1
|
Yu YL, Jiang Q. Advances in Pathophysiological Mechanisms of Degenerative Aortic Valve Disease. Cardiol Res 2025; 16:86-101. [PMID: 40051666 PMCID: PMC11882237 DOI: 10.14740/cr2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Degenerative aortic valve disease (DAVD) represents the most prevalent valvular ailment among the elderly population, which significantly impacts their physical well-being and potentially poses a lethal risk. Currently, the underlying mechanisms of DAVD remain incompletely understood. While the progression of this disease has traditionally been attributed to degenerative processes associated with aging, numerous recent studies have revealed that heart valve calcification may represent a response of valve tissue to a specific initiating factor, involving the interaction of various genes and signaling pathways. This calcification process is further influenced by a range of factors, including genetic predispositions, environmental exposures, metabolic factors, and hemodynamic considerations. Based on the identification of its biomarkers, potential innovative therapeutic targets are proposed for the treatment of this complex condition. The present article primarily delves into the underlying pathophysiological mechanisms and advancements in diagnostic and therapeutic modalities pertaining to this malady.
Collapse
Affiliation(s)
- Ya Lu Yu
- School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan, China
| | - Qin Jiang
- School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan, China
- Department of Cardiac Surgery, Sichuan Provincial People’s Hospital, Affiliated Hospital of University of Electronic Science and Technology, 610072 Chengdu, Sichuan, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan, China
| |
Collapse
|
2
|
Benkhoff M, Barcik M, Mourikis P, Dahlmanns J, Kahmann P, Wollnitzke P, Hering M, Huckenbeck T, Hoppe J, Semleit N, Deister-Jonas J, Zako S, Seel J, Coman C, Barth M, Cramer M, Helten C, Wildeis L, Hu H, Al-Kassis G, Metzen D, Hesse J, Weber J, Dannenberg L, Akhyari P, Lichtenberg A, Quast C, Gerdes N, Zeus T, Borst O, Kelm M, Petzold T, Ahrends R, Levkau B, Polzin A. Targeting Sphingosine-1-Phosphate Signaling to Prevent the Progression of Aortic Valve Disease. Circulation 2025; 151:333-347. [PMID: 39429140 DOI: 10.1161/circulationaha.123.067270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Aortic valve disease (AVD) is associated with high mortality and morbidity. To date, there is no pharmacological therapy available to prevent AVD progression. Because valve calcification is the hallmark of AVD and S1P (sphingosine-1-phosphate) plays an important role in osteogenic signaling, we examined the role of S1P signaling in aortic stenosis disease. METHODS AVD progression and its consequences for cardiac function were examined in a murine wire injury-induced AVD model with and without pharmacological and genetic modulation of S1P production, degradation, and receptor signaling. S1P was measured by liquid chromatography-mass spectrometry. Calcification of human valvular interstitial cells and their response to biomechanical stress were analyzed in the context of S1P signaling. Human explanted aortic valves from patients undergoing aortic valve replacement and cardiovascular magnetic resonance imaging were analyzed for S1P by liquid chromatography-mass spectrometry. RESULTS Raising S1P concentrations in mice with injury-induced AVD by pharmacological inhibition of its sole degrading enzyme S1P lyase vastly enhanced AVD progression and impaired cardiac function resembling human disease. In contrast, low S1P levels caused by SphK1 (sphingosine kinase 1) deficiency potently attenuated AVD progression. We found S1P/S1PR2 (S1P receptor 2) signaling to be responsible for the adverse S1P effect because S1PR2-deficient mice were protected against AVD progression and its deterioration by high S1P. It is important to note that pharmacological S1PR2 inhibition administered after wire injury successfully prevented AVD development. Mechanistically, biomechanical stretch stimulated S1P production by SphK1 in human valvular interstitial cells as measured by C17-S1P generation, whereas S1P/S1PR2 signaling induced their osteoblastic differentiation and calcification through osteogenic RUNX2/OPG signaling and the GSK3β-Wnt-β-catenin pathway. In patients with AVD, stenotic valves exposed to high wall shear stress had higher S1P content and increased SphK1 expression. CONCLUSIONS Increased systemic or local S1P levels lead to increased valvular calcification. S1PR2 antagonists and SphK1 inhibitors may offer feasible pharmacological approaches to human AVD in prophylactic, disease-modifying or relapse-preventing manners.
Collapse
Affiliation(s)
- Marcel Benkhoff
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
- Institute of Analytical Chemistry, University of Vienna, Vienna, Austria (M. Benkhoff, C.C., R.A.)
| | - Maike Barcik
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Philipp Mourikis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Jana Dahlmanns
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Paulina Kahmann
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Philipp Wollnitzke
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (P.W., J.H., N.S., J.D.-J., B.L.)
| | - Moritz Hering
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Tim Huckenbeck
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Julia Hoppe
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (P.W., J.H., N.S., J.D.-J., B.L.)
| | - Nina Semleit
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (P.W., J.H., N.S., J.D.-J., B.L.)
| | - Jennifer Deister-Jonas
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (P.W., J.H., N.S., J.D.-J., B.L.)
| | - Saif Zako
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Jasmin Seel
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Cristina Coman
- Institute of Analytical Chemistry, University of Vienna, Vienna, Austria (M. Benkhoff, C.C., R.A.)
| | - Mareike Barth
- Department of Cardiac Surgery, University Hospital Aachen, RWTH Aachen University, Germany (M. Barth, P.A.)
| | - Mareike Cramer
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Carolin Helten
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Laura Wildeis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Hao Hu
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Gabrielle Al-Kassis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Daniel Metzen
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Julia Hesse
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Germany (J.H.)
| | - Jessica Weber
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Lisa Dannenberg
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Payam Akhyari
- Department of Cardiac Surgery, University Hospital Aachen, RWTH Aachen University, Germany (M. Barth, P.A.)
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (A.L.)
| | - Christine Quast
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Norbert Gerdes
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
- Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany (N.G., M.K., A.P.)
| | - Tobias Zeus
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Oliver Borst
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Tübingen, Germany (O.B.)
- Department of Cardiology and Angiology, University of Tübingen, Tübingen, Germany (O.B.)
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
- Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany (N.G., M.K., A.P.)
| | - Tobias Petzold
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany (T.P.)
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Germany (T.P.)
| | - Robert Ahrends
- Institute of Analytical Chemistry, University of Vienna, Vienna, Austria (M. Benkhoff, C.C., R.A.)
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (P.W., J.H., N.S., J.D.-J., B.L.)
| | - Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
- Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany (N.G., M.K., A.P.)
