1
|
Krakauer J, Naber C, Niziolek CA, Parrell B. Divided Attention Has Limited Effects on Speech Sensorimotor Control. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:4358-4368. [PMID: 39418590 PMCID: PMC11567081 DOI: 10.1044/2024_jslhr-24-00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/19/2024] [Accepted: 08/15/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE When vowel formants are externally perturbed, speakers change their production to oppose that perturbation both during the ongoing production (compensation) and in future productions (adaptation). To date, attempts to explain the large variability across individuals in these responses have focused on trait-based characteristics such as auditory acuity, but evidence from other motor domains suggests that attention may modulate the motor response to sensory perturbations. Here, we test the extent to which divided attention impacts sensorimotor control for supralaryngeal articulation. METHOD Neurobiologically healthy speakers were exposed to random (Experiment 1) or consistent (Experiment 2) real-time auditory perturbation of vowel formants to measure online compensation and trial-to-trial adaptation, respectively. In both experiments, participants completed two conditions: one with a simultaneous visual distractor task to divide attention and one without this secondary task. RESULTS Divided visual attention slightly reduced online compensation, but only starting > 300 ms after vowel onset, well beyond the typical duration of vowels in speech. Divided attention had no effect on adaptation. CONCLUSIONS The results from both experiments suggest that the use of sensory feedback in typical speech motor control is a largely automatic process unaffected by divided visual attention, suggesting that the source of cross-speaker variability in response to formant perturbations likely lies within the speech production system rather than in higher-level cognitive processes. Methodologically, these results suggest that compensation for formant perturbations should be measured prior to 300 ms after vowel onset to avoid any potential impact of attention or other higher-order cognitive factors.
Collapse
Affiliation(s)
- Jenna Krakauer
- Department of Communication Sciences and Disorders, University of Wisconsin–Madison
| | - Chris Naber
- Waisman Center, University of Wisconsin–Madison
| | - Caroline A. Niziolek
- Department of Communication Sciences and Disorders, University of Wisconsin–Madison
- Waisman Center, University of Wisconsin–Madison
| | - Benjamin Parrell
- Department of Communication Sciences and Disorders, University of Wisconsin–Madison
- Waisman Center, University of Wisconsin–Madison
| |
Collapse
|
2
|
Ozker M, Yu L, Dugan P, Doyle W, Friedman D, Devinsky O, Flinker A. Speech-induced suppression and vocal feedback sensitivity in human cortex. eLife 2024; 13:RP94198. [PMID: 39255194 PMCID: PMC11386952 DOI: 10.7554/elife.94198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Across the animal kingdom, neural responses in the auditory cortex are suppressed during vocalization, and humans are no exception. A common hypothesis is that suppression increases sensitivity to auditory feedback, enabling the detection of vocalization errors. This hypothesis has been previously confirmed in non-human primates, however a direct link between auditory suppression and sensitivity in human speech monitoring remains elusive. To address this issue, we obtained intracranial electroencephalography (iEEG) recordings from 35 neurosurgical participants during speech production. We first characterized the detailed topography of auditory suppression, which varied across superior temporal gyrus (STG). Next, we performed a delayed auditory feedback (DAF) task to determine whether the suppressed sites were also sensitive to auditory feedback alterations. Indeed, overlapping sites showed enhanced responses to feedback, indicating sensitivity. Importantly, there was a strong correlation between the degree of auditory suppression and feedback sensitivity, suggesting suppression might be a key mechanism that underlies speech monitoring. Further, we found that when participants produced speech with simultaneous auditory feedback, posterior STG was selectively activated if participants were engaged in a DAF paradigm, suggesting that increased attentional load can modulate auditory feedback sensitivity.
