1
|
Shao Y, Zhang S, Pan Y, Peng Z, Dong Y. miR-135b: A key role in cancer biology and therapeutic targets. Noncoding RNA Res 2025; 12:67-80. [PMID: 40124960 PMCID: PMC11930451 DOI: 10.1016/j.ncrna.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/13/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
miR-135b, a microRNA, is consistently up-regulated in various cancer tissues and cells, promoting cancer progression. By inhibiting one or more target genes, miR-135b regulates phenotypes such as cancer growth, apoptosis, migration, invasion, drug resistance, and angiogenesis, establishing it as a critical driver of cancer progression. Additionally, miR-135b is regulated by various oncogenes and therapeutic drugs, highlighting its complexity and therapeutic potential. Significant progress has been made in understanding miR-135b's impact on cancer cell behavior, establishing it as a promising biomarker for cancer diagnosis and prognosis, as well as a potential target for future cancer therapies. However, despite the extensive research on this topic, there has been no comprehensive review summarizing its role and mechanisms across different cancer types. This review aims to provide a detailed overview of the biological characteristics of miR-135b, its regulatory targets, upstream signaling pathways, and its therapeutic potential, including its influence on cancer chemoresistance. The review also addresses key controversies surrounding miR-135b in cancer research, aiming to deepen the understanding of its role, promote the transformation of its clinical application, and provide a theoretical foundation for developing more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Yingchun Shao
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Yuxin Pan
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhan Peng
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Yinying Dong
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| |
Collapse
|
2
|
Chuang TD, Ton N, Rysling S, Khorram O. The Functional Role of the Long Non-Coding RNA LINCMD1 in Leiomyoma Pathogenesis. Int J Mol Sci 2024; 25:11539. [PMID: 39519092 PMCID: PMC11545963 DOI: 10.3390/ijms252111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Existing evidence indicates that LINCMD1 regulates muscle differentiation-related gene expression in skeletal muscle by acting as a miRNA sponge, though its role in leiomyoma development is still unknown. This study investigated LINCMD1's involvement in leiomyoma by analyzing paired myometrium and leiomyoma tissue samples (n = 34) from patients who had not received hormonal treatments for at least three months prior to surgery. Myometrium smooth muscle cells (MSMCs) were isolated, and gene expression of LINCMD1 and miR-135b was assessed via qRT-PCR, while luciferase assays determined the interaction between LINCMD1 and miR-135b. To examine the effects of LINCMD1 knockdown, siRNA transfection was applied to a 3D MSMC spheroid culture, followed by qRT-PCR and Western blot analyses of miR-135b, APC, β-Catenin and COL1A1 expression. The results showed that leiomyoma tissues had significantly reduced LINCMD1 mRNA levels, regardless of patient race or MED12 mutation status, while miR-135b levels were elevated compared to matched myometrium samples. Luciferase assays confirmed LINCMD1's role as a sponge for miR-135b. LINCMD1 knockdown in MSMC spheroids increased miR-135b levels, reduced APC expression, and led to β-Catenin accumulation and higher COL1A1 expression. These findings highlight LINCMD1 as a potential therapeutic target to modulate aberrant Wnt/β-Catenin signaling in leiomyoma.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
| | - Nhu Ton
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
| | - Shawn Rysling
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
| | - Omid Khorram
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Tolue Ghasaban F, Taghehchian N, Zangouei AS, Keivany MR, Moghbeli M. MicroRNA-135b mainly functions as an oncogene during tumor progression. Pathol Res Pract 2024; 262:155547. [PMID: 39151250 DOI: 10.1016/j.prp.2024.155547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Late diagnosis is considered one of the main reasons of high mortality rate among cancer patients that results in therapeutic failure and tumor relapse. Therefore, it is needed to evaluate the molecular mechanisms associated with tumor progression to introduce efficient markers for the early tumor detection among cancer patients. The remarkable stability of microRNAs (miRNAs) in body fluids makes them potential candidates to use as the non-invasive tumor biomarkers in cancer screening programs. MiR-135b has key roles in prognosis and survival of cancer patients by either stimulating or inhibiting cell proliferation, invasion, and angiogenesis. Therefore, in the present review we assessed the molecular biology of miR-135b during tumor progression to introduce that as a novel tumor marker in cancer patients. It has been reported that miR-135b mainly acts as an oncogene by regulation of transcription factors, signaling pathways, drug response, cellular metabolism, and autophagy. This review paves the way to suggest miR-135b as a tumor marker and therapeutic target in cancer patients following the further clinical trials and animal studies.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keivany
- Department of Radiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Xie T, Ding YH, Sang CS, Lin ZX, Dong J, Fu XA. Vitexin enhances radiosensitivity of mouse subcutaneous xenograft glioma by affecting the miR-17-5p/miR-130b-3p/PTEN/HIF-1α pathway. Strahlenther Onkol 2024; 200:535-543. [PMID: 38453699 DOI: 10.1007/s00066-024-02220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE Vitexin can cooperate with hyperbaric oxygen to sensitize the radiotherapy of glioma by inhibiting the hypoxia-inducible factor (HIF)-1α. However, whether vitexin has a direct radiosensitization and how it affects the HIF-1α expression remain unclear. This study investigated these issues. METHODS The SU3 cells-inoculated nude mice were divided into control, radiation, and vitexin + radiation groups. The vitexin + radiation-treated mice were intraperitoneally injected with 75 mg/kg vitexin daily for 21 days. On the 3rd, 10th, and 17th days during the vitexin treatment, the radiation-treated mice were locally irradiated with 10 Gy, respectively. In vitro, the microRNA (miR)-17-5p or miR-130b-3p mimics-transfected SU3 cells were used to examine the effects of vitexin plus radiation on expression of miR-17-5p- or miR-130b-3p-induced radioresistance-related pathway proteins. The effects of vitexin on miR-17-5p and miR-130b-3p expression in SU3 cells were also evaluated. RESULTS Compared with the radiation group, the tumor volume, tumor weight, and expression of HIF-1α, vascular endothelial growth factor, and glucose transporter-1/3 proteins, miR-17-5p, and miR-130b-3p in tumor tissues in the vitexin + radiation group decreased, whereas the expression of phosphatase and tensin homolog (PTEN) protein increased. After treatment of miR-17-5p or miR-130b-3p mimics-transfected SU3 cells with vitexin plus radiation, the PTEN protein expression also increased, the HIF-1α protein expression decreased correspondingly. Moreover, vitexin decreased the miR-17-5p and miR-130b-3p expression in SU3 cells. CONCLUSION Vitexin can enhance the radiosensitivity of glioma, and its mechanism may partly be related to the attenuation of HIF-1α pathway after lowering the inhibitory effect of miR-17-5p and miR-130b-3p on PTEN.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, China
- The Experimental Center and Department of Neurosurgery, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province, China
| | - Yu-Hao Ding
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Chun-Sheng Sang
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Ze-Xi Lin
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Jun Dong
- The Experimental Center and Department of Neurosurgery, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province, China.
| | - Xi-An Fu
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
5
|
Rahmani F, Hashemian P, Tabrizi AT, Ghorbani Z, Ziaeemehr A, Alijannejad S, Ferns GA, Avan A, Shahidsales S. Regulatory role of miRNAs on Wnt/β-catenin signaling in tumorigenesis of glioblastoma. Indian J Cancer 2023; 60:295-302. [PMID: 37787188 DOI: 10.4103/ijc.ijc_251_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Glioblastoma (GBM) is one of the most aggressive tumors in the brain with high mortality worldwide. Despite recent advances in therapeutic strategies, the survival rate remains low in patients with GBM. The pathogenesis of GBM is a very complicated process involving various genetic mutations affecting several oncogenic signaling pathways like Wnt/β-catenin axis. Overactivation of the Wnt/β-catenin signaling pathway is associated with decreased survival and poor prognosis in patients with GBM. MicroRNAs (miRNAs) were shown to play important roles in the regulation of cell proliferation, differentiation, apoptosis, and tumorigenesis by modulating the expression of their target genes. Aberrant expression of miRNAs were reported in various human malignancies including GBM, breast, colorectal, liver, and prostate cancers, but little is known about their cellular mechanisms. Therefore, recognition of the expression profile and regulatory effects of miRNAs on the Wnt/β-catenin pathway may offer a novel approach for the classification, diagnosis, prognosis, and treatment of patients with GBM. This review summarizes previous data on the modulatory role of miRNAs on the Wnt/β-catenin pathway implicated in tumorigenesis of GBM.
Collapse
Affiliation(s)
- Farzad Rahmani
- Metabolic Syndrome Research Center; Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pedram Hashemian
- Department of Pathology, Jahad Daneshgahi Institute, Mashhad Branch, Mashhad, Iran
| | | | - Zeynab Ghorbani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aghigh Ziaeemehr
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajede Alijannejad
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
6
|
Burko P, D’Amico G, Miltykh I, Scalia F, Conway de Macario E, Macario AJL, Giglia G, Cappello F, Caruso Bavisotto C. Molecular Pathways Implicated in Radioresistance of Glioblastoma Multiforme: What Is the Role of Extracellular Vesicles? Int J Mol Sci 2023; 24:ijms24054883. [PMID: 36902314 PMCID: PMC10003080 DOI: 10.3390/ijms24054883] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary brain tumor that is very aggressive, resistant to treatment, and characterized by a high degree of anaplasia and proliferation. Routine treatment includes ablative surgery, chemotherapy, and radiotherapy. However, GMB rapidly relapses and develops radioresistance. Here, we briefly review the mechanisms underpinning radioresistance and discuss research to stop it and install anti-tumor defenses. Factors that participate in radioresistance are varied and include stem cells, tumor heterogeneity, tumor microenvironment, hypoxia, metabolic reprogramming, the chaperone system, non-coding RNAs, DNA repair, and extracellular vesicles (EVs). We direct our attention toward EVs because they are emerging as promising candidates as diagnostic and prognostication tools and as the basis for developing nanodevices for delivering anti-cancer agents directly into the tumor mass. EVs are relatively easy to obtain and manipulate to endow them with the desired anti-cancer properties and to administer them using minimally invasive procedures. Thus, isolating EVs from a GBM patient, supplying them with the necessary anti-cancer agent and the capability of recognizing a specified tissue-cell target, and reinjecting them into the original donor appears, at this time, as a reachable objective of personalized medicine.