- National Heart and Lung Institute, Imperial College London, London, United Kingdom (A.P.)
| |
Collapse
|
3
|
Fernández-Villabrille S, Martín-Carro B, Martín-Vírgala J, Rodríguez-Santamaria MDM, Baena-Huerta F, Muñoz-Castañeda JR, Fernández-Martín JL, Alonso-Montes C, Naves-Díaz M, Carrillo-López N, Panizo S. Novel Biomarkers of Bone Metabolism. Nutrients 2024; 16:605. [PMID: 38474734 DOI: 10.3390/nu16050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Bone represents a metabolically active tissue subject to continuous remodeling orchestrated by the dynamic interplay between osteoblasts and osteoclasts. These cellular processes are modulated by a complex interplay of biochemical and mechanical factors, which are instrumental in assessing bone remodeling. This comprehensive evaluation aids in detecting disorders arising from imbalances between bone formation and reabsorption. Osteoporosis, characterized by a reduction in bone mass and strength leading to heightened bone fragility and susceptibility to fractures, is one of the more prevalent chronic diseases. Some epidemiological studies, especially in patients with chronic kidney disease (CKD), have identified an association between osteoporosis and vascular calcification. Notably, low bone mineral density has been linked to an increased incidence of aortic calcification, with shared molecules, mechanisms, and pathways between the two processes. Certain molecules emerging from these shared pathways can serve as biomarkers for bone and mineral metabolism. Detecting and evaluating these alterations early is crucial, requiring the identification of biomarkers that are reliable for early intervention. While traditional biomarkers for bone remodeling and vascular calcification exist, they suffer from limitations such as low specificity, low sensitivity, and conflicting results across studies. In response, efforts are underway to explore new, more specific biomarkers that can detect alterations at earlier stages. The aim of this review is to comprehensively examine some of the emerging biomarkers in mineral metabolism and their correlation with bone mineral density, fracture risk, and vascular calcification as well as their potential use in clinical practice.
Collapse
Affiliation(s)
- Sara Fernández-Villabrille
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Beatriz Martín-Carro
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Julia Martín-Vírgala
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | - Francisco Baena-Huerta
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Juan Rafael Muñoz-Castañeda
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Nephrology Service, Reina Sofia University Hospital, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain
| | - José Luis Fernández-Martín
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Cristina Alonso-Montes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Manuel Naves-Díaz
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Natalia Carrillo-López
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Sara Panizo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| |
Collapse
|
4
|
Bouhamida E, Morciano G, Pedriali G, Ramaccini D, Tremoli E, Giorgi C, Pinton P, Patergnani S. The Complex Relationship between Hypoxia Signaling, Mitochondrial Dysfunction and Inflammation in Calcific Aortic Valve Disease: Insights from the Molecular Mechanisms to Therapeutic Approaches. Int J Mol Sci 2023; 24:11105. [PMID: 37446282 DOI: 10.3390/ijms241311105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS) is among the most common causes of cardiovascular mortality in an aging population worldwide. The pathomechanisms of CAVS are such a complex and multifactorial process that researchers are still making progress to understand its physiopathology as well as the complex players involved in CAVS pathogenesis. Currently, there is no successful and effective treatment to prevent or slow down the disease. Surgical and transcatheter valve replacement represents the only option available for treating CAVS. Insufficient oxygen availability (hypoxia) has a critical role in the pathogenesis of almost all CVDs. This process is orchestrated by the hallmark transcription factor, hypoxia-inducible factor 1 alpha subunit (HIF-1α), which plays a pivotal role in regulating various target hypoxic genes and metabolic adaptations. Recent studies have shown a great deal of interest in understanding the contribution of HIF-1α in the pathogenesis of CAVS. However, it is deeply intertwined with other major contributors, including sustained inflammation and mitochondrial impairments, which are attributed primarily to CAVS. The present review aims to cover the latest understanding of the complex interplay effect of hypoxia signaling pathways, mitochondrial dysfunction, and inflammation in CAVS. We propose further hypotheses and interconnections on the complexity of these impacts in a perspective of better understanding the pathophysiology. These interplays will be examined considering recent studies that shall help us better dissect the molecular mechanism to enable the design and development of potential future therapeutic approaches that can prevent or slow down CAVS processes.
Collapse
Affiliation(s)
- Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Niepmann ST, Willemsen N, Boucher AS, Stei M, Goody P, Zietzer A, Bulic M, Billig H, Odainic A, Weisheit CK, Quast C, Adam M, Schmidt SV, Bakhtiary F, Jansen F, Nickenig G, Latz E, Zimmer S. Toll-like receptor-3 contributes to the development of aortic valve stenosis. Basic Res Cardiol 2023; 118:6. [PMID: 36723728 PMCID: PMC9892139 DOI: 10.1007/s00395-023-00980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/02/2023]
Abstract
Aortic valve stenosis (AS) development is driven by distinct molecular and cellular mechanisms which include inflammatory pathways. Toll-like-receptor-3 (TLR3) is a lysosomal pattern-recognition receptor that binds double-stranded RNA and promotes pro-inflammatory cellular responses. In recent years, TLR3 has emerged as a major regulator of vascular inflammation. The exact role of TLR3 in the development of AS has not been investigated. Isolated human valvular interstitial cells (VICs) were stimulated with the TLR3-agonist polyIC and the resulting pro-inflammatory and pro-osteogenic response measured. Severe AS was induced in wildtype- and TLR3-/- mice via mechanical injury of the aortic valve with a coronary springwire. TLR3 activation was achieved by polyIC injection every 24 h after wire injury, while TLR3 inhibition was realized using Compound 4a (C4a) every 48 h after surgery. Endothelial mesenchymal transition (EndoMT) of human valvular endothelial cells (VECs) was assessed after polyIC stimulation. Stimulation of human VICs with polyIC promoted a strong inflammatory and pro-osteogenic reaction. Similarly, injection of polyIC marginally increased AS development in mice after wire injury. AS induction was significantly decreased in TLR3-/- mice, confirming the role of endogenous TLR3 ligands in AS pathology. Pharmacological inhibition of TLR3 with C4a not only prevented the upregulation of inflammatory cytokines and osteogenic markers in VICs, and EndoMT in VECs, but also significantly abolished the development of AS in vivo. Endogenous TLR3 activation significantly contributes to AS development in mice. Pharmacological inhibition of TLR3 with C4a prevented AS formation. Therefore, targeting TLR3 may be a viable treatment option.
