1
|
Octaviana S, Primahana G, Mozef T, Borges LGA, Pieper DH, Wink J. Diversity of Myxobacteria Isolated from Indonesian Mangroves and Their Potential for New Antimicrobial Sources. Curr Microbiol 2022; 80:46. [PMID: 36538090 PMCID: PMC9768008 DOI: 10.1007/s00284-022-03066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022]
Abstract
Mangroves are unique intertidal ecosystems that provide ecological niches to different microbes, which play various roles in nutrient recycling and diverse environmental activities. The association between myxobacteria and mangroves are hitherto poorly understood. The aim of our study was to evaluate the myxobacterial community composition as well as isolate myxobacteria and to characterize the antimicrobial activity of myxobacteria isolates from Indonesian mangroves. Twenty-five cultivable myxobacteria were affiliated in six genera: Myxococcus, Corallococcus, Archangium, Chondromyces, Racemicystis and Nannocystis of the order Myxococcales based on partial 16S rRNA gene sequences. Thirteen crude extracts showed moderate activities against at least one of human pathogenic microorganisms. The crude extract of Racemicystis sp. strain 503MSO indicated a novel compound, which has not been reported in the database yet and the identification of this compound needs further study. The myxobacterial communities of three different sampling sites were analyzed using primers adapted for the myxobacteria group identification. The results showed that myxobacterial communities are more diverse than assumed. Therefore, our study has highlighted the importance of the mangrove habitat as promising harbor of myxobacteria as well as novel antimicrobial compounds with activity against pathogenic microorganisms.
Collapse
Affiliation(s)
- Senlie Octaviana
- Helmholtz Center for Infection Research, Microbial Strain Collection, Braunschweig, Germany
- Research Center for Applied Microbiology BRIN, Cibinong, Jawa Barat, Indonesia
| | - Gian Primahana
- Microbial Drug, Helmholtz Center for Infection Research, Braunschweig, Germany
- Research Center for Pharmaceutical Ingredients and Traditional Medicines BRIN, Cibinong, Jawa Barat, Indonesia
| | - Tjandrawati Mozef
- Research Center for Pharmaceutical Ingredients and Traditional Medicines BRIN, Cibinong, Jawa Barat, Indonesia
| | - Luiz G A Borges
- Microbial Interactions and Processes, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Joachim Wink
- Helmholtz Center for Infection Research, Microbial Strain Collection, Braunschweig, Germany.
| |
Collapse
|
2
|
Moradi A, Yaghoubi-Avini M, Wink J. Isolation of Nannocystis species from Iran and exploring their natural products. Arch Microbiol 2022; 204:123. [PMID: 34994917 DOI: 10.1007/s00203-021-02738-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 11/02/2022]
Abstract
Several different techniques were employed for the isolation of Nannocystis from various sources. A polyphasic approach was used for identification. Twelve strains of N. pusilla, N. exedens, and N. konarekensis with distinctive distribution between climates were identified. The bioactivity was examined against a panel of eight bacteria, two yeasts, and one fungus; cytotoxicity was tested on the L929 fibroblast cell line. Eleven strains mainly inhibit Gram-positive bacteria, and only one isolate was cytotoxic. The extract analyses by HPLC and LC-MS were compared to Myxobase, and eight different compounds were detected; a correlation was observed between compounds and producing species. 70% of strains had the potential to produce structurally diverse compounds. Nannochelins and althiomycin were the most abundant metabolites. The discovery of a new species of Nannocystis and the high potentiality of strains to produce secondary metabolites encourage further sampling and in-depth analysis of extracts to find new active metabolites.
Collapse
Affiliation(s)
- Azam Moradi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Evin, Tehran, Iran
| | - Mohammad Yaghoubi-Avini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Evin, Tehran, Iran.
| | - Joachim Wink
- Microbial Strain Collection, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124, Braunschweig, Germany
| |
Collapse
|
3
|
Bhat MA, Mishra AK, Bhat MA, Banday MI, Bashir O, Rather IA, Rahman S, Shah AA, Jan AT. Myxobacteria as a Source of New Bioactive Compounds: A Perspective Study. Pharmaceutics 2021; 13:1265. [PMID: 34452226 PMCID: PMC8401837 DOI: 10.3390/pharmaceutics13081265] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Myxobacteria are unicellular, Gram-negative, soil-dwelling, gliding bacteria that belong to class δ-proteobacteria and order Myxococcales. They grow and proliferate by transverse fission under normal conditions, but form fruiting bodies which contain myxospores during unfavorable conditions. In view of the escalating problem of antibiotic resistance among disease-causing pathogens, it becomes mandatory to search for new antibiotics effective against such pathogens from natural sources. Among the different approaches, Myxobacteria, having a rich armor of secondary metabolites, preferably derivatives of polyketide synthases (PKSs) along with non-ribosomal peptide synthases (NRPSs) and their hybrids, are currently being explored as producers of new antibiotics. The Myxobacterial species are functionally characterized to assess their ability to produce antibacterial, antifungal, anticancer, antimalarial, immunosuppressive, cytotoxic and antioxidative bioactive compounds. In our study, we have found their compounds to be effective against a wide range of pathogens associated with the concurrence of different infectious diseases.
