1
|
Clarkson TC, Iguchi N, Xie AX, Malykhina AP. Differential transcriptomic changes in the central nervous system and urinary bladders of mice infected with a coronavirus. PLoS One 2022; 17:e0278918. [PMID: 36490282 PMCID: PMC9733897 DOI: 10.1371/journal.pone.0278918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) often leads to the development of neurogenic lower urinary tract symptoms (LUTS). We previously characterized neurogenic bladder dysfunction in a mouse model of MS induced by a coronavirus, mouse hepatitis virus (MHV). The aim of the study was to identify genes and pathways linking neuroinflammation in the central nervous system with urinary bladder (UB) dysfunction to enhance our understanding of the mechanisms underlying LUTS in demyelinating diseases. Adult C57BL/6 male mice (N = 12) received either an intracranial injection of MHV (coronavirus-induced encephalomyelitis, CIE group), or sterile saline (control group). Spinal cord (SC) and urinary bladders (UB) were collected from CIE mice at 1 wk and 4 wks, followed by RNA isolation and NanoString nCounter Neuroinflammation assay. Transcriptome analysis of SC identified a significantly changed expression of >150 genes in CIE mice known to regulate astrocyte, microglia and oligodendrocyte functions, neuroinflammation and immune responses. Two genes were significantly upregulated (Ttr and Ms4a4a), and two were downregulated (Asb2 and Myct1) only in the UB of CIE mice. Siglec1 and Zbp1 were the only genes significantly upregulated in both tissues, suggesting a common transcriptomic link between neuroinflammation in the CNS and neurogenic changes in the UB of CIE mice.
Collapse
Affiliation(s)
- Taylor C. Clarkson
- Division of Urology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Nao Iguchi
- Division of Urology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Alison Xiaoqiao Xie
- Division of Urology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Anna P. Malykhina
- Division of Urology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
2
|
Ramasamy R, Smith PP. PART 2: Mouse models for multiple sclerosis research. Neurourol Urodyn 2021; 40:958-967. [PMID: 33739481 DOI: 10.1002/nau.24654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Lower urinary tract symptoms and dysfunction (LUTS/LUTD) contribute to loss of quality of life, morbidity, and need for medical intervention in most patients with multiple sclerosis (MS). Although MS is an inflammatory neurodegenerative disease, clinical manifestations including continence control disorders have traditionally been attributed to the loss of neural signaling due to neurodegeneration. Clinical approaches to MS-LUTS/LUTD have focused on addressing symptoms in the context of urodynamic dysfunctions as pathophysiologic understandings are incomplete. The mouse model provides a useful research platform for discovery of more detailed molecular, cellular, and tissue-level knowledge of the disease and its clinical manifestations. The aim of this two-part review is to provide a state-of-the-art update on the use of the mouse model for MS research, with a focus on lower urinary tract symptoms. Part I presents a summary of current understanding of MS pathophysiology, the impact on lower urinary tract symptoms, and briefly introduces the types of mouse models available to study MS. Part II presents the common animal models that are currently available to study MS, their mechanism, relevance to MS-LUTS/LUTD and their urinary pathophysiology, advantages and disadvantages.
Collapse
Affiliation(s)
- Ramalakshmi Ramasamy
- UConn Center on Aging, UConn Health, Farmington, CT, USA.,Department of Neuroscience, University of Connecticut Graduate School, Farmington, Connecticut, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Phillip P Smith
- UConn Center on Aging, UConn Health, Farmington, CT, USA.,Department of Neuroscience, University of Connecticut Graduate School, Farmington, Connecticut, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, USA.,Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
3
|
Huang J, Zheng M, Tang X, Chen Y, Tong A, Zhou L. Potential of SARS-CoV-2 to Cause CNS Infection: Biologic Fundamental and Clinical Experience. Front Neurol 2020; 11:659. [PMID: 32625165 PMCID: PMC7314941 DOI: 10.3389/fneur.2020.00659] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus leading to serious respiratory disease and is spreading around the world at a raging speed. Recently there is emerging speculations that the central nervous system (CNS) may be involved during SARS-CoV-2 infection, contributing to the respiratory failure. However, the existence of viral replication in CNS has not been confirmed due to the lack of evidence from autopsy specimens. Considering the tropism of SARS-CoV-2, ACE2, is prevailing in CNS, and the neuro-invasive property of human coronavirus was widely reported, there is a need to identified the possible complications during COVID-19 for CNS. In this review, we conduct a detailed summary for the potential of SARS-CoV-2 to infect central nervous system from latest biological fundamental of SARS-CoV-2 to the clinical experience of other human coronaviruses. To confirm the neuro-invasive property of SARS-CoV-2 and the subsequent influence on patients will require further exploration by both virologist and neurologist.