Collapse
Affiliation(s)
- Sven Thomas Niepmann
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany.
| | - Nicola Willemsen
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Ann Sophie Boucher
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Marta Stei
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Philip Goody
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Andreas Zietzer
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Marko Bulic
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Hannah Billig
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Alexandru Odainic
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany ,Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC Australia
| | | | - Christine Quast
- Cardiovascular Research Laboratory, Division of Cardiology, Pulmonary Diseases and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany ,Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Matti Adam
- Clinic for Cardiology, University Hospital Cologne, Cologne, Germany
| | | | - Farhad Bakhtiary
- Heart Center Bonn, Clinic for Heard Surgery, University Hospital Bonn, Bonn, Germany
| | - Felix Jansen
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Georg Nickenig
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Eike Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Sebastian Zimmer
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
6
|
Lewis CTA, Mascall KS, Wilson HM, Murray F, Kerr KM, Gibson G, Buchan K, Small GR, Nixon GF. An endogenous inhibitor of angiogenesis downregulated by hypoxia in human aortic valve stenosis promotes disease pathogenesis. J Mol Cell Cardiol 2023; 174:25-37. [PMID: 36336008 DOI: 10.1016/j.yjmcc.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Aortic valve stenosis is the most common valve disease in the western world. Central to the pathogenesis of this disease is the growth of new blood vessels (angiogenesis) within the aortic valve allowing infiltration of immune cells and development of intra-valve inflammation. Identifying the cellular mediators involved in this angiogenesis is important as this may reveal new therapeutic targets which could ultimately prevent the progression of aortic valve stenosis. Aortic valves from patients undergoing surgery for aortic valve replacement or dilation of the aortic arch were examined both ex vivo and in vitro. We now demonstrate that the anti-angiogenic protein, soluble fms-like tyrosine kinase 1 (sFlt1), a non-signalling soluble receptor for vascular endothelial growth factor, is constitutively expressed in non-diseased valves. sFlt-1 expression was, however, significantly reduced in aortic valve tissue from patients with aortic valve stenosis while protein markers of hypoxia were simultaneously increased. Exposure of primary-cultured valve interstitial cells to hypoxia resulted in a decrease in the expression of sFlt-1. We further reveal using a bioassay that siRNA knock-down of sFlt1 in valve interstitial cells directly results in a pro-angiogenic environment. Finally, incubation of aortic valves with sphingosine 1-phosphate, a bioactive lipid-mediator, increased sFlt-1 expression and inhibited angiogenesis within valve tissue. In conclusion, this study demonstrates that sFlt1 expression is directly correlated with angiogenesis in aortic valves and the observed decrease in sFlt-1 expression in aortic valve stenosis could increase valve inflammation, promoting disease progression. This could be a viable therapeutic target in treating this disease.
Collapse
Affiliation(s)
- Christopher T A Lewis
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Keith S Mascall
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Heather M Wilson
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Fiona Murray
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Keith M Kerr
- Department of Pathology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen and Aberdeen Royal Infirmary, UK
| | - George Gibson
- Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, UK
| | - Keith Buchan
- Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, UK
| | - Gary R Small
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Graeme F Nixon
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK.
| |
Collapse
|
7
|
Bhat OM, Li PL. Lysosome Function in Cardiovascular Diseases. Cell Physiol Biochem 2021; 55:277-300. [PMID: 34019755 PMCID: PMC8743031 DOI: 10.33594/000000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
The lysosome is a single ubiquitous membrane-enclosed intracellular organelle with an acidic pH present in all eukaryotic cells, which contains large numbers of hydrolytic enzymes with their maximal enzymatic activity at a low pH (pH ≤ 5) such as proteases, nucleases, and phosphatases that are able to degrade extracellular and intracellular components. It is well known that lysosomes act as a center for degradation and recycling of large numbers of macromolecules delivered by endocytosis, phagocytosis, and autophagy. Lysosomes are recognized as key organelles for cellular clearance and are involved in many cellular processes and maintain cellular homeostasis. Recently, it has been shown that lysosome function and its related pathways are of particular importance in vascular regulation and related diseases. In this review, we highlighted studies that have improved our understanding of the connection between lysosome function and vascular physiological and pathophysiological activities in arterial smooth muscle cells (SMCs) and endothelial cells (ECs). Sphingolipids-metabolizingenzymes in lysosomes play critical roles in intracellular signaling events that influence cellular behavior and function in SMCs and ECs. The focus of this review will be to define the mechanism by which the lysosome contributes to cardiovascular regulation and diseases. It is believed that exploring the role of lysosomal function and its sphingolipid metabolism in the initiation and progression of vascular disease and regulation may provide novel insights into the understanding of vascular pathobiology and helps develop more effective therapeutic strategies for vascular diseases.
Collapse
Affiliation(s)
- Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA,
| |
Collapse
|
8
|
Parra-Izquierdo I, Sánchez-Bayuela T, Castaños-Mollor I, López J, Gómez C, San Román JA, Sánchez Crespo M, García-Rodríguez C. Clinically used JAK inhibitor blunts dsRNA-induced inflammation and calcification in aortic valve interstitial cells. FEBS J 2021; 288:6528-6542. [PMID: 34009721 DOI: 10.1111/febs.16026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 01/25/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most prevalent valvulopathy worldwide. Growing evidence supports a role for viral and cell-derived double-stranded (ds)-RNA in cardiovascular pathophysiology. Poly(I:C), a dsRNA surrogate, has been shown to induce inflammation, type I interferon (IFN) responses, and osteogenesis through Toll-like receptor 3 in aortic valve interstitial cells (VIC). Here, we aimed to determine whether IFN signaling via Janus kinase (JAK)/Signal transducers and activators of transcription (STAT) mediates dsRNA-induced responses in primary human VIC. Western blot, ELISA, qPCR, calcification, flow cytometry, and enzymatic assays were performed to evaluate the mechanisms of dsRNA-induced inflammation and calcification. Poly(I:C) triggered a type I IFN response characterized by IFN-regulatory factors gene upregulation, IFN-β secretion, and STAT1 activation. Additionally, Poly(I:C) promoted VIC inflammation via NF-κB and subsequent adhesion molecule expression, and cytokine secretion. Pretreatment with ruxolitinib, a clinically used JAK inhibitor, abrogated these responses. Moreover, Poly(I:C) promoted a pro-osteogenic phenotype and increased VIC calcification to a higher extent in cells from males. Inhibition of JAK with ruxolitinib or a type I IFN receptor blocking antibody blunted Poly(I:C)-induced calcification. Mechanistically, Poly(I:C) promoted VIC apoptosis in calcification medium, which was inhibited by ruxolitinib. Moreover, Poly(I:C) co-operated with IFN-γ to increase VIC calcification by synergistically activating extracellular signal-regulated kinases and hypoxia-inducible factor-1α pathways. In conclusion, JAK/STAT signaling mediates dsRNA-triggered inflammation, apoptosis, and calcification and may contribute to a positive autocrine loop in human VIC in the presence of IFN-γ. Blockade of dsRNA responses with JAK inhibitors may be a promising therapeutic avenue for CAVD.
