1
|
Yang M, Wang Y, Ding W, Li H, Zhang A. Predicting habitat suitability for the soybean pod borer Leguminivora glycinivorella (Matsumura) using optimized MaxEnt models with multiple variables. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1796-1808. [PMID: 39120055 DOI: 10.1093/jee/toae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
The soybean pod borer Leguminivora glycinivorella (Matsumura) is one of the most important soybean pests and often causes serious damage to Glycine max (L.) Merr., a leading source of dietary protein and oil in animal feed. However, the potential distribution patterns of this economically important pest and its driving factors require further investigation. Here, we used the optimized MaxEnt model to predict the potential distribution of this pest with multiple variables associated with climate, land use, and host plant, at its recorded range and a globe scale. Based on 4 variable combinations, the results show that the current suitable habitats of L. glycinivorella are primarily distributed in most of China, the Korean Peninsula, and Japan. Whereas no suitable area is present in other continents. In future projections, the suitable region shows a slight northward expansion compared with the result predicted with current climatic conditions, and the suitable areas of almost all future projections were stable in size. Among the 9 bioclimatic factors, BIO03 (isothermality) consistently highly contributes to the predictions, indicating that temperature may be a key factor influencing the habitat distribution of L. glycinivorella. Comparative analyses of projections further show that non-climatic factors are informative in the modeling as routinely used bioclimate variables. The spatio-temporal distribution patterns of suitable habitats and the regulatory factors predicted in this study could provide important guidance for L. glycinivorella management.
Collapse
Affiliation(s)
- Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, P. R. China
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou, P. R. China
| | - Ying Wang
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| | - Weili Ding
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, P. R. China
| | - Houhun Li
- College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Aibing Zhang
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| |
Collapse
|
2
|
Chen M, Gan L, Zhang J, Shen Y, Qian J, Han M, Zhang C, Fan J, Sun S, Yan X. A Regulatory Network of Heat Shock Modules-Photosynthesis-Redox Systems in Response to Cold Stress Across a Latitudinal Gradient in Bermudagrass. FRONTIERS IN PLANT SCIENCE 2021; 12:751901. [PMID: 34868138 PMCID: PMC8636944 DOI: 10.3389/fpls.2021.751901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/13/2021] [Indexed: 05/03/2023]
Abstract
Bermudagrass (Cynodon dactylon Pers.) is a wild Poaceae turfgrass with various genotypes and phenotypes. In this study, 16 wild bermudagrass germplasms were collected from 16 different sites along latitudinal gradients, and different temperature treatments were compiled and used for physiological and transcriptome analysis. To explore the correlation between the key differentially expressed genes and physiological indicators, a total of 14,654 DEGs were integrated from the comparison of different temperature treatments and used for weighted gene co-expression network analysis. Through comparative transcriptome analysis and gene annotation, the results showed that differential gene expression profiles in networks are associated with the plant growth, photosystem, redox system, and transcriptional regulation to cold stress in bermudagrass. In particular, genes encoding HSP70/90 and HsfA3/A8 are not only regulated by temperature stress, but also directly or indirectly interplay with the processes of peroxide scavenging and chlorophyll synthesis under cold stress. Besides, through a weight evaluation analysis of various physiological indexes, we identified an accession of wild bermudagrass with relatively strong cold resistance. These results provide important clues and resources to further study the responses to low-temperature stress in bermudagrass.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Yang M, Wang Z, Wang R, Zhang X, Li M, Xin J, Qin Y, Zhang C, Meng F. Transcriptomic and proteomic analyses of the mechanisms of overwintering diapause in soybean pod borer (Leguminivora glycinivorella). PEST MANAGEMENT SCIENCE 2020; 76:4248-4257. [PMID: 32633047 DOI: 10.1002/ps.5989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/24/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Soybean pod borer (Leguminivora glycinivorella) is an important soybean pest in north-eastern Asia, whose mature larvae overwinter in a diapause state. Disruption of winter diapause may be a valuable tool in pest management. However, the molecular mechanisms regulating diapause in this species have not yet been elucidated. RESULTS We compared the transcriptomes and proteomes between diapause and mature larvae and between mature and newly developed pupae to identify the genes and proteins associated with diapause. Thirty-seven differentially expressed genes and their proteins changed synchronously between diapause and mature larvae and 82 changed synchronously between diapause larvae and newly developed pupae. Among these, genes involved in fatty acid biosynthesis and the longevity regulating pathway were up-regulated in diapause larvae and down-regulated in newly developed pupae, suggesting that they may regulate diapause. One fatty acid synthase (FAS) gene and two small heat shock genes (HSP19.8 and HSP18.9) were chosen for further functional analysis. After RNA interference (RNAi)-mediated knockdown of FAS, the survival of mature larvae was significantly lower than that of control larvae, but the mean developmental time from first-instar larva to adult remained unchanged. RNAi-mediated knockdown of HSP19.8 and HSP18.9 severely shortened the mean developmental time, causing approximately 50% larvae to develop directly into pupae. CONCLUSION FAS and the small heat shock gene play roles in diapause regulation and larvae survival. This study provides important information that may assist in understanding the molecular regulatory mechanisms of overwintering diapause of this important agricultural insect pest. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mingyu Yang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Zhanchun Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Rui Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiaoming Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Mingyue Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Junjie Xin
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yushi Qin
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chuan Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Fanli Meng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Ran R, Li T, Liu X, Ni H, Li W, Meng F. RNA interference-mediated silencing of genes involved in the immune responses of the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Olethreutidae). PeerJ 2018; 6:e4931. [PMID: 29910977 PMCID: PMC6003399 DOI: 10.7717/peerj.4931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/17/2018] [Indexed: 02/03/2023] Open
Abstract
RNA interference (RNAi) technology may be useful for developing new crop protection strategies against the soybean pod borer (SPB; Leguminivora glycinivorella), which is a critical soybean pest in northeastern Asia. Immune-related genes have been recently identified as potential RNAi targets for controlling insects. However, little is known about these genes or mechanisms underlying their expression in the SPB. In this study, we completed a transcriptome-wide analysis of SPB immune-related genes. We identified 41 genes associated with SPB microbial recognition proteins, immune-related effectors or signalling molecules in immune response pathways (e.g., Toll and immune deficiency pathways). Eleven of these genes were selected for a double-stranded RNA artificial feeding assay. The down-regulated expression levels of LgToll-5-1a and LgPGRP-LB2a resulted in relatively high larval mortality rates and abnormal development. Our data represent a comprehensive genetic resource for immune-related SPB genes, and may contribute to the elucidation of the mechanism regulating innate immunity in Lepidoptera species. Furthermore, two immune-related SPB genes were identified as potential RNAi targets, which may be used in the development of RNAi-mediated SPB control methods.