Collapse
Affiliation(s)
- Muge Ozker
- Neurology Department, New York University, New York, United States
- Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Leyao Yu
- Neurology Department, New York University, New York, United States
- Biomedical Engineering Department, New York University, New York, United States
| | - Patricia Dugan
- Neurology Department, New York University, New York, United States
| | - Werner Doyle
- Neurosurgery Department, New York University, New York, United States
| | - Daniel Friedman
- Neurology Department, New York University, New York, United States
| | - Orrin Devinsky
- Neurology Department, New York University, New York, United States
| | - Adeen Flinker
- Neurology Department, New York University, New York, United States
- Biomedical Engineering Department, New York University, New York, United States
| |
Collapse
|
3
|
Lester-Smith RA, Hilger A, Dunne-Platero KE, Kim JH, Chan CL, Larson CR. The Effects of Masked and Delayed Auditory Feedback on Fundamental Frequency Modulation in Vocal Vibrato. J Voice 2024; 38:1137-1148. [PMID: 35351330 PMCID: PMC9510150 DOI: 10.1016/j.jvoice.2022.01.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Although relatively precise control over the extent and rate of fundamental frequency (fo) modulation may be needed for optimal production of vibrato, the role of auditory feedback in controlling vibrato is not well understood. Previous studies altered the gain and timing of auditory feedback in singers producing vibrato and showed inconsistent effects on the extent and rate of fo modulation, which may have been related to small sample sizes or limited analyses. Therefore, the purpose of this study was to further investigate whether the gain or timing of auditory feedback impacts control of vibrato in a larger sample of speakers and with advanced statistical analyses. METHOD Ten classically-trained singers produced sustained vowels with vibrato while their auditory feedback was masked with pink noise or multi-talker babble to reduce the gain of their auditory feedback and while their auditory feedback was delayed by about 200 or 300 milliseconds to alter the timing of their auditory feedback. Acoustical analyses measured changes in the extent and rate of fo modulation in the masked and delayed trials relative to control trials. Bayesian modeling was used to analyze the effects of noise-masked, babble-masked, and delayed auditory feedback on the extent and rate of fo modulation. RESULTS There was compelling evidence that noise masking increased the extent of fo modulation, and babble masking increased the variability in the rate of fo modulation (ie, jitter of fo modulation). Masked auditory feedback did not affect the average rate of fo modulation. Delayed auditory feedback did not affect the extent, rate, or jitter of fo modulation. CONCLUSIONS The current study demonstrated that reducing the gain of the auditory feedback with noise masking increased the extent of fo modulation but did not affect the average rate of fo modulation in classically-trained singers producing vibrato. Reducing the gain of the auditory feedback with babble masking and altering the timing of auditory feedback with imposed delays did not affect the average extent or rate of fo modulation. However, babble masking increased the jitter of fo modulation rate, which suggests that modulated auditory feedback may affect the periodicity of fo modulation from one modulation cycle to the next. These findings clarify the role of auditory feedback in controlling vibrato and may inform the current reflex-resonance models of vibrato.
Collapse
Affiliation(s)
- Rosemary A Lester-Smith
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| | - Allison Hilger
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois
| | - Kylie E Dunne-Platero
- Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, Texas
| | - Jason H Kim
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois
| | - Chun Liang Chan
- Department of Linguistics, Northwestern University, Evanston, Illinois
| | - Charles R Larson
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois
| |
Collapse
|
4
|
Zhang Y, Sarmukadam K, Wang Y, Behroozmand R. Effects of attentional instructions on the behavioral and neural mechanisms of speech auditory feedback control. Neuropsychologia 2024; 201:108944. [PMID: 38925511 PMCID: PMC11772217 DOI: 10.1016/j.neuropsychologia.2024.108944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/22/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The present study investigated how instructions for paying attention to auditory feedback may affect speech error detection and sensorimotor control. Electroencephalography (EEG) and speech signals were recorded from 21 neurologically intact adult subjects while they produced the speech vowel sound /a/ and received randomized ±100 cents pitch-shift alterations in their real-time auditory feedback. Subjects were instructed to pay attention to their auditory feedback and press a button to indicate whether they detected a pitch-shift stimulus during trials. Data for this group was compared with 22 matched subjects who completed the same speech task under altered auditory feedback condition without attentional instructions. Results revealed a significantly smaller magnitude of speech compensations in the attentional-instruction vs. no-instruction group and a positive linear association between the magnitude of compensations and P2 event-related potential (ERP) amplitudes. In addition, we found that the amplitude of P2 ERP component was significantly larger in the attentional-instruction vs. no-instruction group. Source localization analysis showed that this effect was accounted for by significantly stronger neural activities in the right hemisphere insula, precentral gyrus, postcentral gyrus, transverse temporal gyrus, and superior temporal gyrus in the attentional-instruction group. These findings suggest that attentional instructions may enhance speech auditory feedback error detection, and subsequently improve sensorimotor control via generating more stable speech outputs (i.e., smaller compensations) in response to pitch-shift alterations. Our data are informative for advancing theoretical models and motivating targeted interventions with a focus on the role of attentional instructions for improving treatment outcomes in patients with motor speech disorders.
