1
|
Verma N, Mukhopadhyay S, Barnable P, Plagianos MG, Teleshova N. Estradiol inhibits HIV-1 BaL infection and induces CFL1 expression in peripheral blood mononuclear cells and endocervical mucosa. Sci Rep 2022; 12:6165. [PMID: 35418661 PMCID: PMC9008051 DOI: 10.1038/s41598-022-10163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/30/2022] [Indexed: 11/15/2022] Open
Abstract
An inhibitory effect of estradiol (E2) on HIV-1 infection was suggested by several reports. We previously identified increased gene expression of actin-binding protein cofilin 1 (CFL1) in endocervix in the E2-dominated proliferative phase of the menstrual cycle. Actin cytoskeleton has an integral role in establishing and spreading HIV-1 infection. Herein, we studied in vitro effects of E2 on HIV-1 infection and on CFL1 expression to gain insight into the mechanism of HIV-1 inhibition by E2. E2 dose-dependently inhibited HIV-1BaL infection in peripheral blood mononuclear cells (PBMCs) and endocervix. In PBMCs and endocervix, E2 increased protein expression of total CFL1 and phosphorylated CFL1 (pCFL1) and pCFL1/CFL1 ratios. LIMKi3, a LIM kinase 1 and 2 inhibitor, abrogated the phenotype and restored infection in both PBMCs and endocervix; inhibited E2-induced expression of total CFL1, pCFL1; and decreased pCFL1/CFL1 ratios. Knockdown of CFL1 in PBMCs also abrogated the phenotype and partially restored infection. Additional analysis of soluble mediators revealed decreased concentrations of pro-inflammatory chemokines CXCL10 and CCL5 in infected tissues incubated with E2. Our results suggest a link between E2-mediated anti-HIV-1 activity and expression of CFL1 in PBMCs and endocervical mucosa. The data support exploration of cytoskeletal signaling pathway targets for the development of prevention strategies against HIV-1.
Collapse
Affiliation(s)
- N Verma
- Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - S Mukhopadhyay
- Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - P Barnable
- Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - M G Plagianos
- Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - N Teleshova
- Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA.
| |
Collapse
|
2
|
Teleshova N, Keller MJ, Fernández Romero JA, Friedland BA, Creasy GW, Plagianos MG, Ray L, Barnable P, Kizima L, Rodriguez A, Cornejal N, Melo C, Cruz Rodriguez G, Mukhopadhyay S, Calenda G, Sinkar SU, Bonnaire T, Wesenberg A, Zhang S, Kleinbeck K, Palmer K, Alami M, O’Keefe BR, Gillevet P, Hur H, Liang Y, Santone G, Fichorova RN, Kalir T, Zydowsky TM. Results of a phase 1, randomized, placebo-controlled first-in-human trial of griffithsin formulated in a carrageenan vaginal gel. PLoS One 2022; 17:e0261775. [PMID: 35051209 PMCID: PMC8775213 DOI: 10.1371/journal.pone.0261775] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
HIV pre-exposure prophylaxis (PrEP) is dominated by clinical therapeutic antiretroviral (ARV) drugs. Griffithsin (GRFT) is a non-ARV lectin with potent anti-HIV activity. GRFT’s preclinical safety, lack of systemic absorption after vaginal administration in animal studies, and lack of cross-resistance with existing ARV drugs prompted its development for topical HIV PrEP. We investigated safety, pharmacokinetics (PK), pharmacodynamics (PD), and immunogenicity of PC-6500 (0.1% GRFT in a carrageenan (CG) gel) in healthy women after vaginal administration. This randomized, placebo-controlled, parallel group, double-blind first-in-human phase 1 study enrolled healthy, HIV-negative, non-pregnant women aged 24–45 years. In the open label period, all participants (n = 7) received single dose of PC-6500. In the randomized period, participants (n = 13) were instructed to self-administer 14 doses of PC-6500 or its matching CG placebo (PC-535) once daily for 14 days. The primary outcomes were safety and PK after single dose, and then after 14 days of dosing. Exploratory outcomes were GRFT concentrations in cervicovaginal fluids, PD, inflammatory mediators and gene expression in ectocervical biopsies. This trial is registered with ClinicalTrials.gov, number NCT02875119. No significant adverse events were recorded in clinical or laboratory results or histopathological evaluations in cervicovaginal mucosa, and no anti-drug (GRFT) antibodies were detected in serum. No cervicovaginal proinflammatory responses and no changes in the ectocervical transcriptome were evident. Decreased levels of proinflammatory chemokines (CXCL8, CCL5 and CCL20) were observed. GRFT was not detected in plasma. GRFT and GRFT/CG in cervicovaginal lavage samples inhibited HIV and HPV, respectively, in vitro in a dose-dependent fashion. These data suggest GRFT formulated in a CG gel is a safe and promising on-demand multipurpose prevention technology product that warrants further investigation.