Collapse
Affiliation(s)
- Pavel Burko
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Giuseppa D’Amico
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Ilia Miltykh
- Department of Human Anatomy, Institute of Medicine, Penza State University, 440026 Penza, Russia
| | - Federica Scalia
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Alberto J. L. Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Giuseppe Giglia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Section of Human Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Correspondence: ; Tel.: +39-0916553501
| |
Collapse
|
7
|
Kadkhoda S, Eslami S, Mahmud Hussen B, Ghafouri-Fard S. A review on the importance of miRNA-135 in human diseases. Front Genet 2022; 13:973585. [PMID: 36147505 PMCID: PMC9486161 DOI: 10.3389/fgene.2022.973585] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-135 (miR-135) is a microRNA which is involved in the pathoetiology of several neoplastic and non-neoplastic conditions. Both tumor suppressor and oncogenic roles have been reported for this miRNA. Studies in prostate, renal, gallbladder and nasopharyngeal cancers as well as glioma have shown down-regulation of miR-135 in cancerous tissues compared with controls. These studies have also shown the impact of miR-135 down-regulation on enhancement of cell proliferation and aggressive behavior. Meanwhile, miR-135 has been shown to be up-regulated in bladder, oral, colorectal and liver cancers. Studies in breast, gastric, lung and pancreatic cancers as well as head and neck squamous cell carcinoma have reported dual roles for miR-135. Dysregulation of miR-135 has also been noted in various non-neoplastic conditions such as Alzheimer’s disease, atherosclerosis, depression, diabetes, Parkinson, pulmonary arterial hypertension, nephrotic syndrome, endometriosis, epilepsy and allergic conditions. In the current review, we summarize the role of miR-135 in the carcinogenesis as well as development of other disorders.
Collapse
Affiliation(s)
- Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Soudeh Ghafouri-Fard,
| |
Collapse
|
8
|
Sufianov A, Begliarzade S, Ilyasova T, Liang Y, Beylerli O. MicroRNAs as prognostic markers and therapeutic targets in gliomas. Noncoding RNA Res 2022; 7:171-177. [PMID: 35846075 PMCID: PMC9271693 DOI: 10.1016/j.ncrna.2022.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 01/08/2023] Open
Abstract
Gliomas are invasive brain tumors characterized by high rates of recurrence and mortality. Glioblastoma (GBM), a grade IV brain tumor, is known for its heterogenicity and its resistance to the current treatment regimen. MicroRNA (miRNAs) are small non-coding sequences of RNA that regulate and influence the expression of multiple genes. The detection of certain types of micro-RNA in tissues and blood serum can be used for diagnosis and prognosis, including the response of a particular patient to therapy. The purpose of this review is to analyze studies and experimental results concerning changes in microRNA expression profiles characteristic of gliomas. Furthermore, miRNAs also contribute to autophagy at multiple stages. In this review, we summarize the functions of miRNAs in GBM pathways linked to dysregulation of cell cycle control, apoptosis and resistance to treatment, and the possible use of miRNAs in clinical settings as treatment and prediction biomarkers.
Collapse
Affiliation(s)
- Albert Sufianov
- Federal Center of Neurosurgery, Tyumen, Russia.,Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Sema Begliarzade
- Republican Clinical Perinatal Center, Ufa, Republic of Bashkortostan, 450106, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Yanchao Liang
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
9
|
Regulatory interplay between microRNAs and WNT pathway in glioma. Biomed Pharmacother 2021; 143:112187. [PMID: 34560532 DOI: 10.1016/j.biopha.2021.112187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Glioma is one of the most common neoplasms of the central nervous system with a poor survival. Due to the obstacles in treating this disease, a part of recent studies mainly focuses on identifying the underlying molecular mechanisms that contribute to its malignancy. Altering microRNAs (miRNAs) expression pattern has been identified obviously in many cancers. Through regulating various targets and signaling pathways, miRNAs play a pivotal role in cancer progression. As one of the essential signaling pathways, WNT pathway is dysregulated in many cancers, and a growing body of evidence emphasis its dysregulation in glioma. Herein, we provide a comprehensive review of miRNAs involved in WNT pathway in glioma. Moreover, we show the interplay between miRNAs and WNT pathway in regulating different processes such as proliferation, invasion, migration, radio/chemotherapy resistance, and epithelial-mesenchymal-transition. Then, we introduce several drugs and treatments against glioma, which their effects are mediated through the interplay of WNT pathway and miRNAs.
Collapse
|
10
|
Simionescu N, Zonda R, Petrovici AR, Georgescu A. The Multifaceted Role of Extracellular Vesicles in Glioblastoma: microRNA Nanocarriers for Disease Progression and Gene Therapy. Pharmaceutics 2021; 13:988. [PMID: 34210109 PMCID: PMC8309075 DOI: 10.3390/pharmaceutics13070988] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive form of brain cancer in adults, characterized by poor survival rates and lack of effective therapies. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression post-transcriptionally through specific pairing with target messenger RNAs (mRNAs). Extracellular vesicles (EVs), a heterogeneous group of cell-derived vesicles, transport miRNAs, mRNAs and intracellular proteins, and have been shown to promote horizontal malignancy into adjacent tissue, as well as resistance to conventional therapies. Furthermore, GB-derived EVs have distinct miRNA contents and are able to penetrate the blood-brain barrier. Numerous studies have attempted to identify EV-associated miRNA biomarkers in serum/plasma and cerebrospinal fluid, but their collective findings fail to identify reliable biomarkers that can be applied in clinical settings. However, EVs carrying specific miRNAs or miRNA inhibitors have great potential as therapeutic nanotools in GB, and several studies have investigated this possibility on in vitro and in vivo models. In this review, we discuss the role of EVs and their miRNA content in GB progression and resistance to therapy, with emphasis on their potential as diagnostic, prognostic and disease monitoring biomarkers and as nanocarriers for gene therapy.
Collapse
Affiliation(s)
- Natalia Simionescu
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
- “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania
| | - Radu Zonda
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
| | - Anca Roxana Petrovici
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
| | - Adriana Georgescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8 B.P. Hasdeu Street, 050568 Bucharest, Romania
| |
Collapse
|
11
|
An Integrated Bioinformatics Study of a Novel Niclosamide Derivative, NSC765689, a Potential GSK3β/ β-Catenin/ STAT3/ CD44 Suppressor with Anti-Glioblastoma Properties. Int J Mol Sci 2021; 22:ijms22052464. [PMID: 33671112 PMCID: PMC7957701 DOI: 10.3390/ijms22052464] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Despite management efforts with standard surgery, radiation, and chemotherapy, glioblastoma multiform (GBM) remains resistant to treatment, which leads to tumor recurrence due to glioma stem cells (GSCs) and therapy resistance. In this study, we used random computer-based prediction and target identification to assess activities of our newly synthesized niclosamide-derived compound, NSC765689, to target GBM oncogenic signaling. Using target prediction analyses, we identified glycogen synthase kinase 3β (GSK3β), β-Catenin, signal transducer and activator of transcription 3 (STAT3), and cluster of differentiation 44 (CD44) as potential druggable candidates of NSC765689. The above-mentioned signaling pathways were also predicted to be overexpressed in GBM tumor samples compared to adjacent normal samples. In addition, using bioinformatics tools, we also identified microRNA (miR)-135b as one of the most suppressed microRNAs in GBM samples, which was reported to be upregulated through inhibition of GSK3β, and subsequently suppresses GBM tumorigenic properties and stemness. We further performed in silico molecular docking of NSC765689 with GBM oncogenes; GSK3β, β-Catenin, and STAT3, and the stem cell marker, CD44, to predict protein-ligand interactions. The results indicated that NSC765689 exhibited stronger binding affinities compared to its predecessor, LCC09, which was recently published by our laboratory, and was proven to inhibit GBM stemness and resistance. Moreover, we used available US National Cancer Institute (NCI) 60 human tumor cell lines to screen in vitro anticancer effects, including the anti-proliferative and cytotoxic activities of NSC765689 against GBM cells, and 50% cell growth inhibition (GI50) values ranged 0.23~5.13 μM. In summary, using computer-based predictions and target identification revealed that NSC765689 may be a potential pharmacological lead compound which can regulate GBM oncogene (GSK3β/β-Catenin/STAT3/CD44) signaling and upregulate the miR-135b tumor suppressor. Therefore, further in vitro and in vivo investigations will be performed to validate the efficacy of NSC765689 as a novel potential GBM therapeutic.
Collapse
|
12
|
Ardalan M, Hejazian SM, Sharabiyani HF, Farnood F, Ghafari Aghdam A, Bastami M, Ahmadian E, Zununi Vahed S, Cucchiarini M. Dysregulated levels of glycogen synthase kinase-3β (GSK-3β) and miR-135 in peripheral blood samples of cases with nephrotic syndrome. PeerJ 2020; 8:e10377. [PMID: 33362958 PMCID: PMC7749650 DOI: 10.7717/peerj.10377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Background Glycogen synthase kinase-3 (GSK-3β) is a serine/threonine kinase with multifunctions in various physiological procedures. Aberrant level of GSK-3β in kidney cells has a harmful role in podocyte injury. Methods In this article, the expression levels of GSK-3β and one of its upstream regulators, miR-135a-5p, were measured in peripheral blood mononuclear cells (PBMCs) of cases with the most common types of nephrotic syndrome (NS); focal segmental glomerulosclerosis (FSGS) and membranous glomerulonephritis (MGN). In so doing, fifty-two cases along with twenty-four healthy controls were included based on the strict criteria. Results Levels of GSK-3β mRNA and miR-135 were measured with quantitative real-time PCR. There were statistically significant increases in GSK-3β expression level in NS (P = 0.001), MGN (P = 0.002), and FSGS (P = 0.015) groups compared to the control group. Dysregulated levels of miR-135a-5p in PBMCs was not significant between the studied groups. Moreover, a significant decrease was observed in the expression level of miR-135a-5p in the plasma of patients with NS (P = 0.020), MGN (P = 0.040), and FSGS (P = 0.046) compared to the control group. ROC curve analysis approved a diagnostic power of GSK-3β in discriminating patients from healthy controls (AUC: 0.72, P = 0.002) with high sensitivity and specificity. Conclusions Dysregulated levels of GSK-3β and its regulator miR-135a may participate in the pathogenesis of NS with different etiology. Therefore, more research is needed for understanding the relationship between them.
Collapse
Affiliation(s)
| | - Seyyedeh Mina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Ghafari Aghdam
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Universität des Saarlandes, Homburg/Saar, Germany
| |
Collapse
|
13
|
miRNA as promising theragnostic biomarkers for predicting radioresistance in cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2020; 157:103183. [PMID: 33310279 DOI: 10.1016/j.critrevonc.2020.103183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Radioresistance remains as an obstacle in cancer treatment. This systematic review and meta-analysis aimed to evaluate the association between the expression of miRNAs and responses to radiotherapy and the prognosis of different tumors. In total, 77 miRNAs in 19 cancer types were studied, in which 24 miRNAs were upregulated and 58 miRNAs were downregulated in cancer patients. Five miRNAs were differentially expressed. Moreover, 75 miRNAs were found to be related to radioresistance, while 5 were observed to be related to radiosensitivity. The pooled HR and 95 % confidence interval for the combined studies was 1.135 (0.819-1.574; P-value = 0.4). The HR values of the subgroup analysis for miR-21 (HR = 2.344; 95 % CI: 1.927-2.850; P-value = 0.000), nasopharyngeal carcinoma (HR = 0.448; 95 % CI: 0.265-0.760; P = 0.003) and breast cancer (HR = 1.131; 95 % CI: 0.311-4.109; P = .85) were obtained. Our results highlighted that across the published literature, miRNAs can modulate tumor radioresistance or sensitivity by affecting radiation-related signaling pathways. It seems that miRNAs could be considered as a theragnostic biomarker to predict and monitor clinical response to radiotherapy. Thus, the prediction of radioresistance in malignant patients will improve radiotherapy outcomes and radiotherapeutic resistance.