Collapse
Affiliation(s)
- Yilun Zhang
- Speech Neuroscience Lab, Department of Speech, Language, and Hearing, Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 2811 N. Floyd Rd, Richardson, TX 75080, USA
| | - Kimaya Sarmukadam
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA
| | - Yuan Wang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA
| | - Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Speech, Language, and Hearing, Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 2811 N. Floyd Rd, Richardson, TX 75080, USA.
| |
Collapse
|
5
|
Zhang VH, Elmlinger SL, Albert RR, Goldstein MH. Caregiver reactions to babbling organize turn-taking interactions: Facilitative effects of vocal versus non-vocal responses. INFANCY 2024; 29:525-549. [PMID: 38696120 PMCID: PMC11655154 DOI: 10.1111/infa.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 06/15/2024]
Abstract
Turn-taking interactions are foundational to the development of social, communicative, and cognitive skills. In infants, vocal turn-taking experience is predictive of infants' socioemotional and language development. However, different forms of turn-taking interactions may have different effects on infant vocalizing. It is presently unknown how caregiver vocal, non-vocal and multimodal responses to infant vocalizations compare in extending caregiver-infant vocal turn-taking bouts. In bouts that begin with an infant vocalization, responses that maintain versus change the communicative modality may differentially affect the likelihood of further infant vocalizing. No studies have examined how caregiver response modalities that either matched or differed from the infant acoustic (vocal) modality might affect the temporal structure of vocal turn-taking beyond the initial serve-and-return exchanges. We video-recorded free-play sessions of 51 caregivers with their 9-month-old infants. Caregivers responded to babbling most often with vocalizations. In turn, caregiver vocal responses were significantly more likely to elicit subsequent infant babbling. Bouts following an initial caregiver vocal response contained significantly more turns than those following a non-vocal or multimodal response. Thus prelinguistic turn-taking is sensitive to the modality of caregivers' responses. Future research should investigate if such sensitivity is grounded in attentional constraints, which may influence the structure of turn-taking interactions.
Collapse
|
6
|
Ozker M, Yu L, Dugan P, Doyle W, Friedman D, Devinsky O, Flinker A. Speech-induced suppression and vocal feedback sensitivity in human cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.570736. [PMID: 38370843 PMCID: PMC10871232 DOI: 10.1101/2023.12.08.570736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Across the animal kingdom, neural responses in the auditory cortex are suppressed during vocalization, and humans are no exception. A common hypothesis is that suppression increases sensitivity to auditory feedback, enabling the detection of vocalization errors. This hypothesis has been previously confirmed in non-human primates, however a direct link between auditory suppression and sensitivity in human speech monitoring remains elusive. To address this issue, we obtained intracranial electroencephalography (iEEG) recordings from 35 neurosurgical participants during speech production. We first characterized the detailed topography of auditory suppression, which varied across superior temporal gyrus (STG). Next, we performed a delayed auditory feedback (DAF) task to determine whether the suppressed sites were also sensitive to auditory feedback alterations. Indeed, overlapping sites showed enhanced responses to feedback, indicating sensitivity. Importantly, there was a strong correlation between the degree of auditory suppression and feedback sensitivity, suggesting suppression might be a key mechanism that underlies speech monitoring. Further, we found that when participants produced speech with simultaneous auditory feedback, posterior STG was selectively activated if participants were engaged in a DAF paradigm, suggesting that increased attentional load can modulate auditory feedback sensitivity.
Collapse
Affiliation(s)
- Muge Ozker
- Neurology Department, New York University, New York, 10016, NY, USA
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Leyao Yu
- Neurology Department, New York University, New York, 10016, NY, USA
- Biomedical Engineering Department, New York University, Brooklyn, 11201, NY, USA
| | - Patricia Dugan
- Neurology Department, New York University, New York, 10016, NY, USA
| | - Werner Doyle
- Neurosurgery Department, New York University, New York, 10016, NY, USA
| | - Daniel Friedman
- Neurology Department, New York University, New York, 10016, NY, USA
| | - Orrin Devinsky
- Neurology Department, New York University, New York, 10016, NY, USA
| | - Adeen Flinker
- Neurology Department, New York University, New York, 10016, NY, USA
- Biomedical Engineering Department, New York University, Brooklyn, 11201, NY, USA
| |
Collapse
|
7
|
Chang Y, Peng D, Zhao Y, Chen X, Li J, Wu X, Liu P, Liu H. Transcranial direct current stimulation over left dorsolateral prefrontal cortex facilitates auditory-motor integration for vocal pitch regulation. Front Neurosci 2023; 17:1208581. [PMID: 37457017 PMCID: PMC10347532 DOI: 10.3389/fnins.2023.1208581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Background A growing body of literature has implicated the left dorsolateral prefrontal cortex (DLPFC) in the online monitoring of vocal production through auditory feedback. Specifically, disruption of or damage to the left DLPFC leads to exaggerated compensatory vocal responses to altered auditory feedback. It is conceivable that enhancing the cortical excitability of the left DLPFC may produce inhibitory influences on vocal feedback control by reducing vocal compensations. Methods We used anodal transcranial direct current stimulation (a-tDCS) to modulate cortical excitability of the left DLPFC and examined its effects on auditory-motor integration for vocal pitch regulation. Seventeen healthy young adults vocalized vowel sounds while hearing their voice pseudo-randomly pitch-shifted by ±50 or ±200 cents, either during (online) or after (offline) receiving active or sham a-tDCS over the left DLPFC. Results Active a-tDCS over the left DLPFC led to significantly smaller peak magnitudes and shorter peak times of vocal compensations for pitch perturbations than sham stimulation. In addition, this effect was consistent regardless of the timing of a-tDCS (online or offline stimulation) and the size and direction of the pitch perturbation. Conclusion These findings provide the first causal evidence that a-tDCS over the left DLPFC can facilitate auditory-motor integration for compensatory adjustment to errors in vocal output. Reduced and accelerated vocal compensations caused by a-tDCS over left DLPFC support the hypothesis of a top-down neural mechanism that exerts inhibitory control over vocal motor behavior through auditory feedback.