Collapse
Affiliation(s)
- Natalia Teleshova
- Center for Biomedical Research, Population Council, New York, New York, United States of America
- * E-mail:
| | - Marla J. Keller
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - José A. Fernández Romero
- Center for Biomedical Research, Population Council, New York, New York, United States of America
- Science Department, Borough of Manhattan Community College, New York, New York, United States of America
| | - Barbara A. Friedland
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - George W. Creasy
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Marlena G. Plagianos
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Laurie Ray
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Patrick Barnable
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Larisa Kizima
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Aixa Rodriguez
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Nadjet Cornejal
- Science Department, Borough of Manhattan Community College, New York, New York, United States of America
| | - Claudia Melo
- Science Department, Borough of Manhattan Community College, New York, New York, United States of America
| | - Gearoff Cruz Rodriguez
- Science Department, Borough of Manhattan Community College, New York, New York, United States of America
| | - Sampurna Mukhopadhyay
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Giulia Calenda
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Shweta U. Sinkar
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Thierry Bonnaire
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Asa Wesenberg
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Shimin Zhang
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Kyle Kleinbeck
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Kenneth Palmer
- University of Louisville, Louisville, Kentucky, United States of America
| | - Mohcine Alami
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Barry R. O’Keefe
- Division of Cancer Treatment and Diagnosis, Molecular Targets Program, Center for Cancer Research and Natural Products Branch, Developmental Therapeutics Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Patrick Gillevet
- George Mason University, Manassas, Virginia, United States of America
| | - Hong Hur
- Rockefeller University, New York, New York, United States of America
| | - Yupu Liang
- Rockefeller University, New York, New York, United States of America
| | - Gabriela Santone
- Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Tamara Kalir
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Thomas M. Zydowsky
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| |
Collapse
|
3
|
Lee C. Carrageenans as Broad-Spectrum Microbicides: Current Status and Challenges. Mar Drugs 2020; 18:md18090435. [PMID: 32825645 PMCID: PMC7551811 DOI: 10.3390/md18090435] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Different kinds of red algae are enriched with chemically diverse carbohydrates. In particular, a group of sulfated polysaccharides, which were isolated from the cell walls of red algae, gained a large amount of attention due to their broad-spectrum antimicrobial activities. Within that group, carrageenans (CGs) were expected to be the first clinically applicable microbicides that could prevent various viral infections due to their superior antiviral potency and desirable safety profiles in subclinical studies. However, their anticipated beneficial effects could not be validated in human studies. To assess the value of a second attempt at pharmacologically developing CGs as a new class of preventive microbicides, all preclinical and clinical development processes of CG-based microbicides need to be thoroughly re-evaluated. In this review, the in vitro toxicities; in vivo safety profiles; and in vitro, ex vivo, and in vivo antiviral activities of CGs are summarized according to the study volume of their target viruses, which include human immunodeficiency virus, herpesviruses, respiratory viruses, human papillomavirus, dengue virus, and other viruses along with a description of their antiviral modes of action and development of antiviral resistance. This evaluation of the strengths and weaknesses of CGs will help provide future research directions that may lead to the successful development of CG-based antimicrobial prophylactics.
Collapse
Affiliation(s)
- Choongho Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| |
Collapse
|
4
|
Mizenina O, Hsu M, Jean-Pierre N, Aravantinou M, Levendosky K, Paglini G, Zydowsky TM, Robbiani M, Fernández-Romero JA. MIV-150 and zinc acetate combination provides potent and broad activity against HIV-1. Drug Deliv Transl Res 2018; 7:859-866. [PMID: 28812250 DOI: 10.1007/s13346-017-0421-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We previously showed that the combination of the non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 with zinc acetate (ZA) formulated in a carrageenan (CG; MZC) gel provided macaques significant protection against vaginal simian-human immunodeficiency virus-RT (SHIV-RT) challenge, better than either MIV-150/CG or ZA/CG. The MZC gel was shown to be safe in a phase 1 clinical trial. Herein, we used in vitro approaches to study the antiviral properties of ZA and the MIV-150/ZA combination, compared to other NNRTIs. Like other NNRTIs, MIV-150 has EC50 values in the subnanomolar to nanomolar range against wild type and NNRTI or RT-resistant HIVs. While less potent than NNRTIs, ZA was shown to be active in primary cells against laboratory-adapted and primary HIV-1 isolates and HIV-1 isolates/clones with NNRTI and RT resistance mutations, with EC50 values between 20 and 110 μM. The MIV-150/ZA combination had a potent and broad antiviral activity in primary cells. In vitro resistance selection studies revealed that previously described NNRTI-resistant mutations were selected by MIV-150. ZA-resistant virus retained susceptibility to MIV-150 (and other RTIs) and MIV-150-selected virus remained sensitive to ZA. Notably, resistant virus was not selected when cultured in the presence of both ZA and MIV-150. This underscores the potency and breadth of the MIV-150/ZA combination, supporting preclinical macaque studies and the advancement of MZC microbicides into clinical testing.