Collapse
|
14
|
Ismail M, Mohamady S, Samir N, Abouzid KAM. Design, Synthesis, and Biological Evaluation of Novel 7 H-[1,2,4]Triazolo[3,4- b][1,3,4]thiadiazine Inhibitors as Antitumor Agents. ACS OMEGA 2020; 5:20170-20186. [PMID: 32832771 PMCID: PMC7439371 DOI: 10.1021/acsomega.0c01829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
A series of novel anticancer hydrazinotriazolothiadiazine-based derivatives were designed based on the structure-activity relationship of the previously reported anticancer triazolothiadiazines. These derivatives were synthesized and biologically screened against full NCI-60 cancer cell lines revealing compound 5l with a potential antiproliferative effect. 5l was screened over 16 kinases to study its cytotoxic mechanism which showed to inhibit glycogen synthase kinase-3 β (GSK-3β) with IC50 equal to 0.883 μM and 14-fold selectivity over CDK2. Also, 5l increased active caspase-3 levels, induced cell cycle arrest at the G2-M phase, and increased the percentage of Annexin V-fluorescein isothiocyanate-positive apoptotic cells in PC-3 prostate cancer-treated cells. Molecular docking and dynamics were performed to predict the binding mode of 5l in the GSK-3β ATP binding site. 5l can be utilized as a starting scaffold for developing potential GSK-3β inhibitors.
Collapse
Affiliation(s)
- Muhammad
I. Ismail
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, 11837 Cairo, Egypt
| | - Samy Mohamady
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, 11837 Cairo, Egypt
| | - Nermin Samir
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Khaled A. M. Abouzid
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Department
of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia 32897, Egypt
| |
Collapse
|
15
|
Podralska M, Ciesielska S, Kluiver J, van den Berg A, Dzikiewicz-Krawczyk A, Slezak-Prochazka I. Non-Coding RNAs in Cancer Radiosensitivity: MicroRNAs and lncRNAs as Regulators of Radiation-Induced Signaling Pathways. Cancers (Basel) 2020; 12:E1662. [PMID: 32585857 PMCID: PMC7352793 DOI: 10.3390/cancers12061662] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a cancer treatment that applies high doses of ionizing radiation to induce cell death, mainly by triggering DNA double-strand breaks. The outcome of radiotherapy greatly depends on radiosensitivity of cancer cells, which is determined by multiple proteins and cellular processes. In this review, we summarize current knowledge on the role of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in determining the response to radiation. Non-coding RNAs modulate ionizing radiation response by targeting key signaling pathways, including DNA damage repair, apoptosis, glycolysis, cell cycle arrest, and autophagy. Additionally, we indicate miRNAs and lncRNAs that upon overexpression or inhibition alter cellular radiosensitivity. Current data indicate the potential of using specific non-coding RNAs as modulators of cellular radiosensitivity to improve outcome of radiotherapy.
Collapse
Affiliation(s)
- Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
| | - Sylwia Ciesielska
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700RB Groningen, The Netherlands; (J.K.); (A.v.d.B.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700RB Groningen, The Netherlands; (J.K.); (A.v.d.B.)
| | | | | |
Collapse
|
16
|
Duda P, Akula SM, Abrams SL, Steelman LS, Gizak A, Rakus D, McCubrey JA. GSK-3 and miRs: Master regulators of therapeutic sensitivity of cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118770. [PMID: 32524999 DOI: 10.1016/j.bbamcr.2020.118770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/04/2023]
Abstract
Glycogen synthetase kinase-3 (GSK-3) and microRNAs (miRs) affect many critical signaling pathways important in cell growth. GSK-3 is a serine/threonine (S/T) protein kinase. Often when GSK-3 phosphorylates other proteins, they are inactivated and the signaling pathway is shut down. The PI3K/PTEN/AKT/GSK3/mTORC1 pathway plays key roles in regulation of cell growth, apoptosis, drug resistance, malignant transformation and metastasis and is often deregulated in cancer. When GSK-3 is phosphorylated by AKT it is inactivated and this often leads to growth promotion. When GSK-3 is not phosphorylated by AKT or other kinases at specific negative-regulatory residues, it can modify the activity of many proteins by phosphorylation, some of these proteins promote while others inhibit cell proliferation. This is part of the conundrum regarding GSK-3. The central theme of this review is the ability of GSK-3 to serve as either a tumor suppressor or a tumor promoter in cancer which is likely due to its diverse protein substrates. The effects of multiple miRs which bind mRNAs encoding GSK-3 and other signaling molecules and how they affect cell growth and sensitivity to various therapeutics will be discussed as they serve to regulate GSK-3 and other proteins important in controlling proliferation.
Collapse
Affiliation(s)
- Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Brody Building 5N98C, Greenville, NC 27858, USA.
| |
Collapse
|
17
|
Wu Y, Pu N, Su W, Yang X, Xing C. Downregulation of miR-1 in colorectal cancer promotes radioresistance and aggressive phenotypes. J Cancer 2020; 11:4832-4840. [PMID: 32626530 PMCID: PMC7330696 DOI: 10.7150/jca.44753] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Colorectal cancer (CRC) remains to be one of the most common malignancies worldwide. Various studies have demonstrated that microRNAs (miRs) play a critical role in regulating cancer progression and sensitivity to chemoradiotherapy. miR-1 was found to be aberrantly expressed in CRC. However, it has not been fully elucidated whether miR-1 regulated CRC cell radioresistance. Methods: The expression of miR-1 was detected using quantitative real-time polymerase chain reaction in CRC tissues and cell lines. Colony survival and proliferation were determined using colony formation assay and MTT assay, respectively. Apoptosis and levels of related proteins, Bax and Bcl-2, were detected using flow cytometer assay and western blotting analysis. Migration and invasion were measured using wound healing assay and transwell invasion assay. The levels of invasion-associated proteins, E-cadherin, MMP2 and MMP9, were detected using western blotting analysis. Results: miR-1 was found to be downregulated in CRC tissues and cell lines compared with adjacent normal tissues. In vitro, miR-1 overexpression significantly suppressed colony survival and proliferation, and induced cell apoptosis under irradiation, but no apoptosis was detected without irradiation. Furthermore, miR-1 mimics promoted the expression of Bax and E-cadherin and decreased the expression of Bcl-2, MMP2 and MMP9, and apparently impaired the invasion and migration of CRC cells in synergy with radiotherapy. Conclusion: miR-1 enhanced the radiosensitivity of CRC cells by inducing cell apoptosis and the synergic inhibition of aggressive phenotypes, which may serve as a promising therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Yong Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu, 215004, China
| | - Ning Pu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenzhao Su
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu, 215004, China
| | - Xiaodong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu, 215004, China
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu, 215004, China
| |
Collapse
|
18
|
Identification of potential crucial genes and molecular mechanisms in glioblastoma multiforme by bioinformatics analysis. Mol Med Rep 2020; 22:859-869. [PMID: 32467990 PMCID: PMC7339479 DOI: 10.3892/mmr.2020.11160] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/04/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant brain tumor of the adult central nervous system and is associated with poor prognosis. The present study aimed to identify the hub genes in GBM in order to improve the current understanding of the underlying mechanism of GBM. The RNA-seq data were downloaded from The Cancer Genome Atlas database. The edgeR package in R software was used to identify differentially expressed genes (DEGs) between two groups: Glioblastoma samples and normal brain samples. Gene Ontology (GO) functional enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed using Database for Annotation, Visualization and Integrated Discovery software. Additionally, Cytoscape and Search Tool for the Retrieval of Interacting Genes/Proteins tools were used for the protein-protein interaction network, while the highly connected modules were extracted from this network using the Minimal Common Oncology Data Elements plugin. Next, the prognostic significance of the candidate hub genes was analyzed using UALCAN. In addition, the identified hub genes were verified by reverse transcription-quantitative (RT-q) PCR. In total, 1,483 DEGs were identified between GBM and control samples, including 954 upregulated genes and 529 downregulated genes (P<0.01; fold-change >16) and these genes were involved in different GO terms and signaling pathways. Furthermore, CDK1, BUB1, BUB1B, CENPA and GNG3 were identified as key genes in the GBM samples. The UALCAN tool verified that higher expression level of CENPA was relevant to poorer overall survival rates. In conclusion, CDK1, BUB1, BUB1B, CENPA and GNG3 were found to be potential biomarkers for GBM. Additionally, ‘cell cycle’ and ‘γ-aminobutyric acid signaling’ pathways may serve a significant role in the pathogenesis of GBM.
Collapse
|
19
|
Gizak A, Duda P, Pielka E, McCubrey JA, Rakus D. GSK3 and miRNA in neural tissue: From brain development to neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118696. [PMID: 32165184 DOI: 10.1016/j.bbamcr.2020.118696] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRs) are small RNAs modulating gene expression and creating intricate regulatory networks that are dysregulated in many pathological states, including neurodegenerative disorders. In silico analyses denote a multifunctional kinase glycogen synthase kinase-3 (GSK3) as a putative target of numerous miRs identified in neural tissue. GSK3 is engaged in almost all aspects of neuronal development and functioning. Moreover, there is an autoregulatory feedback between GSK3 and miRNAs as the kinase can influence biogenesis of miRs. Members of the miR-GSK3 axes might thus represent convenient therapeutic targets in neuropathologies that display its abnormal regulation. This review summarizes the present knowledge about direct interactions of GSK3 and miRs in brain, and their putative roles in pathogenesis of neurodegenerative and neuropsychiatric disorders. This article is part of a Special Issue entitled: GSK-3 and related kinases in cancer, neurological and other disorders edited by James McCubrey, Agnieszka Gizak and Dariusz Rakus.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław 50-137, Poland.
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław 50-137, Poland
| | - Ewa Pielka
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław 50-137, Poland
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław 50-137, Poland
| |
Collapse
|
20
|
Cheng Q, Li J, Fan F, Cao H, Dai ZY, Wang ZY, Feng SS. Identification and Analysis of Glioblastoma Biomarkers Based on Single Cell Sequencing. Front Bioeng Biotechnol 2020; 8:167. [PMID: 32195242 PMCID: PMC7066068 DOI: 10.3389/fbioe.2020.00167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is one of the most common and aggressive primary adult brain tumors. Tumor heterogeneity poses a great challenge to the treatment of GBM, which is determined by both heterogeneous GBM cells and a complex tumor microenvironment. Single-cell RNA sequencing (scRNA-seq) enables the transcriptomes of great deal of individual cells to be assayed in an unbiased manner and has been applied in head and neck cancer, breast cancer, blood disease, and so on. In this study, based on the scRNA-seq results of infiltrating neoplastic cells in GBM, computational methods were applied to screen core biomarkers that can distinguish the discrepancy between GBM tumor and pericarcinomatous environment. The gene expression profiles of GBM from 2343 tumor cells and 1246 periphery cells were analyzed by maximum relevance minimum redundancy (mRMR). Upon further analysis of the feature lists yielded by the mRMR method, 31 important genes were extracted that may be essential biomarkers for GBM tumor cells. Besides, an optimal classification model using a support vector machine (SVM) algorithm as the classifier was also built. Our results provided insights of GBM mechanisms and may be useful for GBM diagnosis and therapy.