Collapse
Affiliation(s)
- Yichen Chang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danhua Peng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuqin Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Lester-Smith RA, Kim JH, Hilger A, Chan CL, Larson CR. Auditory-Motor Control of Fundamental Frequency in Vocal Vibrato. J Voice 2023; 37:296.e9-296.e19. [PMID: 33461882 PMCID: PMC8282806 DOI: 10.1016/j.jvoice.2020.12.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022]
Abstract
PURPOSE The purpose of this study was to investigate how classically trained singers use their auditory feedback to control fundamental frequency (fo) during production of vocal vibrato. Two main questions were addressed: (1) Do singers produce reflexive foresponses to sudden perturbation of the fo of their auditory feedback during production of vibrato indicative of feedback control? (2) Do singers produce adaptive foresponses to repeated perturbation of the fo of their auditory feedback during production of vibrato indicative of feedback and feedforward control? In addition, one methodological question was addressed to determine if adaptive fo responses were more precisely assessed with or without an auditory cue for fo during the repeated fo perturbation paradigm. METHOD Ten classically trained singers produced sustained vowels with vibrato while the fo and harmonics of their auditory feedback were suddenly perturbed by 100 cents to assess reflexive control or repeatedly perturbed by 100 cents to assess adaptive control. Half of the participants completed the repeated perturbation experiment with an auditory cue for fo, and the other half completed the experiment without an auditory cue for fo. Acoustical analyses measured changes in mean fo in response to the auditory feedback perturbations. RESULTS On average, participants produced compensatory responses to both sudden and repeated perturbation of the fo of their auditory feedback. The magnitude of the responses to repeated perturbations was larger than the responses to sudden perturbations. Responses were also larger in the cued, repeated fo perturbation experiment than in the uncued, repeated fo perturbation experiment. CONCLUSIONS These findings indicate that classically-trained singers use both feedforward and feedback mechanisms to control their average fo during production of vibrato. When compared to prior studies of singers producing a steady voice, the reflexive fo responses were larger in the current study, which may indicate that the feedback control system is engaged more during production of vibrato.
Collapse
Affiliation(s)
- Rosemary A Lester-Smith
- Department of Physical Medicine & Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| | - Jason H Kim
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois
| | - Allison Hilger
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois
| | - Chun-Liang Chan
- Department of Linguistics, Northwestern University, Evanston, Illinois
| | - Charles R Larson
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois
| |
Collapse
|
9
|
Patel S, Hebert K, Korzyukov O, Larson CR. Effects of sensorimotor voice training on event-related potentials to pitch-shifted auditory feedback. PLoS One 2023; 18:e0269326. [PMID: 36662730 PMCID: PMC9858400 DOI: 10.1371/journal.pone.0269326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/20/2022] [Indexed: 01/21/2023] Open
Abstract
The pitch perturbation technique is a validated technique that has been used for over 30 years to understand how people control their voice. This technique involves altering a person's voice pitch in real-time while they produce a vowel (commonly, a prolonged /a/ sound). Although post-task changes in the voice have been observed in several studies (e.g., a change in mean fo across the duration of the experiment), the potential for using the pitch perturbation technique as a training tool for voice pitch regulation and/or modification has not been explored. The present study examined changes in event related potentials (ERPs) and voice pitch in three groups of subjects due to altered voice auditory feedback following a brief, four-day training period. Participants in the opposing group were trained to change their voice fo in the opposite direction of a pitch perturbation stimulus. Participants in the following group were trained to change their voice fo in the same direction as the pitch perturbation stimulus. Participants in the non-varying group did not voluntarily change their pitch, but instead were asked to hold their voice constant when they heard pitch perturbations. Results showed that all three types of training affected the ERPs and the voice pitch-shift response from pre-training to post-training (i.e., "hold your voice pitch steady" task; an indicator of voice pitch regulation). Across all training tasks, the N1 and P2 components of the ERPs occurred earlier, and the P2 component of the ERPs occurred with larger amplitude post-training. The voice responses also occurred earlier but with a smaller amplitude following training. These results demonstrate that participation in pitch-shifted auditory feedback tasks even for brief periods of time can modulate the automatic tendency to compensate for alterations in voice pitch feedback and has therapeutic potential.