Collapse
Affiliation(s)
- Mudasir Ahmad Bhat
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | | | - Mujtaba Aamir Bhat
- Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Mohammad Iqbal Banday
- Department of Microbiology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Ommer Bashir
- Department of School Education, Jammu 181205, Jammu and Kashmir, India;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia;
| | - Safikur Rahman
- Department of Botany, MS College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India;
| | - Ali Asghar Shah
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Arif Tasleem Jan
- Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
4
|
Abstract
Bacteria are globally distributed in various environments on earth, but a global view of the geographic diversity and distribution of a single taxon is lacking. The Earth Microbiome Project (EMP) has established a global collection of microbial communities, providing the possibility for such a survey. Myxococcales is a bacterial order with a potent ability to produce diverse natural products and have wide application potential in agriculture, biomedicine, and environmental protection. In this study, through a comparative analysis of the EMP data and public information, we determined that myxobacteria account for 2.34% of the total bacterial operational taxonomic units (OTUs), and are one of the most diverse bacterial groups on Earth. Myxococcales OTUs are globally distributed and prefer nonsaline soil and sediments, followed by saline environments, but rarely appear in host-associated environments. Myxobacteria are among the least-investigated bacterial groups. The presently cultured and genome-sequenced myxobacteria are most likely environmentally widespread and abundant taxa, and account for approximately 10% and 7% of the myxobacterial community (>97% similarity), respectively. This global panoramic view of the geographic distribution and diversity of myxobacteria, as well as their cultured and genome-sequenced information, will enable us to explore these important bioresources more reasonably and efficiently. The diversity and distribution of myxobacteria beyond the EMP data are further discussed. IMPORTANCE The diversity and distribution of bacteria are crucial for our understanding of their ecological importance and application potential. Myxobacteria are fascinating prokaryotes with multicellular behaviors and a potent capacity for producing secondary metabolites, and have a wide range of potential applications. The ecological importance of myxobacteria in major ecosystems is becoming established, but the global geographic diversity and distribution remain unclear. From a global survey we revealed that Myxococcales OTUs are globally distributed and prefer nonsaline soil and sediments, followed by saline environments, but rarely appear in host-associated environments. The global panoramic view of the geographic distribution and diversity of myxobacteria, as well as their cultured and genome-sequenced information, will enable us to explore these important bioresources more reasonably and efficiently.
Collapse
|
5
|
Shen Y, Ji Y, Li C, Luo P, Wang W, Zhang Y, Nover D. Effects of Phytoremediation Treatment on Bacterial Community Structure and Diversity in Different Petroleum-Contaminated Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102168. [PMID: 30279389 PMCID: PMC6211031 DOI: 10.3390/ijerph15102168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/09/2018] [Accepted: 09/19/2018] [Indexed: 01/18/2023]
Abstract
Increased exploitation and use of petroleum resources is leading to increased risk of petroleum contamination of soil and groundwater. Although phytoremediation is a widely-used and cost-effective method for rehabilitating soils polluted by petroleum, bacterial community structure and diversity in soils undergoing phytoremediation is poorly understood. We investigate bacterial community response to phytoremediation in two distinct petroleum-contaminated soils (add prepared petroleum-contaminated soils) from northwest China, Weihe Terrace soil and silty loam from loess tableland. High-throughput sequencing technology was used to compare the bacterial communities in 24 different samples, yielding 18,670 operational taxonomic units (OTUs). The dominant bacterial groups, Proteobacteria (31.92%), Actinobacteria (16.67%), Acidobacteria (13.29%) and Bacteroidetes (6.58%), increased with increasing petroleum concentration from 3000 mg/kg–10,000 mg/kg, while Crenarchaeota (13.58%) and Chloroflexi (4.7%) decreased. At the order level, RB41, Actinomycetales, Cytophagales, envOPS12, Rhodospirillales, MND1 and Xanthomonadales, except Nitrososphaerales, were dominant in Weihe Terrace soil. Bacterial community structure and diversity in the two soils were significantly different at similar petroleum concentrations. In addition, the dominant genera were affected by available nitrogen, which is strongly associated with the plants used for remediation. Overall, the bacterial community structure and diversity were markedly different in the two soils, depending on the species of plants used and the petroleum concentration.