Collapse
Affiliation(s)
- Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zi-Yu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ze-Yu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Song-Shan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Yekula A, Yekula A, Muralidharan K, Kang K, Carter BS, Balaj L. Extracellular Vesicles in Glioblastoma Tumor Microenvironment. Front Immunol 2020; 10:3137. [PMID: 32038644 PMCID: PMC6990128 DOI: 10.3389/fimmu.2019.03137] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastomas (GBM) are highly aggressive primary brain tumors. Complex and dynamic tumor microenvironment (TME) plays a crucial role in the sustained growth, proliferation, and invasion of GBM. Several means of intercellular communication have been documented between glioma cells and the TME, including growth factors, cytokines, chemokines as well as extracellular vesicles (EVs). EVs carry functional genomic and proteomic cargo from their parental cells and deliver that information to surrounding and distant recipient cells to modulate their behavior. EVs are emerging as crucial mediators of establishment and maintenance of the tumor by modulating the TME into a tumor promoting system. Herein we review recent literature in the context of GBM TME and the means by which EVs modulate tumor proliferation, reprogram metabolic activity, induce angiogenesis, escape immune surveillance, acquire drug resistance and undergo invasion. Understanding the multifaceted roles of EVs in the niche of GBM TME will provide invaluable insights into understanding the biology of GBM and provide functional insights into the dynamic EV-mediated intercellular communication during gliomagenesis, creating new opportunities for GBM diagnostics and therapeutics.
Collapse
Affiliation(s)
- Anuroop Yekula
- Government General Hospital, Guntur Medical College, Guntur, India
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Koushik Muralidharan
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Keiko Kang
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Evangelisti C, Chiarini F, Paganelli F, Marmiroli S, Martelli AM. Crosstalks of GSK3 signaling with the mTOR network and effects on targeted therapy of cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118635. [PMID: 31884070 DOI: 10.1016/j.bbamcr.2019.118635] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
The introduction of therapeutics targeting specific tumor-promoting oncogenic or non-oncogenic signaling pathways has revolutionized cancer treatment. Mechanistic (previously mammalian) target of rapamycin (mTOR), a highly conserved Ser/Thr kinase, is a central hub of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR network, one of the most frequently deregulated signaling pathways in cancer, that makes it an attractive target for therapy. Numerous mTOR inhibitors have progressed to clinical trials and two of them have been officially approved as anticancer therapeutics. However, mTOR-targeting drugs have met with a very limited success in cancer patients. Frequently, the primary impediment to a successful targeted therapy in cancer is drug-resistance, either from the very beginning of the therapy (innate resistance) or after an initial response and upon repeated drug treatment (evasive or acquired resistance). Drug-resistance leads to treatment failure and relapse/progression of the disease. Resistance to mTOR inhibitors depends, among other reasons, on activation/deactivation of several signaling pathways, included those regulated by glycogen synthase kinase-3 (GSK3), a protein that targets a vast number of substrates in its repertoire, thereby orchestrating many processes that include cell proliferation and survival, metabolism, differentiation, and stemness. A detailed knowledge of the rewiring of signaling pathways triggered by exposure to mTOR inhibitors is critical to our understanding of the consequences such perturbations cause in tumors, including the emergence of drug-resistant cells. Here, we provide the reader with an updated overview of intricate circuitries that connect mTOR and GSK3 and we relate them to the efficacy (or lack of efficacy) of mTOR inhibitors in cancer cells.
Collapse
Affiliation(s)
- Camilla Evangelisti
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Sandra Marmiroli
- Department of Biomedical, Metabolical, and Neurological Sciences, University of Modena and Reggio Emilia, 41124 Modena, MO, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, BO, Italy.
| |
Collapse
|
23
|
Toraih EA, El-Wazir A, Abdallah HY, Tantawy MA, Fawzy MS. Deregulated MicroRNA Signature Following Glioblastoma Irradiation. Cancer Control 2019; 26:1073274819847226. [PMID: 31046428 PMCID: PMC6501491 DOI: 10.1177/1073274819847226] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma (GBM), the most common and aggressive brain tumor in adults, shows resistance to treatment, particularly radiotherapy. One method for effective treatment is using a group of radiosensitizers that make tumor cells responsive to radiotherapy. A class of molecules whose expression is affected by radiotherapy is the microRNAs (miRNAs) that present promising regulators of the radioresponse. Eighteen miRNAs (miR-26a, -124, -128, -135b, -145, -153, -181a/b, -203, -21, -210, -212, -221/222, -223, -224, -320, and -590), involved in the pathogenesis of GBM and its radioresponsive state, were reviewed to identify their role in GBM and their potential as radiosensitizing agents. MicroRNAs-26a, -124, -128, -145, -153, -181a/b, -203, -221/222, -223, -224, -320, and -590 promoted GBM radiosensitivity, while microRNAs-135b, -21, -210, and -212 encouraged radioresistance. Ectopic overexpression of the radiosensitivity promoting miRNAs and knockdown of the radioresistant miRNAs represent a prospective radiotherapy enhancement opportunity. This offers a glimmer of hope for a group of the most unfortunate patients known to medicine.
Collapse
Affiliation(s)
- Eman A Toraih
- 1 Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,2 Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Aya El-Wazir
- 1 Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,2 Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Hoda Y Abdallah
- 1 Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,2 Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed A Tantawy
- 3 Department of Hormones, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Manal S Fawzy
- 4 Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,5 Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
24
|
Bahreyni-Toossi MT, Dolat E, Khanbabaei H, Zafari N, Azimian H. microRNAs: Potential glioblastoma radiosensitizer by targeting radiation-related molecular pathways. Mutat Res 2019; 816-818:111679. [PMID: 31715522 DOI: 10.1016/j.mrfmmm.2019.111679] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Glioblastoma (GBM) is the most lethal type of primary brain tumor. Currently, even with optimal and multimodal cancer therapies, the survival rate of GBM patients remains poor. One reason for inadequate response of GBM tumors to radiotherapy is radioresistance (RR). Thus, there is a critical need for new insights about GBM treatment to increase the chance of treatment. microRNAs (miRNAs) are important regulatory molecules that can effectively control GBM radiosensitivity (RS) by affecting radiation-related signal transduction pathways such as apoptosis, proliferation, DNA repair and cell cycle regulation. miRNAs provide new clinical perspectives for developing effective GBM treatments. A growing body of literature has demonstrated that GBM RS can be modified by modulating the expression of miRNAs such as miR-7, miR-10b, miR-124, miR-128, miR-320, miR-21, miR-203, and miR-153. This paper highlights the miRNAs and the underlying molecular mechanisms that are involved in the RS of GBM. Besides highlighting the role of miRNAs in different signaling pathways, we explain the mechanisms that affect RS of GBM for modulating radiation response at the clinical level.
Collapse
Affiliation(s)
| | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Navid Zafari
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Bahreyni-Toossi MT, Dolat E, Khanbabaei H, Zafari N, Azimian H. microRNAs: Potential glioblastoma radiosensitizer by targeting radiation-related molecular pathways. Mutat Res 2019; 816-818:111679. [DOI: https:/doi.org/10.1016/j.mrfmmm.2019.111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
26
|
Rouhani M, Ramshini S, Omidi M. The Psychiatric Drug Lithium Increases DNA Damage and Decreases Cell Survival in MCF-7 and MDA-MB-231 Breast Cancer Cell Lines Expos ed to Ionizing Radiation. Curr Mol Pharmacol 2019; 12:301-310. [DOI: 10.2174/1874467212666190503151753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 01/24/2023]
Abstract
Background:
Breast cancer is the most common cancer among women. Radiation therapy
is used for treating almost every stage of breast cancer. A strategy to reduce irradiation side effects and
to decrease the recurrence of cancer is concurrent use of radiation and radiosensitizers. We studied the
effect of the antimanic drug lithium on radiosensitivity of estrogen-receptor (ER)-positive MCF-7 and
ER-negative, invasive, and radioresistant MDA-MB-231 breast cancer cell lines.
Methods:
MCF-7 and MDA-MB-231 breast cancer cell lines were treated with 30 mM and 20 mM
concentrations of lithium chloride (LiCl), respectively. These concentrations were determined by
MTT viability assay. Growth curves were depicted and comet assay was performed for control and
LiCl-treated cells after exposure to X-ray. Total and phosphorylated inactive levels of glycogen
synthase kinase-3beta (GSK-3β) protein were determined by ELISA assay for control and treated
cells.
Results:
Treatment with LiCl decreased cell proliferation after exposure to X-ray as indicated by
growth curves of MCF-7 and MDA-MB-231 cell lines within six days following radiation. Such
treatment increased the amount of DNA damages represented by percent DNA in Tails of comets at
0, 1, 4, and even 24 hours after radiation in both studied cell lines. The amount of active GSK-3β
was increased in LiCl-treated cells in ER-positive and ER-negative breast cancer cell lines.
Conclusion:
Treatment with LiCl that increased the active GSK-3β protein, increased DNA damages
and decreased survival independent of estrogen receptor status in breast cancer cells exposed to
ionizing radiation.
Collapse
Affiliation(s)
- Maryam Rouhani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Samira Ramshini
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Maryam Omidi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
27
|
Chen Y, Bao C, Zhang X, Lin X, Huang H, Wang Z. Long non-coding RNA HCG11 modulates glioma progression through cooperating with miR-496/CPEB3 axis. Cell Prolif 2019; 52:e12615. [PMID: 31310044 PMCID: PMC6797506 DOI: 10.1111/cpr.12615] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/14/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives It has been widely reported that long non‐coding RNAs (lncRNAs) can participate in multiple biological processes of human cancers. lncRNA HLA complex group 11 (HCG11) has been reported in human cancers as a tumour suppressor. This study focused on investigating the function and mechanism of HCG11 in glioma. Materials and methods Based on The Cancer Genome Atlas (TCGA) data set and qRT‐PCR analysis, the expression pattern of HCG11 was identified in glioma samples. The mechanism associated with HCG11 downregulation was determined by mechanism experiments. Gain‐of‐function assays were conducted for the identification of HCG11 function in glioma progression. Mechanism investigation based on the luciferase reporter assay, RIP assay and pull‐down assay was used to explore the downstream molecular mechanism of HCG11. The role of molecular pathway in the progression of glioma was analysed in accordance with the rescue assays. Results HCG11 was expressed at low level in glioma samples compared with normal samples. FOXP1 could bind with HCG11 and transcriptionally inactivated HCG11. Overexpression of HCG11 efficiently suppressed cell proliferation, induced cell cycle arrest and promoted cell apoptosis. HCG11 was predominantly enriched in the cytoplasm of glioma cells and acted as a competing endogenous RNAs (ceRNAs) by sponging micro‐496 to upregulate cytoplasmic polyadenylation element binding protein 3 (CPEB3). CEPB3 and miR‐496 involved in HCG11‐mediated glioma progression. Conclusions HCG11 inhibited glioma progression by regulating miR‐496/CPEB3 axis.