Collapse
Affiliation(s)
- Sona Patel
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States of America
- Department of Speech-Language Pathology, Seton Hall University, Nutley, NJ, United States of America
| | - Karen Hebert
- Department of Occupational Therapy, University of South Dakota, Vermillion, SD, United States of America
| | - Oleg Korzyukov
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States of America
- Department of Communication Sciences and Disorders, University of Wisconsin—Whitewater, Whitewater, WI, United States of America
| | - Charles R. Larson
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States of America
| |
Collapse
|
10
|
Ning LH. Identifying distinct latent classes of pitch-shift response consistency: Evidence from manipulating the predictability of shift direction. Front Psychol 2022; 13:1058080. [PMID: 36591048 PMCID: PMC9795075 DOI: 10.3389/fpsyg.2022.1058080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 01/03/2023] Open
Abstract
Auditory feedback plays an important role in regulating our vocal pitch. When pitch shifts suddenly appear in auditory feedback, the majority of the responses are opposing, correcting for the mismatch between perceived pitch and actual pitch. However, research has indicated that following responses to auditory perturbation could be common. This study attempts to explore the ways individual speakers would respond to pitch perturbation (using an opposing response or a following response) from trial to trial. Thirty-six native speakers of Mandarin produced the vowel /a/ while receiving perturbed pitch at a random time (500 ~ 700 ms) after vocal onset for a duration of 200 ms. Three blocks of 30 trials that differed in the pitch-shift stimulus direction were recorded in a randomized order: (a) the down-only condition where pitch was shifted downwards 250 cents; (b) the up-only condition where pitch was shifted upwards 250 cents; and (c) the random condition where downshifts and upshifts occurred randomly and were equally likely. The participants were instructed to ignore the pitch shifts. Results from the latent class analysis show that at the individual level across trials, 57% of participants were switchers, 28% were opposers, and 15% were followers. Our results support that speakers produce a mix of opposing and following responses when they respond to perturbed pitch. Specifically, the proportion of followers was conditional on the expectancy of pitch-shift stimulus direction: More followers were observed when the pitch-shift stimulus direction was predictable. Closer inspection of the levels of response consistency in different time phases shows that a particular mechanism (opposing or following) was initially implemented; the two mechanisms may alternate in the middle phase; and then finally, the pitch-shift response was featured as a particular mechanism near the end phase.
Collapse
|
11
|
Yang D, Tao H, Ge H, Li Z, Hu Y, Meng J. Altered Processing of Social Emotions in Individuals With Autistic Traits. Front Psychol 2022; 13:746192. [PMID: 35310287 PMCID: PMC8931733 DOI: 10.3389/fpsyg.2022.746192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
Social impairment is a defining phenotypic feature of autism. The present study investigated whether individuals with autistic traits exhibit altered perceptions of social emotions. Two groups of participants (High-AQ and Low-AQ) were recruited based on their scores on the autism-spectrum quotient (AQ). Their behavioral responses and event-related potentials (ERPs) elicited by social and non-social stimuli with positive, negative, and neutral emotional valence were compared in two experiments. In Experiment 1, participants were instructed to view social-emotional and non-social emotional pictures. In Experiment 2, participants were instructed to listen to social-emotional and non-social emotional audio recordings. More negative emotional reactions and smaller amplitudes of late ERP components (the late positive potential in Experiment 1 and the late negative component in Experiment 2) were found in the High-AQ group than in the Low-AQ group in response to the social-negative stimuli. In addition, amplitudes of these late ERP components in both experiments elicited in response to social-negative stimuli were correlated with the AQ scores of the High-AQ group. These results suggest that individuals with autistic traits have altered emotional processing of social-negative emotions.