Collapse
Affiliation(s)
- Iván Parra-Izquierdo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Tania Sánchez-Bayuela
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Irene Castaños-Mollor
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Javier López
- ICICOR, Hospital Clínico Universitario, Valladolid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Cristina Gómez
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - J Alberto San Román
- ICICOR, Hospital Clínico Universitario, Valladolid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Carmen García-Rodríguez
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
9
|
Artiach G, Bäck M. Omega-3 Polyunsaturated Fatty Acids and the Resolution of Inflammation: Novel Therapeutic Opportunities for Aortic Valve Stenosis? Front Cell Dev Biol 2020; 8:584128. [PMID: 33304901 PMCID: PMC7693622 DOI: 10.3389/fcell.2020.584128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Inflammation is well-established in cardiovascular disease, including valvular heart disease. Inflammation is a key process in the fibrosis and calcification of the aortic valve leaflets, which ultimately clinically manifest as aortic valve stenosis characterized by valve dysfunction and cardiac obstruction. In the absence of pharmacological treatment, either surgical or transcatheter aortic valve replacement is currently the only available therapeutic strategy for patients with severe aortic valve stenosis. Omega-3 polyunsaturated fatty acids, which exert beneficial effects in several cardiovascular diseases, serve as the substrate for several bioactive lipid mediators that regulate inflammation. Recent findings point to the beneficial effects of omega-3 fatty acids in cardiac valves, being inversely associated with aortic valve calcification and contributing to the resolution of valvular inflammation by means of the pro-resolving mediator resolvin E1 and downstream signaling through its receptor ChemR23.
Collapse
Affiliation(s)
- Gonzalo Artiach
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Bäck
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Shih E, Squiers JJ, Baxter RD, DiMaio JM. Commentary: Molecular pathogenesis of aortic stenosis: Will the puzzle pieces ever fit together? J Thorac Cardiovasc Surg 2019; 161:e19-e20. [PMID: 31916993 DOI: 10.1016/j.jtcvs.2019.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Emily Shih
- Department of Surgery, Baylor University Medical Center, Dallas, Tex
| | - John J Squiers
- Department of Surgery, Baylor University Medical Center, Dallas, Tex
| | - Ronald D Baxter
- Department of Surgery, Baylor University Medical Center, Dallas, Tex; Baylor Scott & White Research Institute, The Heart Hospital Plano, Plano, Tex
| | - J Michael DiMaio
- Baylor Scott & White Research Institute, The Heart Hospital Plano, Plano, Tex; Department of Cardiothoracic Surgery, The Heart Hospital Plano, Plano, Tex.
| |
Collapse
|
11
|
Parra-Izquierdo I, Castaños-Mollor I, López J, Gómez C, San Román JA, Sánchez Crespo M, García-Rodríguez C. Lipopolysaccharide and interferon-γ team up to activate HIF-1α via STAT1 in normoxia and exhibit sex differences in human aortic valve interstitial cells. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2168-2179. [PMID: 31034990 DOI: 10.1016/j.bbadis.2019.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/17/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
Abstract
In early stages of calcific aortic valve disease (CAVD), immune cells infiltrate into the valve leaflets and release cytokines such as interferon (IFN)-γ. IFN-γ has context-dependent direct effects, and also regulates other immune pathways. The purpose of this study was addressing the effects of IFN-γ on human aortic valve interstitial cells (AVICs), focusing on the pathogenic processes underlying CAVD. Strikingly, under normoxic conditions, IFN-γ induced hypoxia inducible factor (HIF)-1α expression, an effect strongly potentiated by the Toll-like receptor (TLR)-4 ligand lipopolysaccharide (LPS). Immunodetection studies confirmed the nuclear translocation of HIF-1α. Gene silencing showed that HIF-1α expression is dependent on signal transducer and activator of transcription (STAT)-1 expression. Consistent with HIF-1α induction, the secretion of the endothelial growth factor was detected by ELISA, and downregulation of the antiangiogenic factor chondromodulin-1 gene was observed by qPCR. Results also disclosed IFN-γ as a proinflammatory cytokine that cooperates with LPS to induce the expression of adhesion molecules, prostaglandin E2 and interleukins. Moreover, IFN-γ induced an osteogenic phenotype and promoted in vitro calcification that were markedly potentiated by LPS. Pharmacological experiments disclosed the involvement of Janus Kinases (JAK)/STATs as well as ERK/HIF-1α routes on the induction of calcification. Notably, IFN-γ receptor 1 expression, as well as ERK/HIF-1α activation, and the subsequent responses were more robust in male AVICs. This is the first report uncovering an immune and non-hypoxic activation of HIF-1α via STAT1 in AVIC. The aforementioned results and the sex-differential responses may be potentially relevant to better understand CAVD pathogenesis.
Collapse
Affiliation(s)
- Iván Parra-Izquierdo
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Irene Castaños-Mollor
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Javier López
- ICICOR, Hospital Clínico Universitario, Valladolid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Cristina Gómez
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - J Alberto San Román
- ICICOR, Hospital Clínico Universitario, Valladolid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Mariano Sánchez Crespo
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Carmen García-Rodríguez
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Spain.