Collapse
Affiliation(s)
- Yangzong Chen
- Department of Radiology, Division of PET/CT, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunchun Bao
- Department of Radiology, Division of PET/CT, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiuxing Zhang
- Department of Radiology, Division of PET/CT, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinshi Lin
- Department of Radiology, Division of PET/CT, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongou Huang
- Department of Radiology, Division of PET/CT, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiqiang Wang
- Department of Radiology, Division of PET/CT, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
28
|
Nagini S, Sophia J, Mishra R. Glycogen synthase kinases: Moonlighting proteins with theranostic potential in cancer. Semin Cancer Biol 2019; 56:25-36. [DOI: 10.1016/j.semcancer.2017.12.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/23/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
|
29
|
Sahin I, Eturi A, De Souza A, Pamarthy S, Tavora F, Giles FJ, Carneiro BA. Glycogen synthase kinase-3 beta inhibitors as novel cancer treatments and modulators of antitumor immune responses. Cancer Biol Ther 2019; 20:1047-1056. [PMID: 30975030 DOI: 10.1080/15384047.2019.1595283] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As a kinase at the crossroads of numerous metabolic and cell growth signaling pathways, glycogen synthase kinase-3 beta (GSK-3β) is a highly desirable therapeutic target in cancer. Despite its involvement in pathways associated with the pathogenesis of several malignancies, no selective GSK-3β inhibitor has been approved for the treatment of cancer. The regulatory role of GSK-3β in apoptosis, cell cycle, DNA repair, tumor growth, invasion, and metastasis reflects the therapeutic relevance of this target and provides the rationale for drug combinations. Emerging data on GSK-3β as a mediator of anticancer immune response also highlight the potential clinical applications of novel selective GSK-3β inhibitors that are entering clinical studies. This manuscript reviews the preclinical and early clinical results with GSK-3β inhibitors and delineates the developmental therapeutics landscape for this potentially important target in cancer therapy.
Collapse
Affiliation(s)
- Ilyas Sahin
- a Lifespan Cancer Institute, Division of Hematology/Oncology , The Warren Alpert Medical School of Brown University , Providence , RI , USA
| | - Aditya Eturi
- b Department of Medicine , The Warren Alpert Medical School of Brown University , Providence , RI , USA
| | - Andre De Souza
- a Lifespan Cancer Institute, Division of Hematology/Oncology , The Warren Alpert Medical School of Brown University , Providence , RI , USA
| | - Sahithi Pamarthy
- c Atrin Pharmaceuticals , Pennsylvania Biotechnology Center , Doylestown , PA , USA
| | - Fabio Tavora
- d Argos Laboratory/Messejana Heart and Lung Hospital , Fortaleza , Brazil
| | - Francis J Giles
- e Developmental Therapeutics Consortium , Chicago , IL , USA
| | - Benedito A Carneiro
- a Lifespan Cancer Institute, Division of Hematology/Oncology , The Warren Alpert Medical School of Brown University , Providence , RI , USA
| |
Collapse
|
30
|
Aberrant miRNAs Regulate the Biological Hallmarks of Glioblastoma. Neuromolecular Med 2018; 20:452-474. [PMID: 30182330 DOI: 10.1007/s12017-018-8507-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022]
Abstract
GBM is the highest incidence in primary intracranial malignancy, and it remains poor prognosis even though the patient is gave standard treatment. Despite decades of intense research, the complex biology of GBM remains elusive. In view of eight hallmarks of cancer which were proposed in 2011, studies related to the eight biological capabilities in GBM have made great progress. From these studies, it can be inferred that miRs, as a mode of post-transcriptional regulation, are involved in regulating these malignant biological hallmarks of GBM. Herein, we discuss state-of-the-art research on how aberrant miRs modulate the eight hallmarks of GBM. The upregulation of 'oncomiRs' or the genetic loss of tumor suppressor miRs is associated with these eight biological capabilities acquired during GBM formation. Furthermore, we also discuss the applicable clinical potential of these research results. MiRs may aid in the diagnosis and prognosis of GBM. Moreover, miRs are also therapeutic targets of GBM. These studies will develop and improve precision medicine for GBM in the future.
Collapse
|
31
|
Wang N, Zhang T. Downregulation of MicroRNA-135 Promotes Sensitivity of Non-Small Cell Lung Cancer to Gefitinib by Targeting TRIM16. Oncol Res 2018; 26:1005-1014. [PMID: 29295721 PMCID: PMC7844745 DOI: 10.3727/096504017x15144755633680] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Personalized treatment targeting the epidermal growth factor receptor (EGFR) may be a promising new treatment of non-small cell lung cancer (NSCLC). Gefitinib, a tyrosine kinase inhibitor, is the first drug for NSCLC, which unfortunately easily leads to drug resistance. Our study aimed to explore the functional role of microRNA (miR)-135 in the sensitivity to gefitinib of NSCLC cells. Expression of miR-135 in normal cells and NSCLC cells was assessed, followed by the effects of abnormally expressed miR-135 on cell viability, migration, invasion, apoptosis, sensitivity to gefitinib, and the expression levels of adhesion molecules and programmed death ligand 1 (PD-L1) in H1650 and H1975 cells. Next, the possible target gene of miR-135 was screened and verified. Finally, the potential involvement of the JAK/STAT signaling pathway was investigated. Expression of miR-135 was upregulated in NSCLC cells, and miR-135 silencing repressed cell viability, migration, and invasion, but increased cell apoptosis and sensitivity to gefitinib. E-cadherin and β-catenin were significantly upregulated, but PD-L1 was downregulated by the silencing of miR-135. Subsequently, tripartite-motif (TRIM) 16 was screened and verified to be a target gene of miR-135, and miR-135 suppression was shown to function through upregulation of TRIM16 expression. Phosphorylated levels of the key kinases in the JAK/STAT pathway were reduced by silencing miR-135 by targeting TRIM16. In conclusion, miR-135 acted as a tumor promoter, and its suppression could improve sensitivity to gefitinib by targeting TRIM16 and inhibition of the JAK/STAT pathway.
Collapse
Affiliation(s)
- Ning Wang
- *Department of Thoracic Surgery, Shengli Oilfield Central Hospital, Dongying, P.R. China
| | - Tingting Zhang
- †Department of Oncology, Shengli Oilfield Central Hospital, Dongying, P.R. China
| |
Collapse
|
32
|
Duan Q, Sun W, Yuan H, Mu X. MicroRNA-135b-5p prevents oxygen-glucose deprivation and reoxygenation-induced neuronal injury through regulation of the GSK-3β/Nrf2/ARE signaling pathway. Arch Med Sci 2018; 14:735-744. [PMID: 30002689 PMCID: PMC6040137 DOI: 10.5114/aoms.2017.71076] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are emerging as critical regulators in the pathological process of cerebral ischemia/reperfusion injury. miRNAs play an important role in regulating neuronal survival. miR-135b-5p has been reported as an important miRNA in regulating cell apoptosis. However, the role of miR-135b-5p in regulating neuronal survival remains poorly understood. Here, we aimed to investigate the role of miR-135b-5p in cerebral ischemia/ reperfusion using an in vitro model of oxygen-glucose deprivation and reoxygenation-(OGD/R) induced neuron injury. MATERIAL AND METHODS miRNA, mRNA and protein expression was detected by real-time quantitative polymerase chain reaction and Western blot. Cell viability was detected by cell counting kit-8 and lactate dehydrogenase assays. Cell apoptosis was detected by caspase-3 activity assay. Oxidative stress was determined using commercial kits. The target of miR-135b-5p was confirmed by dual-luciferase reporter assay. RESULTS We found that miR-135b-5p expression was significantly decreased in hippocampal neurons receiving OGD/R treatment. Overexpression of miR-135b-5p markedly alleviated OGD/R-induced cell injury and oxidative stress, whereas suppression of miR-135b-5p showed the opposite effects. We observed that miR-135b-5p directly targeted the 3'-untranslated region of glycogen synthase kinase-3β (GSK-3β). We found that miR-135b-5p negatively regulates the expression of GSK-3β in hippocampal neurons. Moreover, miR-135b-5p overexpression promotes activation of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling. However, the restoration of GSK-3β expression significantly reversed the protective effects of miR-135b-5p overexpression. CONCLUSIONS Overall, our results suggest that miR-135b-5p protects neurons against OGD/R-induced injury through downregulation of GSK-3β and promotion of the Nrf2/ARE signaling pathway-mediated antioxidant responses.
Collapse
Affiliation(s)
- Qiang Duan
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Sun
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiang Mu
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
33
|
Han X, Xue X, Zhou H, Zhang G. A molecular view of the radioresistance of gliomas. Oncotarget 2017; 8:100931-100941. [PMID: 29246031 PMCID: PMC5725073 DOI: 10.18632/oncotarget.21753] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Gliomas originate from glial cells and are the most frequent primary brain tumors. High-grade gliomas occur ∼4 times more frequently than low-grade gliomas, are highly malignant, and have extremely poor prognosis. Radiotherapy, sometimes combined with chemotherapy, is considered the treatment of choice for gliomas and is used after resective surgery. Despite great technological improvements, the radiotherapeutic effect is generally limited, due to the marked radioresistance exhibited by gliomas cells, especially glioma stem cells (GSCs). The mechanisms underlying this phenomenon are multiple and remain to be fully elucidated. This review attempts to summarize current knowledge on the molecular basis of glioma radioresistance by focusing on signaling pathways, microRNAs, hypoxia, the brain microenvironment, and GSCs. A thorough understanding of the complex interactions between molecular, cellular, and environmental factors should provide new insight into the intrinsic radioresistance of gliomas, potentially enabling improvement, through novel concurrent therapies, of the clinical efficacy of radiotherapy.
Collapse
Affiliation(s)
- Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ge Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
34
|
Liang L, Zhang L, Cui D, Yang D. Identification of the key miRNAs associated with survival time in stomach adenocarcinoma. Oncol Lett 2017; 14:4563-4572. [PMID: 29085454 PMCID: PMC5649651 DOI: 10.3892/ol.2017.6792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/15/2017] [Indexed: 12/12/2022] Open
Abstract
Stomach adenocarcinoma (STAD) is one of the leading causes of cancer morbidity and mortality worldwide. The present study aimed to identify the microRNAs associated with STAD survival time. The clinical information and microarray miRNA and mRNA expression profiles of STAD patients were downloaded from The Cancer Genome Atlas. Differential expression (DE) analysis was performed to identify DEmiRNAs and DEmRNAs in STAD. The DEmiRNAs associated with the survival time of patients with STAD were identified through DE analysis, negative correlation pair analysis, miRNA target gene prediction, univariate Cox regression analysis and Kaplan-Meier analysis. The functions of the target genes of the DEmiRNAs were predicted with Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. A total of 355 DEmiRNAs and 1,722 DEmRNAs were identified between STAD and normal tissues. A total of 5 DEmiRNAs were identified to be associated with STAD survival, including 4 risk-associated DEmiRNAs (miR-30a, -143, -145 and -133b) and 1 protective DEmiRNA (miR-135b). The target DEmRNAs were significantly enriched for DNA metabolic process in the biological process GO category, and in KEGG cell cycle signaling pathways. Kaplan-Meier curves indicated that the overall survival time in the miR-30a, -143, -145 and -133b high expression groups was significantly shorter than that in the low expression groups, whereas the survival time was prolonged in the miR-135b high expression group compared with that in the low expression group. Therefore, miR-30a, -143, -145, -133b and -135b may be involved in the tumorigenesis and development of STAD, and may be potential biomarkers for its early diagnosis and prognosis.