Collapse
Affiliation(s)
- Yuanyuan Shen
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
- School of Biological and Environmental, Xi'an University, Xi'an 710065, Shaanxi, China.
- Engineering Research Center for Groundwater and Eco-Environment of Shaanxi Province, Xi'an 710054, Shaanxi, China.
| | - Yu Ji
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Chunrong Li
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Pingping Luo
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Wenke Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Yuan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China.
| | - Daniel Nover
- School of Engineering, University of California-Merced, Merced, CA 95343, USA.
| |
Collapse
|
6
|
Mohr KI. Diversity of Myxobacteria-We Only See the Tip of the Iceberg. Microorganisms 2018; 6:E84. [PMID: 30103481 PMCID: PMC6164225 DOI: 10.3390/microorganisms6030084] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 11/20/2022] Open
Abstract
The discovery of new antibiotics is mandatory with regard to the increasing number of resistant pathogens. One approach is the search for new antibiotic producers in nature. Among actinomycetes, Bacillus species, and fungi, myxobacteria have been a rich source for bioactive secondary metabolites for decades. To date, about 600 substances could be described, many of them with antibacterial, antifungal, or cytostatic activity. But, recent cultivation-independent studies on marine, terrestrial, or uncommon habitats unequivocally demonstrate that the number of uncultured myxobacteria is much higher than would be expected from the number of cultivated strains. Although several highly promising myxobacterial taxa have been identified recently, this so-called Great Plate Count Anomaly must be overcome to get broader access to new secondary metabolite producers. In the last years it turned out that especially new species, genera, and families of myxobacteria are promising sources for new bioactive metabolites. Therefore, the cultivation of the hitherto uncultivable ones is our biggest challenge.
Collapse
Affiliation(s)
- Kathrin I Mohr
- Microbial Drugs (MWIS), Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany.
| |
Collapse
|
7
|
Gu Z, Zhu H, Xie X, Wang Y, Liu X, Yao Q. The feather-degrading bacterial community in two soils as revealed by a specific primer targeting serine-type keratinolytic proteases. World J Microbiol Biotechnol 2016; 32:165. [PMID: 27562599 DOI: 10.1007/s11274-016-2125-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/09/2016] [Indexed: 11/29/2022]
Abstract
Feather waste represents a huge resource of protein, but is underutilized due to its recalcitrant nature. Feather-degrading bacteria can biologically degrade feathers and have great potential for industries. In this study, we first designed a primer set (BC) suitable for exploring the diversity of the keratinolytic bacterial community with denatured gradient gel electrophoresis (DGGE). With the BC primer set, the difference in the keratinolytic bacterial community between a feather-dumping (FD) soil and a non feather-dumping (NFD) soil and the influence of feather addition (enrichment culture) on the keratinolytic bacterial community were investigated. DGGE and sequencing showed that keratinolytic bacteria in these soils belong to 2 phyla (Actinobacteria and Proteobacteria) and 9 genera (Micromonospora, Verrucosispora, Actinopolymorpha, Knoellia, Hyalangium, Stigmatella, Archangium, Cystobacter, and Luteimonas). Feather addition decreased the species richness of the keratinolytic bacteria in FD soil, but greatly increased the diversity, species richness and abundance in NFD soil. Moreover, feather addition to NFD soil induced some keratinolytic bacteria that were absent in all of the other soils. Collectively, these data indicate that keratinolytic bacteria are diverse in both FD and NFD soil, and some novel keratinolytic bacteria taxa might be revealed by using the BC primer set.
Collapse
Affiliation(s)
- Zhenhong Gu
- College of Horticulture, Guangdong Engineering Research Center for Litchi, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan St. 483, Tianhe Dist., Guangzhou, 510642, China.,Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base) South China, Guangzhou, 510070, China
| | - Honghui Zhu
- Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base) South China, Guangzhou, 510070, China.
| | - Xiaolin Xie
- College of Horticulture, Guangdong Engineering Research Center for Litchi, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan St. 483, Tianhe Dist., Guangzhou, 510642, China.,Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base) South China, Guangzhou, 510070, China
| | - Yonghong Wang
- Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base) South China, Guangzhou, 510070, China
| | - Xiaodi Liu
- College of Horticulture, Guangdong Engineering Research Center for Litchi, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan St. 483, Tianhe Dist., Guangzhou, 510642, China
| | - Qing Yao
- College of Horticulture, Guangdong Engineering Research Center for Litchi, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan St. 483, Tianhe Dist., Guangzhou, 510642, China.
| |
Collapse
|