| |
Collapse
|
12
|
Parra-Izquierdo I, Castaños-Mollor I, López J, Gómez C, San Román JA, Sánchez Crespo M, García-Rodríguez C. Calcification Induced by Type I Interferon in Human Aortic Valve Interstitial Cells Is Larger in Males and Blunted by a Janus Kinase Inhibitor. Arterioscler Thromb Vasc Biol 2019; 38:2148-2159. [PMID: 30026273 DOI: 10.1161/atvbaha.118.311504] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Calcific aortic valve disease is the most prevalent valvulopathy in Western countries. An unanticipated pathogenetic clue involving IFN (interferon) was disclosed by the finding of constitutive type I IFN activity associated with aortic valve calcification in children with the atypical Singleton-Merten syndrome. On this basis, the role of type I IFN on inflammation and calcification in human aortic valve interstitial cells (AVIC) was examined. Approach and Results- IFN-α was weakly proinflammatory but potentiated lipopolysaccharide-mediated activation of NF (nuclear factor)-κB and the ensuing induction of proinflammatory molecules in human AVIC. Stimulation with IFN-α and in combination with lipopolysaccharide promoted osteoblast-like differentiation characterized by increased osteoblastic gene expression, BMP (bone morphogenetic protein)-2 secretion, and ectopic phosphatase activity. Sex differences were observed. Likewise, IFN-α treatment of human AVICs in osteogenic medium resulted in increased formation of calcific nodules. Strikingly, IFN-α-mediated calcification was significantly higher in AVICs from males, and was blocked by tofacitinib, a JAK (Janus kinase) inhibitor, and by a BMP antagonist. A female-specific protective mechanism involving the activation of PI3K-Akt (protein kinase B) pathways and cell survival was disclosed. Females exhibited higher levels of BCL2 in valve cells and tissues and lower annexin V staining on cell stimulation. Conclusions- IFN-α acts as a proinflammatory and pro-osteogenic cytokine in AVICs, its effects being potentiated by lipopolysaccharide. Results also uncovered sex differences with lower responses in female AVICs and sex-specific mechanisms involving apoptosis. Data point to JAK/STAT (signal transducer and activator of transcription) system as a potential therapeutic target for calcific aortic valve disease.
Collapse
Affiliation(s)
- Iván Parra-Izquierdo
- From the Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain (I.P.-I., I.C.-M., C.G., M.S.C., C.G.-R.)
| | - Irene Castaños-Mollor
- From the Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain (I.P.-I., I.C.-M., C.G., M.S.C., C.G.-R.)
| | - Javier López
- ICICOR, Cardiology Department, Hospital Clínico Universitario, Valladolid, Spain (J.L., J.A.S.R.).,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (J.L., J.A.S.R., C.G.-R.)
| | - Cristina Gómez
- From the Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain (I.P.-I., I.C.-M., C.G., M.S.C., C.G.-R.)
| | - J Alberto San Román
- ICICOR, Cardiology Department, Hospital Clínico Universitario, Valladolid, Spain (J.L., J.A.S.R.).,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (J.L., J.A.S.R., C.G.-R.)
| | - Mariano Sánchez Crespo
- From the Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain (I.P.-I., I.C.-M., C.G., M.S.C., C.G.-R.)
| | - Carmen García-Rodríguez
- From the Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain (I.P.-I., I.C.-M., C.G., M.S.C., C.G.-R.).,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (J.L., J.A.S.R., C.G.-R.)
| |
Collapse
|
13
|
Alqarni I, Bassiouni YA, Badr AM, Ali RA. Telmisartan and/or chlorogenic acid attenuates fructose-induced non-alcoholic fatty liver disease in rats: Implications of cross-talk between angiotensin, the sphingosine kinase/sphingoine-1-phosphate pathway, and TLR4 receptors. Biochem Pharmacol 2019; 164:252-262. [PMID: 31004566 DOI: 10.1016/j.bcp.2019.04.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022]
Abstract
Renin-angiotensin-aldosterone system (RAS) has been implicated in non-alcoholic fatty liver disease (NAFLD); the most common cause of chronic liver diseases. There is accumulating evidence that altered TLR4 and Sphingosine kinase 1(SphK1)/sphingosine1phosphate (S1P) signaling pathways are key players in the pathogenesis of NAFLD. Cross talk of the sphingosine signaling pathway, toll-4 (TLR4) receptors, and angiotensin II was reported in various tissues. Therefore, the aim of this study was to define the contribution of these two pathways to the hepatoprotective effects of telmisartan and/or chlorogenic acid (CGA) in NAFLD. CGA is a strong antioxidant that was previously reported to inhibit angiotensin converting enzyme. Male Wistar rats were treated with either high-fructose, with or without telmisartan, CGA, telmisartan + CGA for 8 weeks. Untreated NAFL rats showed characteristics of NAFLD, as evidenced by significant increase in the body weight, insulin resistance, and serum hepatotoxicity markers (Alanine and Aspartate transaminases) and lipids as compared to the negative control group, in addition to characteristic histopathological alterations. Treatment with either telmisartan and/or CGA improved aforementioned parameters, in addition to upregulation of antioxidant enzymes (Superoxide dismutase and Glutathione peroxidase). Effect of inhibiting RAS on both sphingosine pathway and TLR4 was evident by the suppressing effect of telmisartan and/or CGA on high fructose-induced upregulation of hepatic SPK1 and S1P, in addition to concomitant up-regulation of Sphingosine-1-Phosphate receptor (S1PR)3 protein level and increased expression of S1PR1 and TLR4. As TLR4 and SPK/S1P signaling pathways play important roles in the progression of liver inflammation, the effect on sphingosine pathway and TLR4 was associated with decreased concentrations of inflammatory markers, enzyme kB kinase (IKK), nuclear factor-kB and tumor necrosis factor-α as compared to untreated NAFL group. In conclusion, the present data strongly suggests the cross-talk between angiotensin, the Sphingosine SPK/S1P Axis and TLR4 Receptors, and their role in the pathogenesis of fructose-induced NAFLD, and the protection afforded by drugs inhibiting RAS.
Collapse
Affiliation(s)
- Iman Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Yieldez A Bassiouni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Egypt
| | - Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Heliopolis, Cairo, Egypt.
| | - Rehab A Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| |
Collapse
|
14
|
Raddatz MA, Madhur MS, Merryman WD. Adaptive immune cells in calcific aortic valve disease. Am J Physiol Heart Circ Physiol 2019; 317:H141-H155. [PMID: 31050556 DOI: 10.1152/ajpheart.00100.2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Calcific aortic valve disease (CAVD) is highly prevalent and has no pharmaceutical treatment. Surgical replacement of the aortic valve has proved effective in advanced disease but is costly, time limited, and in many cases not optimal for elderly patients. This has driven an increasing interest in noninvasive therapies for patients with CAVD. Adaptive immune cell signaling in the aortic valve has shown potential as a target for such a therapy. Up to 15% of cells in the healthy aortic valve are hematopoietic in origin, and these cells, which include macrophages, T lymphocytes, and B lymphocytes, are increased further in calcified specimens. Additionally, cytokine signaling has been shown to play a causative role in aortic valve calcification both in vitro and in vivo. This review summarizes the physiological presence of hematopoietic cells in the valve, innate and adaptive immune cell infiltration in disease states, and the cytokine signaling pathways that play a significant role in CAVD pathophysiology and may prove to be pharmaceutical targets for this disease in the near future.