Collapse
Affiliation(s)
- Li Liang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Lingling Zhang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Dejun Cui
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Daping Yang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
35
|
Jin H, Luo S, Wang Y, Liu C, Piao Z, Xu M, Guan W, Li Q, Zou H, Tan QY, Yang ZZ, Wang Y, Wang D, Xu CX. miR-135b Stimulates Osteosarcoma Recurrence and Lung Metastasis via Notch and Wnt/β-Catenin Signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:111-122. [PMID: 28918013 PMCID: PMC5493819 DOI: 10.1016/j.omtn.2017.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/11/2017] [Accepted: 06/12/2017] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) play an important role in osteosarcoma (OS) metastasis and recurrence, and both Wnt/β-catenin and Notch signaling are essential for the development of the biological traits of CSCs. However, the mechanism that underlies the simultaneous hyperactivation of both Wnt/β-catenin and Notch signaling in OS remains unclear. Here, we report that expression of miR-135b correlates with the overall and recurrence-free survival of OS patients, and that miR-135b has an activating effect on both Wnt/β-catenin and Notch signaling. The overexpression of miR-135b simultaneously targets multiple negative regulators of the Wnt/β-catenin and Notch signaling pathways, including glycogen synthase kinase-3 beta (GSK3β), casein kinase 1a (CK1α), and ten-eleven translocation 3 (TET3). Therefore, upregulated miR-135b promotes CSC traits, lung metastasis, and tumor recurrence in OS. Notably, antagonizing miR-135b potently inhibits OS lung metastasis, cancer cell stemness, CSC-induced tumor formation, and recurrence in xenograft animal models. These findings suggest that miR-135b mediates the constitutive activation of Wnt/β-catenin and Notch signaling, and that the inhibition of miR-135b is a novel strategy to inhibit tumor metastasis and prevent CSC-induced recurrence in OS.
Collapse
Affiliation(s)
- Hua Jin
- Department of Thoracic Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Song Luo
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Yun Wang
- Department of Pathology, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Chang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhenghao Piao
- Department of Basic Medical Science, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Meng Xu
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Wei Guan
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Hua Zou
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Qun-You Tan
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Zhen-Zhou Yang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Yan Wang
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Cheng-Xiong Xu
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
36
|
Son JC, Jeong HO, Park D, No SG, Lee EK, Lee J, Chung HY. miR-10a and miR-204 as a Potential Prognostic Indicator in Low-Grade Gliomas. Cancer Inform 2017; 16:1176935117702878. [PMID: 28469392 PMCID: PMC5397276 DOI: 10.1177/1176935117702878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/20/2017] [Indexed: 01/20/2023] Open
Abstract
This study aimed to identify and characterize microRNAs (miRNAs) that are related to radiosensitivity in low-grade gliomas (LGGs). The miRNA expression levels in radiosensitive and radioresistant LGGs were compared using The Cancer Genome Atlas database, and differentially expressed miRNAs were identified using the EBSeq package. The miRNA target genes were predicted using Web databases. Fifteen miRNAs were differentially expressed between the groups, with miR-10a and miR-204 being related to overall survival (OS) of patients with LGG. Patients with upregulated miR-10a expression had a higher mortality rate and shorter OS time, whereas patients with downregulated miR-204 expression had a lower mortality rate and longer OS time. Two genes, HSP90AA1 and CREB5, were targets for both miRNAs. Thus, this study suggests that expression of miR-10a and miR-204 is significantly related to both radiosensitivity and the survival of patients with LGG. These miRNAs could therefore act as clinical biomarkers for LGG prognosis and diagnosis.
Collapse
Affiliation(s)
- Ju Cheol Son
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, Republic of Korea
| | - Hyoung Oh Jeong
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, Republic of Korea
| | - Deaui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea.,Center for Convergent Research of Emerging Virus Infection, Koera Research Institute of Chemical Technology, Deajeon, Republic of Korea
| | - Sang Gyoon No
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, Republic of Korea
| | - Eun Kyeong Lee
- Center for Convergent Research of Emerging Virus Infection, Koera Research Institute of Chemical Technology, Deajeon, Republic of Korea
| | - Jaewon Lee
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hae Young Chung
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
37
|
Nunez Lopez YO, Coen PM, Goodpaster BH, Seyhan AA. Gastric bypass surgery with exercise alters plasma microRNAs that predict improvements in cardiometabolic risk. Int J Obes (Lond) 2017; 41:1121-1130. [PMID: 28344345 DOI: 10.1038/ijo.2017.84] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/12/2017] [Accepted: 03/14/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND/OBJECTIVES Roux-en-Y gastric bypass (RYGB) surgery improves insulin sensitivity (SI) and β-cell function in obese non-diabetic subjects. Exercise also improves SI and may be an effective adjunct therapy to RYGB surgery. However, the mechanisms by which exercise or weight loss improve peripheral SI after RYGB surgery are unclear. We hypothesized that microRNAs (miRNAs) mediate at least some of the regulatory processes driving such mechanisms. Consequently, this work aimed at profiling plasma miRNAs in participants of the Physical Activity Following Surgery Induced Weight Loss study (clinicaltrials.gov identifier: NCT00692367), to assess whether miRNA levels track with improvements in SI and cardiometabolic risk factors. SUBJECTS/METHODS Ninety-four miRNAs implicated in metabolism were profiled in plasma samples from 22 severely obese subjects who were recruited 1-3 months after RYGB surgery and followed for 6 months of RYGB surgery-induced weight loss, with (exercise program (EX), N=11) or without (CON, N=11) an exercise training intervention. The subjects were selected, considering a priori sample size calculations, among the participants in the parent study. Mixed-effect modeling for repeated measures and partial correlation analysis was implemented in the R environment for statistical analysis. RESULTS Mirroring results in the parent trial, both groups experienced significant weight loss and improvements in cardiometabolic risk. In the CON group, weight loss significantly altered the pattern of circulating miR-7, miR-15a, miR-34a, miR-106a, miR-122 and miR-221. In the EX group, a distinct miRNA signature was altered: miR-15a, miR-34a, miR-122, miR-135b, miR-144, miR-149 and miR-206. Several miRNAs were significantly associated with improvements in acute insulin response, SI, and other cardiometabolic risk factors. CONCLUSIONS These findings present novel insights into the RYGB surgery-induced molecular changes and the effects of mild exercise to facilitate and/or maintain the benefits of a 'comprehensive' weight-loss intervention with concomitant improvements in cardiometabolic functions. Notably, we show a predictive value for miR-7, miR-15a, miR-106b and miR-135b.
Collapse
Affiliation(s)
- Y O Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | - P M Coen
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA.,Sanford Burnham Prebys Medical Discovery Institute, Lake Nona, FL, USA
| | - B H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA.,Sanford Burnham Prebys Medical Discovery Institute, Lake Nona, FL, USA
| | - A A Seyhan
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA.,Sanford Burnham Prebys Medical Discovery Institute, Lake Nona, FL, USA.,Massachusetts Institute of Technology, Chemical Engineering Department Cambridge, MA, USA
| |
Collapse
|
38
|
MicroRNAs Involvement in Radioresistance of Head and Neck Cancer. DISEASE MARKERS 2017; 2017:8245345. [PMID: 28325958 PMCID: PMC5343268 DOI: 10.1155/2017/8245345] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/12/2017] [Indexed: 12/23/2022]
Abstract
Resistance to the ionizing radiation is a current problem in the treatment and clinical management of various cancers including head and neck cancer. There are several biological and molecular mechanisms described to be responsible for resistance of the tumors to radiotherapy. Among them, the main mechanisms include alterations in intracellular pathways involved in DNA damage and repair, apoptosis, proliferation, and angiogenesis. It has been found that regulation of these complex processes is often controlled by microRNAs. MicroRNAs are short endogenous RNA molecules that posttranscriptionally modulate gene expression and their deregulated expression has been observed in many tumors including head and neck cancer. Specific expression patterns of microRNAs have also been shown to predict prognosis and therapeutic response in head and neck cancer. Therefore, microRNAs present promising biomarkers and therapeutic targets that might overcome resistance to radiation and improve prognosis of head and neck cancer patients. In this review, we summarize the current knowledge of the functional role of microRNAs in radioresistance of cancer with special focus on head and neck cancer.
Collapse
|
39
|
Lin G, Liu B, Meng Z, Liu Y, Li X, Wu X, Zhou Q, Xu K. MiR-26a enhances invasive capacity by suppressing GSK3β in human lung cancer cells. Exp Cell Res 2017; 352:364-374. [PMID: 28237093 DOI: 10.1016/j.yexcr.2017.02.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/13/2017] [Accepted: 02/19/2017] [Indexed: 10/20/2022]
Abstract
Lung cancer is the common cause of death from cancer, and most lung cancer patients die of metastasis. MicroRNAs (miRNAs) function as either oncogenes or tumor suppressors, playing crucial role not only in tumorigenesis, but also in tumor invasion and metastasis. There are several studies showed that miR-26a is involved in carcinogenesis, however, its role in tumor metastasis need to be elucidated. In this study, we showed that ectopic expression of miR-26a enhanced migration and invasion of lung cancer cells. Glycogen synthase kinase-3β (GSK3β) was identified as a direct target of miR-26a. GSK3β expression negatively correlated with miR-26a expression in lung cancer tissues. Silencing of GSK3β achieved similar effect as miR-26a over-expression; over-expression of GSK3β reversed the enhanced effect of miR-26a on lung cancer cell migration and invasion. Further study indicated that miR-26a increased β-catenin expression and nuclear translocation. C-myc and cyclin D1, the downstream genes of β-catenin, were also up-regulated by miR-26a. Furthermore, xenograft study showed that miR-26a promoted lung cancer cell growth in vivo, and suppressed GSK3β expression. Collectively, our results demonstrated that miR-26a enhanced metastatic potential of lung cancer cells via activation of β-catenin pathway by targeting GSK3β, suggesting the potential applicability of miR-26a as a target for cancer treatment.