Collapse
Affiliation(s)
- Jianhan Huang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Meijun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yaxing Chen
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Javed E, Thangavel C, Frara N, Singh J, Mohanty I, Hypolite J, Birbe R, Braverman AS, Den RB, Rattan S, Zderic SA, Deshpande DA, Penn RB, Ruggieri MR, Chacko S, Boopathi E. Increased expression of desmin and vimentin reduces bladder smooth muscle contractility via JNK2. FASEB J 2020; 34:2126-2146. [PMID: 31909533 PMCID: PMC7018560 DOI: 10.1096/fj.201901301r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/18/2019] [Accepted: 11/14/2019] [Indexed: 01/12/2023]
Abstract
Bladder dysfunction is associated with the overexpression of the intermediate filament (IF) proteins desmin and vimentin in obstructed bladder smooth muscle (BSM). However, the mechanisms by which these proteins contribute to BSM dysfunction are not known. Previous studies have shown that desmin and vimentin directly participate in signal transduction. In this study, we hypothesized that BSM dysfunction associated with overexpression of desmin or vimentin is mediated via c-Jun N-terminal kinase (JNK). We employed a model of murine BSM tissue in which increased expression of desmin or vimentin was induced by adenoviral transduction to examine the sufficiency of increased IF protein expression to reduce BSM contraction. Murine BSM strips overexpressing desmin or vimentin generated less force in response to KCl and carbachol relative to the levels in control murine BSM strips, an effect associated with increased JNK2 phosphorylation and reduced myosin light chain (MLC20 ) phosphorylation. Furthermore, desmin and vimentin overexpressions did not alter BSM contractility and MLC20 phosphorylation in strips isolated from JNK2 knockout mice. Pharmacological JNK2 inhibition produced results qualitatively similar to those caused by JNK2 knockout. These findings suggest that inhibition of JNK2 may improve diminished BSM contractility associated with obstructive bladder disease.
Collapse
Affiliation(s)
- Elham Javed
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Nagat Frara
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jagmohan Singh
- Department of Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ipsita Mohanty
- Department of Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joseph Hypolite
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ruth Birbe
- Department of Pathology and Laboratory Medicine, Cooper University Health Care, Camden, NJ, USA
| | - Alan S Braverman
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Robert B Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephen A Zderic
- Department of Urology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond B Penn
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Ruggieri
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Samuel Chacko
- Division of Urology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ettickan Boopathi
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Division of Urology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Lee S, Nedumaran B, Hypolite J, Caldwell B, Rudolph MC, Malykhina AP. Differential neurodegenerative phenotypes are associated with heterogeneous voiding dysfunction in a coronavirus-induced model of multiple sclerosis. Sci Rep 2019; 9:10869. [PMID: 31350464 PMCID: PMC6659655 DOI: 10.1038/s41598-019-47407-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Patients with multiple sclerosis (MS) develop a variety of lower urinary tract symptoms (LUTS). We previously characterized a murine model of neurogenic bladder dysfunction induced by a neurotropic strain of a coronavirus. In the present study, we further study the role of long-lasting neurodegeneration on the development of neurogenic bladder dysfunction in mice with corona-virus induced encephalitis (CIE). Long-term follow up study revealed three phenotypes of neurodegenerative symptom development: recovery (REC group), chronic progression (C-PRO group) and chronic disease with relapsing-remitting episodes (C-RELAP group). The levels of IL-1β in REC group, IL-10 in C-RELAP group, and IL-1β, IL-6, IL-10 and TNF-α in C-PRO group were diminished in the brain. The levels of TNF-α in REC group and INF-γ, IL-2, TGF-β and TNF-α in the C-PRO group were also diminished in the urinary bladder. Mice in C-RELAP group showed a delayed recovery of voiding function. In vitro contractility studies determined a decreased basal detrusor tone and reduced amplitude of nerve-mediated contractions in C-RELAP group, whereas C-PRO group had elevated muscle-mediated contractions. In conclusion, mice with CIE developed three phenotypes of neurologic impairment mimicking different types of MS progression in humans and showed differential mechanisms driving neurogenic bladder dysfunction.
Collapse
Affiliation(s)
- Sanghee Lee
- Department of Urology, University of California San Diego, La Jolla, California, USA
| | - Balachandar Nedumaran
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Co, USA
| | - Joseph Hypolite
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Co, USA
| | - Brian Caldwell
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Co, USA
| | - Michael C Rudolph
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Denver, Aurora, Co, USA
- NORC Metabolic and Cellular Analysis Core Center for Women's Health Research, University of Colorado Denver, Aurora, Co, USA
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Co, USA.
| |
Collapse
|
6
|
Miyazato M, Kadekawa K, Kitta T, Wada N, Shimizu N, de Groat WC, Birder LA, Kanai AJ, Saito S, Yoshimura N. New Frontiers of Basic Science Research in Neurogenic Lower Urinary Tract Dysfunction. Urol Clin North Am 2017; 44:491-505. [PMID: 28716328 PMCID: PMC5647782 DOI: 10.1016/j.ucl.2017.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Minoru Miyazato
- Department of Urology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan; Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Katsumi Kadekawa
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Takeya Kitta
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Naoki Wada
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Nobutaka Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - William C de Groat
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15216, USA
| | - Lori A Birder
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15216, USA
| | - Anthony J Kanai
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15216, USA
| | - Seiichi Saito
- Department of Urology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15216, USA.
| |
Collapse
|