological and transcriptional analyses of developmental stages along sugarcane leaf. BMC PLANT BIOLOGY 2015; 15:300. [PMID: 26714767 PMCID: PMC4696237 DOI: 10.1186/s12870-015-0694-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/17/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Sugarcane is one of the major crops worldwide. It is cultivated in over 100 countries on 22 million ha. The complex genetic architecture and the lack of a complete genomic sequence in sugarcane hamper the adoption of molecular approaches to study its physiology and to develop new varieties. Investments on the development of new sugarcane varieties have been made to maximize sucrose yield, a trait dependent on photosynthetic capacity. However, detailed studies on sugarcane leaves are scarce. In this work, we report the first molecular and physiological characterization of events taking place along a leaf developmental gradient in sugarcane. RESULTS Photosynthetic response to CO2 indicated divergence in photosynthetic capacity based on PEPcase activity, corroborated by activity quantification (both in vivo and in vitro) and distinct levels of carbon discrimination on different segments along leaf length. Additionally, leaf segments had contrasting amount of chlorophyll, nitrogen and sugars. RNA-Seq data indicated a plethora of biochemical pathways differentially expressed along the leaf. Some transcription factors families were enriched on each segment and their putative functions corroborate with the distinct developmental stages. Several genes with higher expression in the middle segment, the one with the highest photosynthetic rates, were identified and their role in sugarcane productivity is discussed. Interestingly, sugarcane leaf segments had a different transcriptional behavior compared to previously published data from maize. CONCLUSION This is the first report of leaf developmental analysis in sugarcane. Our data on sugarcane is another source of information for further studies aiming to understand and/or improve C4 photosynthesis. The segments used in this work were distinct in their physiological status allowing deeper molecular analysis. Although limited in some aspects, the comparison to maize indicates that all data acquired on one C4 species cannot always be easily extrapolated to other species. However, our data indicates that some transcriptional factors were segment-specific and the sugarcane leaf undergoes through the process of suberizarion, photosynthesis establishment and senescence.
Collapse
Affiliation(s)
- Lucia Mattiello
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, 13083-970, Campinas, SP, Brazil.
- Laboratório de Genoma Funcional, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Caixa Postal 6109, Campinas, 13083-862, SP, Brazil.
| | - Diego Mauricio Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, 13083-970, Campinas, SP, Brazil.
| | - Marina Camara Mattos Martins
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, 13083-970, Campinas, SP, Brazil.
| | - Larissa Prado da Cruz
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, 13083-970, Campinas, SP, Brazil.
| | - Denis Bassi
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, 13083-970, Campinas, SP, Brazil.
| | - Paulo Eduardo Ribeiro Marchiori
- Laboratório de Fisiologia de Plantas "Coaracy M. Franco", Centro de Pesquisa e Desenvolvimento em Ecofisiologia e Biofísica, Instituto Agronômico, Caixa Postal 28, Campinas, 13020-902, SP, Brazil.
| | - Rafael Vasconcelos Ribeiro
- Departamento de Biologia de Plantas, Universidade Estadual de Campinas, Caixa Postal 6109, Campinas, 13083-970, SP, Brazil.
| | - Mônica T Veneziano Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Universidade de São Paulo, Caixa Postal 83, Piracicaba, 13400-970, SP, Brazil.
| | - Carlos Alberto Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Universidade de São Paulo, Caixa Postal 83, Piracicaba, 13400-970, SP, Brazil.
| | - Marcelo Menossi
- Laboratório de Genoma Funcional, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Caixa Postal 6109, Campinas, 13083-862, SP, Brazil.
| |
Collapse
|