Collapse
Affiliation(s)
- Gaoyang Lin
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Boning Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yunde Liu
- School of Laboratory Medicine, Tianjin Medical University, Tianjin 300052, China
| | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiang Wu
- Core Facility Center, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
40
|
Zheng L, Chen J, Zhou Z, He Z. miR-195 enhances the radiosensitivity of colorectal cancer cells by suppressing CARM1. Onco Targets Ther 2017; 10:1027-1038. [PMID: 28255246 PMCID: PMC5325097 DOI: 10.2147/ott.s125067] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND microRNAs (miRNAs) can regulate the sensitivity of cancer cells to chemotherapy and radiotherapy. Aberrant expression of miR-195 has been found to be involved in colorectal cancer (CRC); however, its function and underlying mechanism in the radioresistance of CRC remains unclear. METHODS The levels of miR-195 and CARM1 were detected by quantitative reverse transcription-polymerase chain reaction and Western blot analysis in HCT-116 and HT-29 cells, respectively. Colony survival and apoptosis were determined by clonogenic assay and flow cytometry analysis, respectively. The apoptosis-related proteins Bax, Bcl-2, and γ-H2AX were detected using Western blot. The targets of miR-195 were identified by bioinformatic prediction and luciferase reporter assays. CRC cells in vitro and in vivo were exposed to different doses of X-ray radiations. RESULTS miR-195 was downregulated, and CARM1 was upregulated in HCT-116 and HT-29 cells. miR-195 overexpression or CARM1 knockdown suppressed colony survival, induced apoptosis, promoted expression of Bax and γ-H2AX, and inhibited Bcl-2 expression in CRC cells. CARM1 was identified and validated to be a functional target of miR-195. Moreover, restored expression of CARM1 reversed the enhanced radiosensitivity of CRC cells induced by miR-195. Furthermore, miR-195 increased the sensitivity of CRC cells to radiation in vivo. CONCLUSION miR-195 enhances radiosensitivity of CRC cells through suppressing CARM1. Therefore, miR-195 acts as a potential regulator of radioresistance for CRC cells and as a promising therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Li Zheng
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, People's Republic of China
| | - Jiangtao Chen
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, People's Republic of China
| | - Zhongyong Zhou
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, People's Republic of China
| | - Zhikuan He
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, People's Republic of China
| |
Collapse
|
41
|
Xue Y, Ni T, Jiang Y, Li Y. Long Noncoding RNA GAS5 Inhibits Tumorigenesis and Enhances Radiosensitivity by Suppressing miR-135b Expression in Non-Small Cell Lung Cancer. Oncol Res 2017; 25:1305-1316. [PMID: 28117028 PMCID: PMC7841232 DOI: 10.3727/096504017x14850182723737] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Growth arrest-specific transcript 5 (GAS5) has been demonstrated to correlate with clinicopathological characteristics and serve as a tumor suppressor in non-small cell lung cancer (NSCLC). However, the underlying mechanism of the competing endogenous RNA (ceRNA) regulatory network involving GAS5 in NSCLC remains to be elucidated. In this study, qRT-PCR results showed that GAS5 was downregulated and miR-135b was upregulated in NSCLC tissues and cells. The expressions of GAS5 and miR-135b changed inversely in response to irradiation. Gain-of-function experiments revealed that GAS5 overexpression and miR-135b downregulation significantly suppressed tumorigenesis by repressing cell proliferation and invasion, and enhanced the radiosensitivity of NSCLC cells by reducing colony formation rates. Luciferase reporter assay confirmed that GAS5 could directly target miR-135b and negatively regulate its expression. Moreover, rescue experiments demonstrated that miR-135b upregulation markedly abolished GAS5 overexpression-induced tumorigenesis inhibition and radiosensitivity improvement. Furthermore, xenograft model analysis validated that GAS5 overexpression suppressed tumor growth and improved radiosensitivity of NSCLC cells in vivo. Taken together, GAS5 inhibits tumorigenesis and enhances radiosensitivity by suppressing miR-135b expression in NSCLC cells, deepening our understanding of the mechanism of miRNA-lncRNA interaction and providing a novel therapeutic strategy for NSCLC.
Collapse
|
42
|
Kit O, Vodolazhsky D, Rostorguev E, Porksheyan D, Panina S. The role of micro-RNA in the regulation of signal pathways in gliomas. ACTA ACUST UNITED AC 2017; 63:481-498. [DOI: 10.18097/pbmc20176306481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gliomas are invasive brain tumors with high rates of recurrence and mortality. Glioblastoma multiforme (GBM) is the most deadly form of glioma with nearly 100% rate of recurrence and unfavorable prognosis in patients. Micro-RNAs (miR) are the class of wide-spread short non-coding RNAs that inhibit translation via binding to the mRNA of target genes. The aim of the present review is to analyze recent studies and experimental results concerning aberrant expression profiles of miR, which target components of the signaling pathways Hedgehog, Notch, Wnt, EGFR, TGFb, HIF1a in glioma/glioblastoma. Particularly, the interactions of miR with targets of 2-hydroxyglutarate (the product of mutant isocytrate dehydrogenase, R132H IDH1, which is specific for the glioma pathogenesis) have been considered in the present review. Detecting specific miRNAs in tissue and serum may serve as a diagnostic and prognostic tool for glioma, as well as for predicting treatment response of an individual patient, and potentially serving as a mechanism for creating personalized treatment strategies
Collapse
Affiliation(s)
- O.I. Kit
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | | | - E.E. Rostorguev
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | - D.H. Porksheyan
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | - S.B. Panina
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| |
Collapse
|
43
|
Sun J, Cheng W, Liu L, Tao S, Xia Z, Qi L, Huang M. Identification of serum miRNAs differentially expressed in human epilepsy at seizure onset and post-seizure. Mol Med Rep 2016; 14:5318-5324. [PMID: 27840934 DOI: 10.3892/mmr.2016.5906] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/22/2016] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) function as potential novel biomarkers for disease detection due to their marked stability in the blood and the characteristics of their expression profile in several diseases. In the present study, microarray‑based serum miRNA profiling was performed on serum obtained from three patients with epilepsy at diagnosis and from three healthy individuals as controls. This was followed by reverse transcription‑quantitative polymerase chain reaction analysis in a separate cohort of 35 health volunteers and 90 patients with epilepsy. The correlations between miRNAs and clinical parameters were analyzed. The array results showed that 15 miRNAs were overexpressed and 10 miRNAs were underexpressed (>2‑fold) in the patients with epilepsy. In addition, four miRNAs, including miR‑30a, miR‑378, miR‑106b and miR‑15a were found to be overexpressed in the serum of patients at seizure onset, compared with post‑seizure. When the patients were at seizure onset, the expression of miR‑30a was positively associated with seizure frequency. No significant differences were found between miR‑30a and gender, age or number of years following diagnosis. The expression levels of miR‑378, miR‑106b and mir‑15a were not associated with the clinical parameters in the patients with seizures. Calcium/calmodulin‑dependent protein kinase type IV was a target of miR‑30a, and its expression was increased following seizure and was negatively correlated with miR‑30a in the patients with epilepsy. The present study provided the first evidence, to the best of our knowledge, that the expression levels of miR‑378, miR‑30a, miR‑106b and miR‑15a were enhanced in epileptic patients with seizures. miR-30a may be useful for prognostic prediction in epilepsy.
Collapse
Affiliation(s)
- Jijun Sun
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Weidong Cheng
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Lifeng Liu
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Shuxin Tao
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Lifeng Qi
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Min Huang
- Department of Neurology, Second Clinical College, Jinan University, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
44
|
Fazi B, Felsani A, Grassi L, Moles A, D'Andrea D, Toschi N, Sicari D, De Bonis P, Anile C, Guerrisi MG, Luca E, Farace MG, Maira G, Ciafré SA, Mangiola A. The transcriptome and miRNome profiling of glioblastoma tissues and peritumoral regions highlights molecular pathways shared by tumors and surrounding areas and reveals differences between short-term and long-term survivors. Oncotarget 2016; 6:22526-52. [PMID: 26188123 PMCID: PMC4673180 DOI: 10.18632/oncotarget.4151] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/18/2015] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and deadliest primary brain tumor, driving patients to death within 15 months after diagnosis (short term survivors, ST), with the exception of a small fraction of patients (long term survivors, LT) surviving longer than 36 months. Here we present deep sequencing data showing that peritumoral (P) areas differ from healthy white matter, but share with their respective frankly tumoral (C) samples, a number of mRNAs and microRNAs representative of extracellular matrix remodeling, TGFβ and signaling, of the involvement of cell types different from tumor cells but contributing to tumor growth, such as microglia or reactive astrocytes. Moreover, we provide evidence about RNAs differentially expressed in ST vs LT samples, suggesting the contribution of TGF-β signaling in this distinction too. We also show that the edited form of miR-376c-3p is reduced in C vs P samples and in ST tumors compared to LT ones. As a whole, our study provides new insights into the still puzzling distinction between ST and LT tumors, and sheds new light onto that "grey" zone represented by the area surrounding the tumor, which we show to be characterized by the expression of several molecules shared with the proper tumor mass.
Collapse
Affiliation(s)
- Barbara Fazi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Armando Felsani
- CNR, Institute of Cell Biology and Neurobiology, Rome, Italy.,Genomnia srl, Lainate, Milan, Italy
| | - Luigi Grassi
- Department of Physics, University of Rome "La Sapienza", Rome, Italy
| | - Anna Moles
- CNR, Institute of Cell Biology and Neurobiology, Rome, Italy.,Genomnia srl, Lainate, Milan, Italy
| | - Daniel D'Andrea
- Department of Physics, University of Rome "La Sapienza", Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Daria Sicari
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Pasquale De Bonis
- Department of Head and Neck, Institute of Neurosurgery, Catholic University of Sacred Heart, Rome, Italy.,Neurosurgery, Ferrara University Hospital S. Anna, Cona di Ferrara, Ferrara, Italy
| | - Carmelo Anile
- Department of Head and Neck, Institute of Neurosurgery, Catholic University of Sacred Heart, Rome, Italy
| | | | - Emilia Luca
- Institute of Anatomic Pathology, University Hospital "A. Gemelli", Catholic University of Sacred Heart, Rome, Italy
| | - Maria Giulia Farace
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giulio Maira
- Department of Head and Neck, Institute of Neurosurgery, Catholic University of Sacred Heart, Rome, Italy
| | - Silvia Anna Ciafré
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Annunziato Mangiola
- Department of Head and Neck, Institute of Neurosurgery, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
45
|
Lulli V, Buccarelli M, Martini M, Signore M, Biffoni M, Giannetti S, Morgante L, Marziali G, Ilari R, Pagliuca A, Larocca LM, De Maria R, Pallini R, Ricci-Vitiani L. miR-135b suppresses tumorigenesis in glioblastoma stem-like cells impairing proliferation, migration and self-renewal. Oncotarget 2016; 6:37241-56. [PMID: 26437223 PMCID: PMC4741927 DOI: 10.18632/oncotarget.5925] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/17/2015] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and fatal malignant adult primary brain tumor. Currently, the overall prognosis for GBM patients remains poor despite advances in neurosurgery and adjuvant treatments. MicroRNAs (miRNAs) contribute to the pathogenesis of various types of tumor, including GBM. In this study we analyzed the expression of a panel of miRNAs, which are known to be differentially expressed by the brain and GBM tumor, in a collection of patient-derived GBM stem-like cells (GSCs). Notably, the average expression level of miR-135b, was the most downregulated compared to its normal counterpart, suggesting a potential role as anti-oncogene. Restoration of miR-135b in GSCs significantly decreased proliferation, migration and clonogenic abilities. More importantly, miR-135b restoration was able to significantly reduce brain infiltration in mouse models of GBM obtained by intracerebral injection of GSC lines. We identified ADAM12 and confirmed SMAD5 and GSK3β as miR-135b targets and potential mediators of its effects. The whole transcriptome analysis ascertained that the expression of miR-135b downmodulated additional genes driving key pathways in GBM survival and infiltration capabilities. Our results identify a critical role of miR-135b in the regulation of GBM development, suggesting that miR-135b might act as a tumor-suppressor factor and thus providing a potential candidate for the treatment of GBM patients.