Collapse
Affiliation(s)
- Olga Mizenina
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Mayla Hsu
- Center for Biomedical Research, Population Council, New York, NY, USA
| | | | | | - Keith Levendosky
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Gabriela Paglini
- Instituto de Virología J.M.Vanella-Facultad de Ciencias Médicas-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Thomas M Zydowsky
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - José A Fernández-Romero
- Center for Biomedical Research, Population Council, New York, NY, USA. .,Science Department, Borough of Manhattan Community College, The City University of New York, 199 Chambers Street, New York, NY, 10007, USA.
| |
Collapse
|
5
|
Derby N, Aravantinou M, Kenney J, Ugaonkar SR, Wesenberg A, Wilk J, Kizima L, Rodriguez A, Zhang S, Mizenina O, Levendosky K, Cooney ML, Seidor S, Gettie A, Grasperge B, Blanchard J, Piatak M, Lifson JD, Fernández-Romero J, Zydowsky TM, Robbiani M. An intravaginal ring that releases three antiviral agents and a contraceptive blocks SHIV-RT infection, reduces HSV-2 shedding, and suppresses hormonal cycling in rhesus macaques. Drug Deliv Transl Res 2017; 7:840-858. [PMID: 28600625 PMCID: PMC5656733 DOI: 10.1007/s13346-017-0389-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Women globally need access to multipurpose prevention technologies (MPTs) that prevent human immunodeficiency virus (HIV), sexually transmitted infections that increase HIV acquisition/transmission risk, and unintended pregnancy. Seeking an MPT with activity against HIV, herpes simplex virus-2 (HSV-2), and human papillomavirus (HPV), we developed a prototype intravaginal ring (IVR), the MZCL IVR, which released the antiviral agents MIV-150, zinc acetate, and carrageenan (MZC for short) and the contraceptive levonorgestrel (LNG). Previously, we showed that an MZC gel has potent activity against immunodeficiency viruses, HSV-2, and HPV and that the MZCL (MZC with LNG) IVR releases all four components in macaques in vivo at levels associated with efficacy. Vaginal fluid from treated macaques has in vitro activity against HIV, HSV-2, and HPV. Herein, we assessed the ability of the MZCL IVR to protect macaques against repeated co-challenge with HSV-2 and SHIV-RT (simian immunodeficiency virus [SIV] containing the reverse transcriptase gene from HIV) and prevent hormonal cycling. We evaluated in vivo drug release in co-challenged macaques by measuring drug levels in blood and vaginal fluid and residual drug levels in used IVRs. The MZCL IVR significantly prevented SHIV-RT infection, reduced HSV-2 vaginal shedding, and prevented cycling. No non-nucleoside HIV reverse transcriptase inhibitor (NNRTI)-resistant SHIV was detected in macaques that became infected after continuous exposure to MZC from the IVR. Macaques wearing the MZCL IVR also had carrageenan levels in vaginal fluid expected to protect from HPV (extrapolated from mice) and LNG levels in blood associated with contraceptive efficacy. The MZCL IVR is a promising MPT candidate that warrants further development.