Collapse
Affiliation(s)
- Michael A Raddatz
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee.,Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Meena S Madhur
- Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee.,Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee.,Division of Clinical Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
15
|
Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol 2018; 36:316-320. [PMID: 29621222 DOI: 10.1038/nbt.4101] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Metabolomics, in which small-molecule metabolites (the metabolome) are identified and quantified, is broadly acknowledged to be the omics discipline that is closest to the phenotype. Although appreciated for its role in biomarker discovery programs, metabolomics can also be used to identify metabolites that could alter a cell's or an organism's phenotype. Metabolomics activity screening (MAS) as described here integrates metabolomics data with metabolic pathways and systems biology information, including proteomics and transcriptomics data, to produce a set of endogenous metabolites that can be tested for functionality in altering phenotypes. A growing literature reports the use of metabolites to modulate diverse processes, such as stem cell differentiation, oligodendrocyte maturation, insulin signaling, T-cell survival and macrophage immune responses. This opens up the possibility of identifying and applying metabolites to affect phenotypes. Unlike genes or proteins, metabolites are often readily available, which means that MAS is broadly amenable to high-throughput screening of virtually any biological system.
Collapse
|
16
|
Zhong L, Jiang X, Zhu Z, Qin H, Dinkins MB, Kong JN, Leanhart S, Wang R, Elsherbini A, Bieberich E, Zhao Y, Wang G. Lipid transporter Spns2 promotes microglia pro-inflammatory activation in response to amyloid-beta peptide. Glia 2018; 67:498-511. [PMID: 30484906 DOI: 10.1002/glia.23558] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/31/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022]
Abstract
Accumulating evidence indicates that neuroinflammation contributes to the pathogenesis and exacerbation of neurodegenerative disorders, such as Alzheimer's disease (AD). Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid that regulates many pathophysiological processes including inflammation. We present evidence here that the spinster homolog 2 (Spns2), a S1P transporter, promotes microglia pro-inflammatory activation in vitro and in vivo. Spns2 knockout (Spns2KO) in primary cultured microglia resulted in significantly reduced levels of pro-inflammatory cytokines induced by lipopolysaccharide (LPS) and amyloid-beta peptide 1-42 oligomers (Aβ42) when compared with littermate controls. Fingolimod (FTY720), a S1P receptor 1 (S1PR1) functional antagonist and FDA approved drug for relapsing-remitting multiple sclerosis, partially blunted Aβ42-induced pro-inflammatory cytokine generation, suggesting that Spns2 promotes microglia pro-inflammatory activation through S1P-signaling. Spns2KO significantly reduced Aβ42-induced nuclear factor kappa B (NFκB) activity. S1P increased, while FTY720 dampened, Aβ42-induced NFκB activity, suggesting that Spns2 activates microglia inflammation through, at least partially, NFκB pathway. Spns2KO mouse brains showed significantly reduced Aβ42-induced microglia activation/accumulation and reduced levels of pro-inflammatory cytokines when compared with age-matched controls. More interestingly, Spns2KO ameliorated Aβ42-induced working memory deficit detected by Y-Maze. In summary, these results suggest that Spns2 promotes pro-inflammatory polarization of microglia and may play a crucial role in AD pathogenesis.
Collapse
Affiliation(s)
- Liansheng Zhong
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Department of Bioinformatics, Key Laboratory of Cell Biology of Ministry of Public Health, College of Life Sciences, China Medical University, Shenyang, China
| | - Xue Jiang
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Zhihui Zhu
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Haiyan Qin
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Michael B Dinkins
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Ji-Na Kong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Silvia Leanhart
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Rebecca Wang
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Ahmed Elsherbini
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yujie Zhao
- Department of Bioinformatics, Key Laboratory of Cell Biology of Ministry of Public Health, College of Life Sciences, China Medical University, Shenyang, China
| | - Guanghu Wang
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
17
|
Reustle A, Torzewski M. Role of p38 MAPK in Atherosclerosis and Aortic Valve Sclerosis. Int J Mol Sci 2018; 19:ijms19123761. [PMID: 30486366 PMCID: PMC6321637 DOI: 10.3390/ijms19123761] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis and aortic valve sclerosis are cardiovascular diseases with an increasing prevalence in western societies. Statins are widely applied in atherosclerosis therapy, whereas no pharmacological interventions are available for the treatment of aortic valve sclerosis. Therefore, valve replacement surgery to prevent acute heart failure is the only option for patients with severe aortic stenosis. Both atherosclerosis and aortic valve sclerosis are not simply the consequence of degenerative processes, but rather diseases driven by inflammatory processes in response to lipid-deposition in the blood vessel wall and the aortic valve, respectively. The p38 mitogen-activated protein kinase (MAPK) is involved in inflammatory signaling and activated in response to various intracellular and extracellular stimuli, including oxidative stress, cytokines, and growth factors, all of which are abundantly present in atherosclerotic and aortic valve sclerotic lesions. The responses generated by p38 MAPK signaling in different cell types present in the lesions are diverse and might support the progression of the diseases. This review summarizes experimental findings relating to p38 MAPK in atherosclerosis and aortic valve sclerosis and discusses potential functions of p38 MAPK in the diseases with the aim of clarifying its eligibility as a pharmacological target.
Collapse
Affiliation(s)
- Anna Reustle
- Dr. Margarete-Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany.
- University of Tuebingen, 72074 Tuebingen, Germany.
| | - Michael Torzewski
- Department of Laboratory Medicine and Hospital Hygiene, Robert Bosch-Hospital, 70376 Stuttgart, Germany.
| |
Collapse
|
18
|
García-Rodríguez C, Parra-Izquierdo I, Castaños-Mollor I, López J, San Román JA, Sánchez Crespo M. Toll-Like Receptors, Inflammation, and Calcific Aortic Valve Disease. Front Physiol 2018; 9:201. [PMID: 29593562 PMCID: PMC5857550 DOI: 10.3389/fphys.2018.00201] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/23/2018] [Indexed: 01/13/2023] Open
Abstract
Inflammation, the primary response of innate immunity, is essential to initiate the calcification process underlying calcific aortic valve disease (CAVD), the most prevalent valvulopathy in Western countries. The pathogenesis of CAVD is multifactorial and includes inflammation, hemodynamic factors, fibrosis, and active calcification. In the development of CAVD, both innate and adaptive immune responses are activated, and accumulating evidences show the central role of inflammation in the initiation and propagation phases of the disease, being the function of Toll-like receptors (TLR) particularly relevant. These receptors act as sentinels of the innate immune system by recognizing pattern molecules from both pathogens and host-derived molecules released after tissue damage. TLR mediate inflammation via NF-κB routes within and beyond the immune system, and play a crucial role in the control of infection and the maintenance of tissue homeostasis. This review outlines the current notions about the association between TLR signaling and the ensuing development of inflammation and fibrocalcific remodeling in the pathogenesis of CAVD. Recent data provide new insights into the inflammatory and osteogenic responses underlying the disease and further support the hypothesis that inflammation plays a mechanistic role in the initiation and progression of CAVD. These findings make TLR signaling a potential target for therapeutic intervention in CAVD.