Collapse
Affiliation(s)
- Valentina Lulli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mariachiara Buccarelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Martini
- Institute of Anatomic Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michele Signore
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Biffoni
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Giannetti
- Institute of Human Anatomy, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Liliana Morgante
- Institute of Human Anatomy, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanna Marziali
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ramona Ilari
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alfredo Pagliuca
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Luigi Maria Larocca
- Institute of Anatomic Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Roberto Pallini
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
46
|
Ho TT, He X, Mo YY, Beck WT. Transient resistance to DNA damaging agents is associated with expression of microRNAs-135b and -196b in human leukemia cell lines. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 7:27-47. [PMID: 27570640 PMCID: PMC4981649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Abstract
The acquisition of resistance to anticancer drugs is widely viewed as a key obstacle to successful cancer therapy. However, detailed knowledge of the initial molecular events in the response of cancer cells to these chemotherapeutic and stress responses, and how these lead to the development of chemoresistance, remains incompletely understood. Using microRNA array and washout and rechallenge experiments, we found that short term treatment of leukemia cells with etoposide led a few days later to transient resistance that was associated with a corresponding transient increase in expression of ABCB1 mRNA, as well as microRNA (miR)-135b and miR-196b. This phenomenon was associated with short-term exposure to genotoxic agents, such as etoposide, topotecan, doxorubicin and ionizing radiation, but not agents that do not directly damage DNA. Further, this appeared to be histiotype-specific, and was seen in leukemic cells, but not in cell lines derived from solid tumors. Treatment of leukemic cells with either 5-aza-deoxycytidine or tricostatin A produced similar increased expression of ABCB1, miR-135b, and miR-196b, suggesting a role for epigenetic regulation of this phenomenon. Bioinformatics analyses revealed that CACNA1E, ARHGEF2, PTK2, SIAH1, ARHGAP6, and NME4 may be involved in the initial events in the development of drug resistance following the upregulation of ABCB1, miR-135b and miR-196b. In summary, we report herein that short-term exposure of cells to DNA damaging agents leads to transient drug resistance, which is associated with elevations in ABCB1, miR-135b and miR-196b, and suggests novel components that may be involved in the development of anticancer drug resistance.
Collapse
Affiliation(s)
- Tsui-Ting Ho
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at ChicagoChicago 60612, IL, USA
- Cancer Institute, University of Mississippi Medical CenterJackson, 39216, MS, USA
- Department of Radiation Oncology, University of Mississippi Medical CenterJackson, 39216, MS, USA
| | - Xiaolong He
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at ChicagoChicago 60612, IL, USA
- Cancer Center, University of Illinois at ChicagoChicago 60612, IL, USA
| | - Yin-Yuan Mo
- Cancer Institute, University of Mississippi Medical CenterJackson, 39216, MS, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical CenterJackson, 39216, MS, USA
| | - William T Beck
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at ChicagoChicago 60612, IL, USA
- Cancer Center, University of Illinois at ChicagoChicago 60612, IL, USA
| |
Collapse
|
47
|
Shea A, Harish V, Afzal Z, Chijioke J, Kedir H, Dusmatova S, Roy A, Ramalinga M, Harris B, Blancato J, Verma M, Kumar D. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med 2016; 5:1917-46. [PMID: 27282910 PMCID: PMC4971921 DOI: 10.1002/cam4.775] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal cancer of the adult brain, remaining incurable with a median survival time of only 15 months. In an effort to identify new targets for GBM diagnostics and therapeutics, recent studies have focused on molecular phenotyping of GBM subtypes. This has resulted in mounting interest in microRNAs (miRNAs) due to their regulatory capacities in both normal development and in pathological conditions such as cancer. miRNAs have a wide range of targets, allowing them to modulate many pathways critical to cancer progression, including proliferation, cell death, metastasis, angiogenesis, and drug resistance. This review explores our current understanding of miRNAs that are differentially modulated and pathologically involved in GBM as well as the current state of miRNA-based therapeutics. As the role of miRNAs in GBM becomes more well understood and novel delivery methods are developed and optimized, miRNA-based therapies could provide a critical step forward in cancer treatment.
Collapse
Affiliation(s)
- Amanda Shea
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | | | - Zainab Afzal
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Juliet Chijioke
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Habib Kedir
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Shahnoza Dusmatova
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Arpita Roy
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Malathi Ramalinga
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Brent Harris
- Department of Neurology and PathologyGeorgetown UniversityWashingtonDistrict of Columbia20057
| | - Jan Blancato
- Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDistrict of Columbia20057
| | - Mukesh Verma
- Division of Cancer Control and Population SciencesNational Cancer Institute (NCI)National Institutes of Health (NIH)RockvilleMaryland20850
| | - Deepak Kumar
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
- Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDistrict of Columbia20057
| |
Collapse
|
48
|
Hua K, Jin J, Zhao J, Song J, Song H, Li D, Maskey N, Zhao B, Wu C, Xu H, Fang L. miR-135b, upregulated in breast cancer, promotes cell growth and disrupts the cell cycle by regulating LATS2. Int J Oncol 2016; 48:1997-2006. [PMID: 26934863 DOI: 10.3892/ijo.2016.3405] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/27/2016] [Indexed: 11/05/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) plays a critical role in cancer progression. They can act as either oncogenes or tumor suppressor genes in human cancer. The purpose of this study was to investigate the crucial role of miR-135b in breast cancer and to validate whether miR-135b could regulate proliferation of breast cancer cells by effecting specific targets in the Hippo pathway. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was carried out to quantify the expression levels of miR-135b in both breast cancer tissues and cell lines. To characterize the function of miR-135b, MTT assays, colony formation assays, cell migration assays, cell invasion assays, and cell cycle assays were used. Luciferase reporter assays were performed to validate the regulation of a putative target of miR-135b, in corroboration with western blot assays. Finally, we verified the changes of cellular function after transfection of LATS2-siRNA. Our experiments indicate that expression of miR-135b was commonly upregulated in breast cancer specimens and breast cancer cells when compared with that in adjacent normal tissues and non-malignant breast epithelial cells. Enforced expression of miR-135b can regulate cellular proliferation, migration and invasion as well as disrupt the cell cycle of breast cancer cells. Luciferase assays revealed that miR-135b directly bound to the 3'-untranslated region (3'-UTR) of LATS2 (large tumor suppressor kinase 2), a critical gene in the Hippo pathway. Western blot analysis verified that miR-135b regulated the expression of LATS2 at protein levels. Further study demonstrated that the downstream gene of LATS2 in the Hippo pathway, such as cyclin-dependent kinase 2 (CDK2) and Phospho-Yes-associated protein (p-YAP), can also be regulated by miR-135b and LATS2 axis. Knockdown of endogenous LATS2 can mimic the result of miR-135b up-regulation in breast cancer. Taken together, our findings reveal that the miR-135b and LATS2 axis may be a potential therapeutic target for breast cancer in the future.
Collapse
Affiliation(s)
- Kaiyao Hua
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jiali Jin
- Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Junyong Zhao
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jialu Song
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hongming Song
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Dengfeng Li
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Niraj Maskey
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Bingkun Zhao
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Chenyang Wu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hui Xu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
49
|
Li Q, Cheng Q, Chen Z, Peng R, Chen R, Ma Z, Wan X, Liu J, Meng M, Peng Z, Jiang B. MicroRNA-663 inhibits the proliferation, migration and invasion of glioblastoma cells via targeting TGF-β1. Oncol Rep 2015; 35:1125-34. [PMID: 26717894 DOI: 10.3892/or.2015.4432] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
Cell migration and invasion are key processes involved during tumor metastasis. Recently, microRNAs (miRs) have been demonstrated to play important roles in the regulation of cancer metastasis. However, the underlying mechanisms remain unknown. Here, we aimed to investigate the exact role of miR-663 in the metastasis of glioblastoma as well as the underlying mechanisms. By performing quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis, we demonstrated that miR-663 was significantly downregulated in glioblastoma tissues (n=25), when compared to that in normal brain tissues (n=15). In addition, its expression levels were also reduced in human glioblastoma cell lines, A172 and U87. Furthermore, restoration of miR-663 expression led to a significant decrease in the cell proliferation, migration and invasion of human glioblastoma A172 and U87 cells. We further identified TGF-β1 as a direct target of miR-663, and found that the expression of TGF-β1 was negatively mediated by miR-663 at the post-transcriptional level in glioblastoma cells. Moreover, overexpression of TGF-β1 significantly reversed the inhibitory effects of miR-663 upregulation on the proliferation, migration and invasion in A172 and U87 cells. In addition, our data suggest that MMP2 and E-cadherin, a key factor in epithelial-mesenchymal transition (EMT), are involved in the miR-633/TGF-β1-mediated metastasis of glioblastoma. In summary, miR-663 plays an inhibitory role in the regulation of proliferation, migration and invasion of glioblastoma cells, partly at least, via direct mediation of TGF-β1 as well as downstream MMP2 and E-cadherin. Therefore, we suggest that miR-663 is a potential candidate for the prevention of glioblastoma metastasis.
Collapse
Affiliation(s)
- Qizhuang Li
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Zigui Chen
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Renjun Peng
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Rui Chen
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Zhiming Ma
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Xin Wan
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Jincan Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Ming Meng
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Zhigang Peng
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Bing Jiang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
50
|
Novel Epigenetic CREB-miR-630 Signaling Axis Regulates Radiosensitivity in Colorectal Cancer. PLoS One 2015; 10:e0133870. [PMID: 26263387 PMCID: PMC4532457 DOI: 10.1371/journal.pone.0133870] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/03/2015] [Indexed: 11/30/2022] Open
Abstract
Background miR-630 has been reported to be a modulator of several cancers, but the mechanism by which is it influences radioresistance remains unknown. We aimed to identify the molecular function of miR-630 and its regulatory mechanism in colorectal cancer (CRC) cell lines. Methodology Overexpression and loss-of-function analyses of miR-630 were performed in CRC cell lines by measuring their levels of growth and apoptosis after ionic radiation (IR). Target genes were detected via a dual-luciferase assay and Western blot. Chromatin immunoprecipitation assay was carried out to identify the transcription factor regulating miR-630, and a demethylation experiment was also conducted. Results miR-630 expression was found to be positively correlated with radiosensitivity in CRC cell lines (p<0.05). After IR treatment, miR-630 induced apoptosis in cells; however, the opposite was observed when miR-630 was downregulated (p<0.05). BCL2L2 and TP53RK were identified as the target genes of miR-630, and the function of miR-630 was found to depend on these two genes (p<0.05). In addition, evidence showed that CREB regulates the level of miR-630, and demethylation can elevate miR-630 levels (p<0.05). Conclusion CREB–miR-630–BCL2L2 and TP53RK comprise a novel signaling cascade regulating radiosensitivity in CRC cell lines by inducing cell apoptosis and death.
Collapse
|