Collapse
Affiliation(s)
- Di Yang
- Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China.,School of Education, Chongqing Normal University, Chongqing, China.,Key Laboratory of Emotion and Mental Health, Chongqing University of Arts and Sciences, Chongqing, China
| | - Hengheng Tao
- Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China.,School of Education, Chongqing Normal University, Chongqing, China
| | - Hongxin Ge
- Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China.,School of Education, Chongqing Normal University, Chongqing, China
| | - Zuoshan Li
- Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China.,School of Education, Chongqing Normal University, Chongqing, China
| | - Yuanyan Hu
- Key Laboratory of Emotion and Mental Health, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jing Meng
- Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China.,School of Education, Chongqing Normal University, Chongqing, China
| |
Collapse
|
12
|
Niziolek CA, Parrell B. Responses to Auditory Feedback Manipulations in Speech May Be Affected by Previous Exposure to Auditory Errors. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:2169-2181. [PMID: 33705674 PMCID: PMC8740748 DOI: 10.1044/2020_jslhr-20-00263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Purpose Speakers use auditory feedback to guide their speech output, although individuals differ in the magnitude of their compensatory response to perceived errors in feedback. Little is known about the factors that contribute to the compensatory response or how fixed or flexible they are within an individual. Here, we test whether manipulating the perceived reliability of auditory feedback modulates speakers' compensation to auditory perturbations, as predicted by optimal models of sensorimotor control. Method Forty participants produced monosyllabic words in two separate sessions, which differed in the auditory feedback given during an initial exposure phase. In the veridical session exposure phase, feedback was normal. In the noisy session exposure phase, small, random formant perturbations were applied, reducing reliability of auditory feedback. In each session, a subsequent test phase introduced larger unpredictable formant perturbations. We assessed whether the magnitude of within-trial compensation for these larger perturbations differed across the two sessions. Results Compensatory responses to downward (though not upward) formant perturbations were larger in the veridical session than the noisy session. However, in post hoc testing, we found the magnitude of this effect is highly dependent on the choice of analysis procedures. Compensation magnitude was not predicted by other production measures, such as formant variability, and was not reliably correlated across sessions. Conclusions Our results, though mixed, provide tentative support that the feedback control system monitors the reliability of sensory feedback. These results must be interpreted cautiously given the potentially limited stability of auditory feedback compensation measures across analysis choices and across sessions. Supplemental Material https://doi.org/10.23641/asha.14167136.
Collapse
Affiliation(s)
- Caroline A. Niziolek
- Department of Communication Sciences and Disorders, University of Wisconsin–Madison
| | - Benjamin Parrell
- Department of Communication Sciences and Disorders, University of Wisconsin–Madison
| |
Collapse
|
13
|
Chen N, Zhao C, Wang M, Jones JA, Liu P, Chen X, Gong G, Liu H. Linking Cortical Morphology to Interindividual Variability in Auditory Feedback Control of Vocal Production. Cereb Cortex 2021; 31:2932-2943. [PMID: 33454738 DOI: 10.1093/cercor/bhaa401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/02/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Speakers regulate vocal motor behaviors in a compensatory manner when perceiving errors in auditory feedback. Little is known, however, about the source of interindividual variability that exists in the degree to which speakers compensate for perceived errors. The present study included 40 young adults to investigate whether individual differences in auditory integration for vocal pitch regulation, as indexed by vocal compensations for pitch perturbations in auditory feedback, can be predicted by cortical morphology as assessed by gray-matter volume, cortical thickness, and surface area in a whole-brain manner. The results showed that greater gray-matter volume in the left inferior parietal lobule and greater cortical thickness and surface area in the left superior/middle temporal gyrus, temporal pole, inferior/superior parietal lobule, and precuneus predicted larger vocal responses. Greater cortical thickness in the right inferior frontal gyrus and superior parietal lobule and surface area in the left precuneus and cuneus were significantly correlated with smaller magnitudes of vocal responses. These findings provide the first evidence that vocal compensations for feedback errors are predicted by the structural morphology of the frontal and tempo-parietal regions, and further our understanding of the neural basis that underlies interindividual variability in auditory-motor control of vocal production.
Collapse
Affiliation(s)
- Na Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.,Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Meng Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jeffery A Jones
- Psychology Department, Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Gaolong Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.,Chinese Institute for Brain Research, Beijing 102206, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
14
|
Peng D, Lin Q, Chang Y, Jones JA, Jia G, Chen X, Liu P, Liu H. A Causal Role of the Cerebellum in Auditory Feedback Control of Vocal Production. THE CEREBELLUM 2021; 20:584-595. [PMID: 33555544 DOI: 10.1007/s12311-021-01230-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 01/01/2023]
Abstract
Accumulating evidence demonstrates that the cerebellum is involved in a variety of cognitive functions. Recently, impaired auditory-motor integration for vocal control has been identified in patients with cerebellar degeneration, characterized by abnormally enhanced vocal compensations for pitch perturbations. However, the causal relationship between the cerebellum and auditory feedback during vocal production remains unclear. By applying anodal transcranial direct current stimulation (a-tDCS) over right cerebellum, the present study investigated cerebellar contributions to auditory-motor processing of feedback errors during vocal pitch regulation. Twenty young adults participated in a frequency-altered-feedback (FAF) task, in which they vocalized vowel sounds and heard their voice unexpectedly pitch-shifted by ± 50 or ± 200 cents. Active or sham cerebellar a-tDCS was applied either prior to or during the FAF task. Compensatory vocal responses to pitch perturbations were measured and compared across the conditions. Active cerebellar a-tDCS led to significantly larger and slower vocal compensations for pitch perturbations than sham stimulation. Moreover, this modulatory effect was observed regardless of the timing of cerebellar a-tDCS as well as the size and direction of the pitch perturbation. These findings provide the first causal evidence that the cerebellum is essentially involved in auditory feedback control of vocal production. Enhanced and slowed vocal compensations caused by cerebellar a-tDCS may be related to its inhibition on the prefrontal cortex that exerts inhibitory control over vocal compensation behavior, suggesting the importance of the cerebrocerebellar connections in this feedback control process.