Collapse
MESH Headings
- Alphapapillomavirus/drug effects
- Alphapapillomavirus/physiology
- Animals
- Antiviral Agents/administration & dosage
- Antiviral Agents/pharmacology
- Carrageenan/administration & dosage
- Carrageenan/pharmacology
- Contraceptive Agents, Female/administration & dosage
- Contraceptive Agents, Female/pharmacology
- Contraceptive Devices, Female
- Disease Models, Animal
- Drug Therapy, Combination/methods
- Female
- Herpes Simplex/prevention & control
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/physiology
- Humans
- Macaca mulatta
- Menstrual Cycle
- Pyridines/administration & dosage
- Pyridines/pharmacology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Urea/administration & dosage
- Urea/analogs & derivatives
- Urea/pharmacology
- Vaginal Creams, Foams, and Jellies/administration & dosage
- Vaginal Creams, Foams, and Jellies/pharmacology
- Virus Shedding/drug effects
- Zinc Acetate/administration & dosage
- Zinc Acetate/pharmacology
Collapse
Affiliation(s)
- Nina Derby
- Population Council, 1230 York Avenue, New York, NY, 10065, USA.
| | | | - Jessica Kenney
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Asa Wesenberg
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Jolanta Wilk
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Larisa Kizima
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Aixa Rodriguez
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Shimin Zhang
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Olga Mizenina
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | | | | | - Samantha Seidor
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, 455 First Avenue, 7th Floor, New York, NY, 10016, USA
| | - Brooke Grasperge
- Tulane Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433-8915, USA
| | - James Blanchard
- Tulane Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433-8915, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - José Fernández-Romero
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
- Science Department, Borough of Manhattan Community College, The City University of New York, 199 Chambers Street, New York, NY, 10007, USA
| | | | | |
Collapse
|
6
|
Notario-Pérez F, Ruiz-Caro R, Veiga-Ochoa MD. Historical development of vaginal microbicides to prevent sexual transmission of HIV in women: from past failures to future hopes. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1767-1787. [PMID: 28670111 PMCID: PMC5479294 DOI: 10.2147/dddt.s133170] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infection with human immunodeficiency virus (HIV) remains a global public health concern and is particularly serious in low- and middle-income countries. Widespread sexual violence and poverty, among other factors, increase the risk of infection in women, while currently available prevention methods are outside the control of most. This has driven the study of vaginal microbicides to prevent sexual transmission of HIV from men to women in recent decades. The first microbicides evaluated were formulated as gels for daily use and contained different substances such as surfactants, acidifiers and monoclonal antibodies, which failed to demonstrate efficacy in clinical trials. A gel containing the reverse transcriptase inhibitor tenofovir showed protective efficacy in women. However, the lack of adherence by patients led to the search for dosage forms capable of releasing the active principle for longer periods, and hence to the emergence of the vaginal ring loaded with dapivirine, which requires a monthly application and is able to reduce the sexual transmission of HIV. The future of vaginal microbicides will feature the use of alternative dosage forms, nanosystems for drug release and probiotics, which have emerged as potential microbicides but are still in the early stages of development. Protecting women with vaginal microbicide formulations would, therefore, be a valuable tool for avoiding sexual transmission of HIV.
Collapse
Affiliation(s)
- Fernando Notario-Pérez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Roberto Ruiz-Caro
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - María-Dolores Veiga-Ochoa
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
7
|
MZC Gel Inhibits SHIV-RT and HSV-2 in Macaque Vaginal Mucosa and SHIV-RT in Rectal Mucosa. J Acquir Immune Defic Syndr 2017; 74:e67-e74. [PMID: 27552154 DOI: 10.1097/qai.0000000000001167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Population Council's microbicide gel MZC (also known as PC-1005) containing MIV-150 and zinc acetate dihydrate (ZA) in carrageenan (CG) has shown promise as a broad-spectrum microbicide against HIV, herpes simplex virus (HSV), and human papillomavirus. Previous data show antiviral activity against these viruses in cell-based assays, prevention of vaginal and rectal simian-human immunodeficiency virus reverse transcriptase (SHIV-RT) infection, and reduction of vaginal HSV shedding in rhesus macaques and also excellent antiviral activity against HSV and human papillomavirus in murine models. Recently, we demonstrated that MZC is safe and effective against SHIV-RT in macaque vaginal explants. Here we established models of ex vivo SHIV-RT/HSV-2 coinfection of vaginal mucosa and SHIV-RT infection of rectal mucosa in macaques (challenge of rectal mucosa with HSV-2 did not result in reproducible tissue infection), evaluated antiviral activity of MZC, and compared quantitative polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay readouts for monitoring SHIV-RT infection. MZC (at nontoxic dilutions) significantly inhibited SHIV-RT in vaginal and rectal mucosas and HSV-2 in vaginal mucosa when present during viral challenge. Analysis of SHIV-RT infection and MZC activity by 1-step simian immunodeficiency virus gag quantitative RT-PCR and p27 enzyme-linked immunosorbent assay demonstrated similar virus growth dynamics and MZC activity by both methods and higher sensitivity of quantitative RT-PCR. Our data provide more evidence that MZC is a promising dual compartment multipurpose prevention technology candidate.