Collapse
Affiliation(s)
- Carmen García-Rodríguez
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Iván Parra-Izquierdo
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Irene Castaños-Mollor
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Javier López
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Hospital Clínico Universitario, Valladolid, Spain
| | - J Alberto San Román
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Hospital Clínico Universitario, Valladolid, Spain
| | - Mariano Sánchez Crespo
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
19
|
Morris TG, Borland SJ, Clarke CJ, Wilson C, Hannun YA, Ohanian V, Canfield AE, Ohanian J. Sphingosine 1-phosphate activation of ERM contributes to vascular calcification. J Lipid Res 2017; 59:69-78. [PMID: 29167409 DOI: 10.1194/jlr.m079731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/11/2017] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification is the deposition of mineral in the artery wall by vascular smooth muscle cells (VSMCs) in response to pathological stimuli. The process is similar to bone formation and is an independent risk factor for cardiovascular disease. Given that ceramide and sphingosine 1-phosphate (S1P) are involved in cardiovascular pathophysiology and biomineralization, their role in VSMC matrix mineralization was investigated. During phosphate-induced VSMC mineralization, endogenous S1P levels increased accompanied by increased sphingosine kinase (SK) activity and increased mRNA expression of SK1 and SK2. Consistent with this, mineralization was increased by exogenous S1P, but decreased by C2-ceramide. Mechanistically, exogenous S1P stimulated ezrin-radixin-moesin (ERM) phosphorylation in VSMCs and ERM phosphorylation was increased concomitantly with endogenous S1P during mineralization. Moreover, inhibition of acid sphingomyelinase and ceramidase with desipramine prevented increased S1P levels, ERM activation, and mineralization. Finally, pharmacological inhibition of ERM phosphorylation with NSC663894 decreased mineralization induced by phosphate and exogenous S1P. Although further studies will be needed to verify these findings in vivo, this study defines a novel role for the SK-S1P-ERM pathways in phosphate-induced VSMC matrix mineralization and shows that blocking these pathways with pharmacological inhibitors reduces mineralization. These results may inform new therapeutic approaches to inhibit or delay vascular calcification.
Collapse
Affiliation(s)
- Thomas G Morris
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Samantha J Borland
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Christopher J Clarke
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Claire Wilson
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Yusuf A Hannun
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Vasken Ohanian
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Ann E Canfield
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Jacqueline Ohanian
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Human interstitial cellular model in therapeutics of heart valve calcification. Amino Acids 2017; 49:1981-1997. [DOI: 10.1007/s00726-017-2432-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 12/27/2022]
|
21
|
Viegas CSB, Costa RM, Santos L, Videira PA, Silva Z, Araújo N, Macedo AL, Matos AP, Vermeer C, Simes DC. Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: Implications for calcification-related chronic inflammatory diseases. PLoS One 2017; 12:e0177829. [PMID: 28542410 PMCID: PMC5436823 DOI: 10.1371/journal.pone.0177829] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
Calcification-related chronic inflammatory diseases are multifactorial pathological processes, involving a complex interplay between inflammation and calcification events in a positive feed-back loop driving disease progression. Gla-rich protein (GRP) is a vitamin K dependent protein (VKDP) shown to function as a calcification inhibitor in cardiovascular and articular tissues, and proposed as an anti-inflammatory agent in chondrocytes and synoviocytes, acting as a new crosstalk factor between these two interconnected events in osteoarthritis. However, a possible function of GRP in the immune system has never been studied. Here we focused our investigation in the involvement of GRP in the cell inflammatory response mechanisms, using a combination of freshly isolated human leucocytes and undifferentiated/differentiated THP-1 cell line. Our results demonstrate that VKDPs such as GRP and matrix gla protein (MGP) are synthesized and γ-carboxylated in the majority of human immune system cells either involved in innate or adaptive immune responses. Stimulation of THP-1 monocytes/macrophages with LPS or hydroxyapatite (HA) up-regulated GRP expression, and treatments with GRP or GRP-coated basic calcium phosphate crystals resulted in the down-regulation of mediators of inflammation and inflammatory cytokines, independently of the protein γ-carboxylation status. Moreover, overexpression of GRP in THP-1 cells rescued the inflammation induced by LPS and HA, by down-regulation of the proinflammatory cytokines TNFα, IL-1β and NFkB. Interestingly, GRP was detected at protein and mRNA levels in extracellular vesicles released by macrophages, which may act as vehicles for extracellular trafficking and release. Our data indicate GRP as an endogenous mediator of inflammatory responses acting as an anti-inflammatory agent in monocytes/macrophages. We propose that in a context of chronic inflammation and calcification-related pathologies, GRP might act as a novel molecular mediator linking inflammation and calcification events, with potential therapeutic application.
Collapse
Affiliation(s)
- Carla S. B. Viegas
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Rúben M. Costa
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Lúcia Santos
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Paula A. Videira
- UCIBIO@REQUIMTE Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Zélia Silva
- UCIBIO@REQUIMTE Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Nuna Araújo
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Anjos L. Macedo
- UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - António P. Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Caparica, Portugal
| | - Cees Vermeer
- VitaK, Maastricht University, Maastricht, The Netherlands
| | - Dina C. Simes
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| |
Collapse
|
22
|
Kolasa-Trela R, Konieczynska M, Bazanek M, Undas A. Specific changes in circulating cytokines and growth factors induced by exercise stress testing in asymptomatic aortic valve stenosis. PLoS One 2017; 12:e0173787. [PMID: 28291817 PMCID: PMC5349660 DOI: 10.1371/journal.pone.0173787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/27/2017] [Indexed: 01/05/2023] Open
Abstract
Background We evaluated exercise-induced changes in the profile of circulating cytokines and growth factors in patients with AS. Methods We studied 32 consecutive asymptomatic moderate-to-severe AS patients and 32 age and sex-matched controls. Plasma levels of interleukin (IL)-6, IL-10, hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-β were measured at 4 time points, i.e. at rest, at peak bicycle exercise, one hour and 24 hours after a symptom-limited exercise. Results Exercise increased all the 5 markers in both groups (all p<0.0001). The maximum levels of all tested cytokines were higher in the AS group (all p<0.05) compared with controls. In AS patients the highest levels of VEGF, IL-6, and IL-10 were observed one hour after exercise, while in the control group at peak exercise. In both groups maximum TGF- β levels were observed one hour after exercise. HGF levels were higher at peak and one hour after test in the AS group (p = 0.0001), however the maximum value in AS was observed at peak while in controls after test. In both groups TGF-β was the only marker that remained increased 24 hours after exercise compared with the value at rest (p = 0.0001). The cytokines and growth factors showed no association with heart rate and the workload. Conclusion In asymptomatic patients with moderate-to-severe AS, exercise produces a different pattern of changes in circulating cytokines and growth factors, and maximum levels of all tested cytokines were significantly higher in AS patients compared with the control group.