Collapse
Affiliation(s)
- Ruixue Ran
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tianyu Li
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xinxin Liu
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hejia Ni
- Colleges of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fanli Meng
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Meng F, Yang M, Li Y, Li T, Liu X, Wang G, Wang Z, Jin X, Li W. Functional Analysis of RNA Interference-Related Soybean Pod Borer ( Lepidoptera) Genes Based on Transcriptome Sequences. Front Physiol 2018; 9:383. [PMID: 29773992 PMCID: PMC5943558 DOI: 10.3389/fphys.2018.00383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/28/2018] [Indexed: 11/30/2022] Open
Abstract
RNA interference (RNAi) is useful for controlling pests of agriculturally important crops. The soybean pod borer (SPB) is the most important soybean pest in Northeastern Asia. In an earlier study, we confirmed that the SPB could be controlled via transgenic plant-mediated RNAi. Here, the SPB transcriptome was sequenced to identify RNAi-related genes, and also to establish an RNAi-of-RNAi assay system for evaluating genes involved in the SPB systemic RNAi response. The core RNAi genes, as well as genes potentially involved in double-stranded RNA (dsRNA) uptake were identified based on SPB transcriptome sequences. A phylogenetic analysis and the characterization of these core components as well as dsRNA uptake related genes revealed that they contain conserved domains essential for the RNAi pathway. The results of the RNAi-of-RNAi assay involving Laccase 2 (a critical cuticle pigmentation gene) as a marker showed that genes encoding the sid-like (Sil1), scavenger receptor class C (Src), and scavenger receptor class B (Srb3 and Srb4) proteins of the endocytic pathway were required for SPB cellular uptake of dsRNA. The SPB response was inferred to contain three functional small RNA pathways (i.e., miRNA, siRNA, and piRNA pathways). Additionally, the SPB systemic RNA response may rely on systemic RNA interference deficient transmembrane channel-mediated and receptor-mediated endocytic pathways. The results presented herein may be useful for developing RNAi-mediated methods to control SPB infestations in soybean.
Collapse
Affiliation(s)
- Fanli Meng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Mingyu Yang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yang Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Tianyu Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xinxin Liu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Guoyue Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Zhanchun Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xianhao Jin
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Zhang L, Zhao HK, Dong QL, Zhang YY, Wang YM, Li HY, Xing GJ, Li QY, Dong YS. Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.). FRONTIERS IN PLANT SCIENCE 2015; 6:773. [PMID: 26442082 PMCID: PMC4585176 DOI: 10.3389/fpls.2015.00773] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/09/2015] [Indexed: 05/03/2023]
Abstract
Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Previous studies have made great efforts in the functional analysis of individual family members, but there has not yet been an overall analysis or expression profiling of the HSP70 gene family in soybeans (Glycine max L.). In this study, an investigation of the soybean genome revealed 61 putative HSP70 genes, which were evaluated. These genes were classified into eight sub-families, denoted I-VIII, based on a phylogenetic analysis. In each sub-family, the constituent parts of the gene structure and motif were relatively conserved. These GmHSP70 genes were distributed unequally on 17 of the 20 chromosomes. The analysis of the expression profiles showed that 53 of the 61 GmHSP70 genes were differentially expressed across the 14 tissues. However, most of the GmHSP70s were differentially expressed in a tissue-specific expression pattern. Furthermore, the expression of some of the duplicate genes was partially redundant, while others showed functional diversity. The quantitative real-time PCR (qRT-PCR) analysis of the 61 soybean HSP70 genes confirmed their stress-inducible expression patterns under both drought and heat stress. These findings provide a thorough overview of the evolution and modification of the GmHSP70 gene family, which will help to determine the functional characteristics of the HSP70 genes in soybean growth and development.
Collapse
Affiliation(s)
- Ling Zhang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Hong-Kun Zhao
- Crop Germplasm Institute, Jilin Academy of Agricultural SciencesGongzhuling, China
| | - Qian-Li Dong
- Department of Biology, Beijing Normal UniversityBeijing, China
| | - Yuan-Yu Zhang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Yu-Min Wang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Hai-Yun Li
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Guo-Jie Xing
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Qi-Yun Li
- Institute of Plant Protection, Jilin Academy of Agricultural SciencesGongzhuling, China
- *Correspondence: Qi-Yun Li, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, No. 303 Kemaoxi Street, Gongzhuling, JiLin 136100, China
| | - Ying-Shan Dong
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
- Ying-Shan Dong, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, No. 1363 Shengtai Street, Jing Yue District, ChangChun, JiLin 130033, China
| |
Collapse
|