Collapse
|
8
|
First-in-Human Trial of MIV-150 and Zinc Acetate Coformulated in a Carrageenan Gel: Safety, Pharmacokinetics, Acceptability, Adherence, and Pharmacodynamics. J Acquir Immune Defic Syndr 2017; 73:489-496. [PMID: 27437826 PMCID: PMC5172848 DOI: 10.1097/qai.0000000000001136] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To evaluate the safety and pharmacokinetics of MIV-150 and zinc acetate in a carrageenan gel (PC-1005). Acceptability, adherence, and pharmacodynamics were also explored. DESIGN A 3-day open-label safety run-in (n = 5) preceded a placebo-controlled, double-blind trial in healthy, HIV-negative, abstinent women randomized (4:1) to vaginally apply 4 mL of PC-1005 or placebo once daily for 14 days. METHODS Assessments included physical examinations, safety labs, colposcopy, biopsies, cervicovaginal lavages (CVLs), and behavioral questionnaires. MIV-150 (plasma, CVL, tissue), zinc (plasma, CVL), and carrageenan (CVL) concentrations were determined with LC-MS/MS, ICP-MS, and ELISA, respectively. CVL antiviral activity was measured using cell-based assays. Safety, acceptability, and adherence were analyzed descriptively. Pharmacokinetic parameters were calculated using noncompartmental techniques and actual sampling times. CVL antiviral EC50 values were calculated using a dose-response inhibition analysis. RESULTS Participants (n = 20) ranged from 19-44 years old; 52% were black or African American. Among those completing the trial (13/17, PC-1005; 3/3, placebo), 11/17 reported liking the gel overall; 7 recommended reducing the volume. Adverse events, which were primarily mild and/or unrelated, were comparable between groups. Low systemic MIV-150 levels were observed, without accumulation. Plasma zinc levels were unchanged from baseline. Seven of seven CVLs collected 4-hour postdose demonstrated antiviral (HIV, human papillomavirus) activity. High baseline CVL anti-herpes-simplex virus type-2 (HSV-2) activity precluded assessment of postdose activity. CONCLUSIONS PC-1005 used vaginally for 14 days was well tolerated. Low systemic levels of MIV-150 were observed. Plasma zinc levels were unchanged. Postdose CVLs had anti-HIV and anti-human papillomavirus activity. These data warrant further development of PC-1005 for HIV and sexually transmitted infection prevention.
Collapse
|
9
|
In Vitro Exposure to PC-1005 and Cervicovaginal Lavage Fluid from Women Vaginally Administered PC-1005 Inhibits HIV-1 and HSV-2 Infection in Human Cervical Mucosa. Antimicrob Agents Chemother 2016; 60:5459-66. [PMID: 27381393 DOI: 10.1128/aac.00392-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/26/2016] [Indexed: 01/07/2023] Open
Abstract
Our recent phase 1 trial demonstrated that PC-1005 gel containing 50 μM MIV-150, 14 mM zinc acetate dihydrate, and carrageenan (CG) applied daily vaginally for 14 days is safe and well tolerated. Importantly, cervicovaginal lavage fluid samples (CVLs) collected 4 or 24 h after the last gel application inhibited HIV-1 and human papillomavirus (HPV) in cell-based assays in a dose-dependent manner (MIV-150 for HIV-1 and CG for HPV). Herein we aimed to determine the anti-HIV and anti-herpes simplex virus 2 (anti-HSV-2) activity of PC-1005 in human cervical explants after in vitro exposure to the gel and to CVLs from participants in the phase 1 trial. Single HIV-1BaL infection and HIV-1BaL-HSV-2 coinfection explant models were utilized. Coinfection with HSV-2 enhanced tissue HIV-1BaL infection. In vitro exposure to PC-1005 protected cervical mucosa against HIV-1BaL (up to a 1:300 dilution) in single-challenge and cochallenge models. CG gel (PC-525) provided some barrier effect against HIV-1BaL at the 1:100 dilution in a single-challenge model but not in the cochallenge model. Both PC-1005 and PC-525 at the 1:100 dilution inhibited HSV-2 infection, pointing to a CG-mediated protection. MIV-150 and CG in CVLs inhibited HIV (single-challenge or cochallenge models) and HSV-2 infections in explants in a dose-dependent manner (P < 0.05). Stronger inhibition of HIV-1 infection by CVLs collected 4 h after the last gel administration was observed compared to infection detected in the presence of baseline CVLs. The anti-HIV and anti-HSV-2 activity of PC-1005 gel in vitro and CVLs in human ectocervical explants supports the further development of PC-1005 gel as a broad-spectrum on-demand microbicide.