Collapse
Affiliation(s)
| | | | - Marta Bazanek
- Department of Diagnostic Medicine, John Paul II Hospital, Krakow, Poland
| | - Anetta Undas
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- * E-mail:
| |
Collapse
|
23
|
Valve Interstitial Cells Act in a Pericyte Manner Promoting Angiogensis and Invasion by Valve Endothelial Cells. Ann Biomed Eng 2016; 44:2707-23. [PMID: 26905695 PMCID: PMC4983529 DOI: 10.1007/s10439-016-1567-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/09/2016] [Indexed: 12/24/2022]
Abstract
Neovascularization is an understudied aspect of calcific aortic valve disease (CAVD). Within diseased valves, cells along the neovessels' periphery stain for pericyte markers, but it is unclear whether valvular interstitial cells (VICs) can demonstrate a pericyte-like phenotype. This investigation examined the perivascular potential of VICs to regulate valve endothelial cell (VEC) organization and explored the role of Angiopoeitin1-Tie2 signaling in this process. Porcine VECs and VICs were fluorescently tracked and co-cultured in Matrigel over 7 days. VICs regulated early VEC network organization in a ROCK-dependent manner, then guided later VEC network contraction through chemoattraction. Unlike vascular control cells, the valve cell cultures ultimately formed invasive spheroids with 3D angiogenic-like sprouts. VECs co-cultured with VICs displayed significantly more invasion than VECs alone; with VICs generally leading and wrapping around VEC invasive sprouts. Lastly, Angiopoietin1-Tie2 signaling was found to regulate valve cell organization during VEC/VIC spheroid formation and invasion. VICs demonstrated pericyte-like behaviors toward VECs throughout sustained co-culture. The change from a vasculogenic network to an invasive sprouting spheroid suggests that both cell types undergo phenotypic changes during long-term culture in the model angiogenic environment. Valve cells organizing into spheroids and undergoing 3D invasion of Matrigel demonstrated several typical angiogenic-like phenotypes dependent on basal levels of Angiopoeitin1-Tie2 signaling and ROCK activation. These results suggest that the ectopic sustained angiogenic environment during the early stages of valve disease promotes organized activity by both VECs and VICs, contributing to neovessel formation and the progression of CAVD.
Collapse
|
24
|
Cells and extracellular matrix interplay in cardiac valve disease: because age matters. Basic Res Cardiol 2016; 111:16. [PMID: 26830603 DOI: 10.1007/s00395-016-0534-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/27/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022]
Abstract
Cardiovascular aging is a physiological process affecting all components of the heart. Despite the interest and experimental effort lavished on aging of cardiac cells, increasing evidence is pointing at the pivotal role of extracellular matrix (ECM) in cardiac aging. Structural and molecular changes in ECM composition during aging are at the root of significant functional modifications at the level of cardiac valve apparatus. Indeed, calcification or myxomatous degeneration of cardiac valves and their functional impairment can all be explained in light of age-related ECM alterations and the reciprocal interplay between altered ECM and cellular elements populating the leaflet, namely valvular interstitial cells and valvular endothelial cells, is additionally affecting valve function with striking reflexes on the clinical scenario. The initial experimental findings on this argument are underlining the need for a more comprehensive understanding on the biological mechanisms underlying ECM aging and remodeling as potentially constituting a pharmacological therapeutic target or a basis to improve existing prosthetic devices and treatment options. Given the lack of systematic knowledge on this topic, this review will focus on the ECM changes that occur during aging and on their clinical translational relevance and implications in the bedside scenario.
Collapse
|
25
|
Over-expression of neurotrophin 3 in human aortic valves affected by calcific disease induces the osteogenic responses via the Trk-Akt pathway. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1940-9. [PMID: 26122822 DOI: 10.1016/j.bbadis.2015.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 01/04/2023]
Abstract
UNLABELLED Calcific aortic valve disease (CAVD) is a leading cardiovascular disorder in the elderly. While aortic valve interstitial cells (AVICs) are the main cells that express osteogenic mediators, the molecular mechanism that mediates AVIC osteogenic responses is incompletely understood. This study aims to identify pro-osteogenic factors in human AVICs affected by CAVD. METHODS AND RESULTS Microarray analysis identified 11 up-regulated genes in AVICs of diseased valves. Among these genes, mRNA levels of neurotrophin 3 (NT3) increased by 2 fold. Higher levels of NT3 protein in diseased aortic valves and diseased AVICs were confirmed by immunofluorescent staining and immunoblotting, respectively. An exposure of AVICs of normal valves to recombinant human NT3 (0.025-0.10μg/mL) up-regulated the production of Runx2, TGF-β1 and BMP-2 in a dose-dependent fashion. NT3 also promotes calcium deposit formation. The pro-osteogenic effect of NT3 was not affected by neutralization of Toll-like receptor 2 or 4. Interestingly, mRNA encoding neural growth factor receptors (TrkA, TrkB, TrkC and p75 NTR) was detectable in human AVICs. Inhibition of Trk receptors markedly reduced the effects of NT3 on Runx2, TGF-β1 and BMP-2 production, calcium deposit formation and Akt phosphorylation. Further, inhibition of Akt also reduced the pro-osteogenic effects of NT3. CONCLUSIONS AVICs of diseased human aortic valves express higher levels of NT3. NT3 up-regulates the production of Runx2, TGF-β1 and BMP-2, and promotes calcium deposit formation in human AVICs via the Trk-Akt pathway. Thus, NT3 is a novel pro-osteogenic factor in aortic valves and may play a role in valvular calcification.
Collapse
|