Collapse
Affiliation(s)
- Danhua Peng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Lin
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yichen Chang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Guoqing Jia
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Liu D, Dai G, Liu C, Guo Z, Xu Z, Jones JA, Liu P, Liu H. Top–Down Inhibitory Mechanisms Underlying Auditory–Motor Integration for Voice Control: Evidence by TMS. Cereb Cortex 2020; 30:4515-4527. [PMID: 32147719 DOI: 10.1093/cercor/bhaa054] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The dorsolateral prefrontal cortex (DLPFC) has been implicated in auditory–motor integration for accurate control of vocal production, but its precise role in this feedback-based process remains largely unknown. To this end, the present event-related potential study applied a transcranial magnetic stimulation (TMS) protocol, continuous theta-burst stimulation (c-TBS), to disrupt cortical activity in the left DLPFC as young adults vocalized vowel sounds while hearing their voice unexpectedly shifted upwards in pitch. The results showed that, as compared to the sham condition, c-TBS over left DLPFC led to significantly larger vocal compensations for pitch perturbations that were accompanied by significantly smaller cortical P2 responses. Source localization analyses revealed that this brain activity pattern was the result of reduced activation in the left superior frontal gyrus and right inferior parietal lobule (supramarginal gyrus). These findings demonstrate c-TBS-induced modulatory effects of DLPFC on the neurobehavioral processing of vocal pitch regulation, suggesting that disrupting prefrontal function may impair top–down inhibitory control mechanisms that prevent speech production from being excessively influenced by auditory feedback, resulting in enhanced vocal compensations for feedback perturbations. This is the first study that provides direct evidence for a causal role of the left DLPFC in auditory feedback control of vocal production.
Collapse
Affiliation(s)
- Dongxu Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Guangyan Dai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Churong Liu
- Rehabilitation Training Center, Guangzhou 999 Brain Hospital, Guangzhou 510510, China
| | - Zhiqiang Guo
- Department of Computer Science and Technology, Zhuhai College of Jilin University, Zhuhai 519041, China
| | - Zhiqin Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
16
|
Heller Murray ES, Lupiani AA, Kolin KR, Segina RK, Stepp CE. Pitch Shifting With the Commercially Available Eventide Eclipse: Intended and Unintended Changes to the Speech Signal. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:2270-2279. [PMID: 31251880 PMCID: PMC6808353 DOI: 10.1044/2019_jslhr-s-18-0408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Purpose This study details the intended and unintended consequences of pitch shifting with the commercially available Eventide Eclipse. Method Ten vocally healthy participants ( M = 22.0 years; 6 cisgender females, 4 cisgender males) produced a sustained /ɑ/, creating an input signal. This input signal was processed in near real time by the Eventide Eclipse to create an output signal that was either not shifted (0 cents), shifted +100 cents, or shifted -100 cents. Shifts occurred either throughout the entire vocalization or for a 200-ms period after vocal onset. Results Input signals were compared to output signals to examine potential changes. Average pitch-shift magnitudes were within 1 cent of the intended pitch shift. Measured pitch-shift length for intended 200-ms shifts was between 5.9% and 21.7% less than expected, based on the portion of shift selected for measurement. The delay between input and output signals was an average of 11.1 ms. Trials shifted +100 cents had a longer delay than trials shifted -100 or 0 cents. The first 2 formants (F1, F2) shifted in the direction of the pitch shift, with F1 shifting 6.5% and F2 shifting 6.0%. Conclusions The Eventide Eclipse is an accurate pitch-shifting hardware that can be used to explore voice and vocal motor control. The pitch-shifting algorithm shifts all frequencies, resulting in a subsequent change in F1 and F2 during pitch-shifted trials. Researchers using this device should be mindful of stimuli selection to avoid confusion during data interpretation.