Collapse
|
10
|
Villegas G, Calenda G, Ugaonkar S, Zhang S, Kizima L, Mizenina O, Gettie A, Blanchard J, Cooney ML, Robbiani M, Fernández-Romero JA, Zydowsky TM, Teleshova N. A Novel Microbicide/Contraceptive Intravaginal Ring Protects Macaque Genital Mucosa against SHIV-RT Infection Ex Vivo. PLoS One 2016; 11:e0159332. [PMID: 27428377 PMCID: PMC4948912 DOI: 10.1371/journal.pone.0159332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/30/2016] [Indexed: 01/27/2023] Open
Abstract
Women need multipurpose prevention products (MPTs) that protect against sexually transmitted infections (STIs) and provide contraception. The Population Council has developed a prototype intravaginal ring (IVR) releasing the non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 (M), zinc acetate (ZA), carrageenan (CG) and levonorgestrel (LNG) (MZCL IVR) to protect against HIV, HSV-2, HPV and unintended pregnancy. Our objective was to evaluate the anti-SHIV-RT activity of MZCL IVR in genital mucosa. First, macaque vaginal tissues were challenged with SHIV-RT in the presence of (i) MIV-150 ± LNG or (ii) vaginal fluids (VF); available from studies completed earlier) collected at various time points post insertion of MZCL and MZC IVRs. Then, (iii) MZCL IVRs (vs. LNG IVRs) were inserted in non-Depo Provera-treated macaques for 24h and VF, genital biopsies, and blood were collected and tissues were challenged with SHIV-RT. Infection was monitored with one step SIV gag qRT-PCR or p27 ELISA. MIV-150 (LCMS/MS, RIA), LNG (RIA) and CG (ELISA) were measured in different compartments. Log-normal generalized mixed linear models were used for analysis. LNG did not affect the anti-SHIV-RT activity of MIV-150 in vitro. MIV-150 in VF from MZC/MZCL IVR-treated macaques inhibited SHIV-RT in vaginal mucosa in a dose-dependent manner (p<0.05). MIV-150 in vaginal tissue from MZCL IVR-treated animals inhibited ex vivo infection relative to baseline (96%; p<0.0001) and post LNG IVR group (90%, p<0.001). No MIV-150 dose-dependent protection was observed, likely because of high MIV-150 concentrations in all vaginal tissue samples. In cervical tissue, MIV-150 inhibited infection vs. baseline (99%; p<0.05). No cervical tissue was available for MIV-150 measurement. Exposure to LNG IVR did not change tissue infection level. These observations support further development of MZCL IVR as a multipurpose prevention technology to improve women's sexual and reproductive health.
Collapse
Affiliation(s)
| | - Giulia Calenda
- Population Council, New York, New York, United States of America
| | - Shweta Ugaonkar
- Population Council, New York, New York, United States of America
| | - Shimin Zhang
- Population Council, New York, New York, United States of America
| | - Larisa Kizima
- Population Council, New York, New York, United States of America
| | - Olga Mizenina
- Population Council, New York, New York, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | | | - Melissa Robbiani
- Population Council, New York, New York, United States of America
| | | | | | | |
Collapse
|
11
|
Multipurpose Prevention Approaches with Antiretroviral-Based Formulations. Antimicrob Agents Chemother 2015; 60:1141-4. [PMID: 26596943 PMCID: PMC4750675 DOI: 10.1128/aac.02468-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/16/2015] [Indexed: 12/25/2022] Open
Abstract
We compared the preclinical safety and efficacy of tenofovir (TFV) 1% gel with that of MZC gel [containing 50 μM MIV-150, 14 mM Zn(O2CCH3)2(H2O)2, and 3% carrageenan] through a series of in vitro, ex vivo, and in vivo assays. The two gels showed good antiviral therapeutic indexes (50% cytotoxic concentration/50% effective concentration ratios; range, >25 to 800). MZC showed greater anti-simian-human immunodeficiency virus reverse transcriptase (SHIV-RT) activity than TFV 1% gel in rhesus macaque vaginal explants. MZC protected mice from vaginal herpes simplex virus 2 (HSV-2) challenge (P < 0.0001), but the TFV 1% gel did not.
Collapse
|
12
|
Fernández-Romero JA, Teleshova N, Zydowsky TM, Robbiani M. Preclinical assessments of vaginal microbicide candidate safety and efficacy. Adv Drug Deliv Rev 2015; 92:27-38. [PMID: 25543007 DOI: 10.1016/j.addr.2014.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/04/2014] [Accepted: 12/18/2014] [Indexed: 11/15/2022]
Abstract
Sexually transmitted infections like HIV, HPV, and HSV-2, as well as unplanned pregnancy, take a huge toll on women worldwide. Woman-initiated multipurpose prevention technologies that contain antiviral/antibacterial drugs (microbicides) and a contraceptive to simultaneously target sexually transmitted infections and unplanned pregnancy are being developed to reduce these burdens. This review will consider products that are applied topically to the vagina. Rectally administered topical microbicides in development for receptive anal intercourse are outside the scope of this review. Microbicide and microbicide/contraceptive candidates must be rigorously evaluated in preclinical models of safety and efficacy to ensure that only candidates with favorable risk benefit ratios are advanced into human clinical trials. This review describes the comprehensive set of in vitro, ex vivo, and in vivo models used to evaluate the preclinical safety and antiviral efficacy of microbicide and microbicide/contraceptive candidates.
Collapse
MESH Headings
- Administration, Intravaginal
- Animals
- Antiviral Agents/administration & dosage
- Antiviral Agents/adverse effects
- Antiviral Agents/pharmacokinetics
- Antiviral Agents/therapeutic use
- Contraceptive Agents, Female/administration & dosage
- Contraceptive Agents, Female/adverse effects
- Contraceptive Agents, Female/pharmacokinetics
- Contraceptive Agents, Female/therapeutic use
- Drug Evaluation, Preclinical/methods
- Drug Evaluation, Preclinical/standards
- Female
- HIV Infections/prevention & control
- Haplorhini
- Herpes Genitalis/prevention & control
- Humans
- Mice
- Models, Biological
- Papillomavirus Infections/prevention & control
- Pregnancy
- Pregnancy, Unplanned
- Sexually Transmitted Diseases, Viral/prevention & control
- Vagina/physiology
- Vaginal Absorption
- Vaginal Creams, Foams, and Jellies/pharmacokinetics
- Vaginal Creams, Foams, and Jellies/therapeutic use
Collapse
Affiliation(s)
| | - Natalia Teleshova
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Thomas M Zydowsky
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, NY, USA
| |
Collapse
|
13
|
MIV-150/zinc acetate gel inhibits cell-associated simian-human immunodeficiency virus reverse transcriptase infection in a macaque vaginal explant model. Antimicrob Agents Chemother 2015; 59:3829-37. [PMID: 25870063 DOI: 10.1128/aac.00073-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/07/2015] [Indexed: 12/22/2022] Open
Abstract
The transmission of both cell-free and cell-associated immunodeficiency viruses has been demonstrated directly in multiple animal species and possibly occurs in humans, as suggested by genotyping of the infecting human immunodeficiency virus (HIV) in acutely infected women and in semen from their partners. Therefore, a microbicide may need to block both mechanisms of HIV transmission to achieve maximum efficacy. To date, most of the preclinical evaluation of candidate microbicides has been performed using cell-free HIV. New models of mucosal transmission of cell-associated HIV are needed to evaluate candidate microbicide performance. The MIV-150/zinc acetate/carrageenan (MZC) gel protects Depo-Provera-treated macaques against cell-free simian-human immunodeficiency virus reverse transcriptase (SHIV-RT) infection when applied vaginally up to 8 h before challenge. We recently demonstrated the potent activity of MZC gel against cell-free SHIV-RT in macaque vaginal explants. In the current study, we established a cell-associated SHIV-RT infection model of macaque vaginal tissues and tested the activity of MZC gel in this model. MZC gel protected tissues against cell-associated SHIV-RT infection when present at the time of viral exposure or when applied up to 4 days prior to viral challenge. These data support clinical testing of the MZC gel. Overall, our ex vivo model of cell-associated SHIV-RT infection in macaque vaginal mucosa complements the cell-free infection models, providing tools for prioritization of products that block both modes of HIV transmission.
Collapse
|
14
|
Goode D, Truong R, Villegas G, Calenda G, Guerra-Perez N, Piatak M, Lifson JD, Blanchard J, Gettie A, Robbiani M, Martinelli E. HSV-2-driven increase in the expression of α4β7 correlates with increased susceptibility to vaginal SHIV(SF162P3) infection. PLoS Pathog 2014; 10:e1004567. [PMID: 25521298 PMCID: PMC4270786 DOI: 10.1371/journal.ppat.1004567] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/10/2014] [Indexed: 11/19/2022] Open
Abstract
The availability of highly susceptible HIV target cells that can rapidly reach the mucosal lymphoid tissues may increase the chances of an otherwise rare transmission event to occur. Expression of α4β7 is required for trafficking of immune cells to gut inductive sites where HIV can expand and it is expressed at high level on cells particularly susceptible to HIV infection. We hypothesized that HSV-2 modulates the expression of α4β7 and other homing receptors in the vaginal tissue and that this correlates with the increased risk of HIV acquisition in HSV-2 positive individuals. To test this hypothesis we used an in vivo rhesus macaque (RM) model of HSV-2 vaginal infection and a new ex vivo model of macaque vaginal explants. In vivo we found that HSV-2 latently infected RMs appeared to be more susceptible to vaginal SHIVSF162P3 infection, had higher frequency of α4β7high CD4+ T cells in the vaginal tissue and higher expression of α4β7 and CD11c on vaginal DCs. Similarly, ex vivo HSV-2 infection increased the susceptibility of the vaginal tissue to SHIVSF162P3. HSV-2 infection increased the frequencies of α4β7high CD4+ T cells and this directly correlated with HSV-2 replication. A higher amount of inflammatory cytokines in vaginal fluids of the HSV-2 infected animals was similar to those found in the supernatants of the infected explants. Remarkably, the HSV-2-driven increase in the frequency of α4β7high CD4+ T cells directly correlated with SHIV replication in the HSV-2 infected tissues. Our results suggest that the HSV-2-driven increase in availability of CD4+ T cells and DCs that express high levels of α4β7 is associated with the increase in susceptibility to SHIV due to HSV-2. This may persists in absence of HSV-2 shedding. Hence, higher availability of α4β7 positive HIV target cells in the vaginal tissue may constitute a risk factor for HIV transmission.
Collapse
Affiliation(s)
- Diana Goode
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Rosaline Truong
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Guillermo Villegas
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Giulia Calenda
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Natalia Guerra-Perez
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University Sciences Center, Covington, Louisiana, United States of America
| | - Agegnehu Gettie
- Tulane National Primate Research Center, Tulane University Sciences Center, Covington, Louisiana, United States of America
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| |
Collapse
|
15
|
Kenney J, Derby N, Aravantinou M, Kleinbeck K, Frank I, Gettie A, Grasperge B, Blanchard J, Piatak M, Lifson JD, Zydowsky TM, Robbiani M. Short communication: a repeated simian human immunodeficiency virus reverse transcriptase/herpes simplex virus type 2 cochallenge macaque model for the evaluation of microbicides. AIDS Res Hum Retroviruses 2014; 30:1117-24. [PMID: 25354024 DOI: 10.1089/aid.2014.0207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epidemiological studies suggest that prevalent herpes simplex virus type 2 (HSV-2) infection increases the risk of HIV acquisition, underscoring the need to develop coinfection models to evaluate promising prevention strategies. We previously established a single high-dose vaginal coinfection model of simian human immunodeficiency virus (SHIV)/HSV-2 in Depo-Provera (DP)-treated macaques. However, this model does not appropriately mimic women's exposure. Repeated limiting dose SHIV challenge models are now used routinely to test prevention strategies, yet, at present, there are no reports of a repeated limiting dose cochallenge model in which to evaluate products targeting HIV and HSV-2. Herein, we show that 20 weekly cochallenges with 2-50 TCID50 simian human immunodeficiency virus reverse transcriptase (SHIV-RT) and 10(7) pfu HSV-2 results in infection with both viruses (4/6 SHIV-RT, 6/6 HSV-2). The frequency and level of vaginal HSV-2 shedding were significantly greater in the repeated exposure model compared to the single high-dose model (p<0.0001). We used this new model to test the Council's on-demand microbicide gel, MZC, which is active against SHIV-RT in DP-treated macaques and HSV-2 and human papillomavirus (HPV) in mice. While MZC reduced SHIV and HSV-2 infections in our repeated limiting dose model when cochallenging 8 h after each gel application, a barrier effect of carrageenan (CG) that was not seen in DP-treated animals precluded evaluation of the significance of the antiviral activity of MZC. Both MZC and CG significantly (p<0.0001) reduced the frequency and level of vaginal HSV-2 shedding compared to no gel treatment. This validates the use of this repeated limiting dose cochallenge model for testing products targeting HIV and HSV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland
| | | | | |
Collapse
|