Collapse
Affiliation(s)
| | - Ashling A. Lupiani
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
| | - Katharine R. Kolin
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
| | - Roxanne K. Segina
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
| | - Cara E. Stepp
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
- Department of Biomedical Engineering, Boston University, MA
- Department of Otolaryngology—Head and Neck Surgery, Boston University School of Medicine, MA
| |
Collapse
|
17
|
Ranasinghe KG, Kothare H, Kort N, Hinkley LB, Beagle AJ, Mizuiri D, Honma SM, Lee R, Miller BL, Gorno-Tempini ML, Vossel KA, Houde JF, Nagarajan SS. Neural correlates of abnormal auditory feedback processing during speech production in Alzheimer's disease. Sci Rep 2019; 9:5686. [PMID: 30952883 PMCID: PMC6450891 DOI: 10.1038/s41598-019-41794-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/13/2019] [Indexed: 11/24/2022] Open
Abstract
Accurate integration of sensory inputs and motor commands is essential to achieve successful behavioral goals. A robust model of sensorimotor integration is the pitch perturbation response, in which speakers respond rapidly to shifts of the pitch in their auditory feedback. In a previous study, we demonstrated abnormal sensorimotor integration in patients with Alzheimer's disease (AD) with an abnormally enhanced behavioral response to pitch perturbation. Here we examine the neural correlates of the abnormal pitch perturbation response in AD patients, using magnetoencephalographic imaging. The participants phonated the vowel /α/ while a real-time signal processor briefly perturbed the pitch (100 cents, 400 ms) of their auditory feedback. We examined the high-gamma band (65-150 Hz) responses during this task. AD patients showed significantly reduced left prefrontal activity during the early phase of perturbation and increased right middle temporal activity during the later phase of perturbation, compared to controls. Activity in these brain regions significantly correlated with the behavioral response. These results demonstrate that impaired prefrontal modulation of speech-motor-control network and additional recruitment of right temporal regions are significant mediators of aberrant sensorimotor integration in patients with AD. The abnormal neural integration mechanisms signify the contribution of cortical network dysfunction to cognitive and behavioral deficits in AD.
Collapse
Affiliation(s)
- Kamalini G Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA.
| | - Hardik Kothare
- Speech Neuroscience Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
- UC Berkeley - UCSF, Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Naomi Kort
- Speech Neuroscience Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Leighton B Hinkley
- Speech Neuroscience Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Alexander J Beagle
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Danielle Mizuiri
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Susanne M Honma
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Richard Lee
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Keith A Vossel
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
- N. Bud Grossman Center for Memory Research and Care, Institute for Translational Neuroscience, and Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John F Houde
- Speech Neuroscience Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Srikantan S Nagarajan
- Speech Neuroscience Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| |
Collapse
|
18
|
Huang X, Fan H, Li J, Jones JA, Wang EQ, Chen L, Chen X, Liu H. External cueing facilitates auditory-motor integration for speech control in individuals with Parkinson's disease. Neurobiol Aging 2019; 76:96-105. [DOI: 10.1016/j.neurobiolaging.2018.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 01/13/2023]
|
19
|
Effects of COMT polymorphism on the cortical processing of vocal pitch regulation. Neuroreport 2018; 29:1530-1536. [PMID: 30300332 DOI: 10.1097/wnr.0000000000001142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent evidence has shown that auditory-motor integration for speech production is influenced by cognitive functions such as working memory and attention, suggesting that speech motor control is likely modulated by mechanisms mediated by prefrontal regions. Catechol-O-methyltransferase (COMT) gene plays an important role in dopamine breakdown in the prefrontal cortex and has been associated with a variety of prefrontal cognitive functions. The present event-related potential study investigated the association between COMT ValMet polymorphism and auditory-motor processing of vocal feedback errors. A sample of 131 Chinese young female adults was genotyped for rs4680 and produced sustained vowels while hearing their voice unexpectedly shifted down in pitch by 50 or 200 cents. The behavioral results showed no effects of COMT ValMet on vocal compensations for pitch perturbations. However, individuals with the Met allele produced significantly larger P2 responses to -200 cents perturbations than individuals with the Val/Val genotype. These results suggest the existence of a relationship between COMT ValMet polymorphism and self-monitoring of speech feedback errors, and they provide insights into our understanding of the top-down modulations of speech motor control mediated by prefrontal regions.
Collapse
|
20
|
Borragan M, Martin CD, de Bruin A, Duñabeitia JA. Exploring Different Types of Inhibition During Bilingual Language Production. Front Psychol 2018; 9:2256. [PMID: 30515123 PMCID: PMC6255976 DOI: 10.3389/fpsyg.2018.02256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
Multilinguals have to control their languages constantly to produce accurate verbal output. They have to inhibit possible lexical competitors not only from the target language, but also from non-target languages. Bilinguals' training in inhibiting incongruent or irrelevant information has been used to endorse the so-called bilingual advantage in executive functions, assuming a transfer effect from language inhibition to domain-general inhibitory skills. Recent studies have suggested that language control may rely on language-specific inhibitory control mechanisms. In the present study, unbalanced highly proficient bilinguals completed a rapid naming multi-inhibitory task in two languages. The task assessed three types of inhibitory processes: inhibition of the non-target language, inhibition of lexical competitors, and inhibition of erroneous auditory feedback. The results showed an interaction between lexical competition and erroneous auditory feedback, but no interactions with the inhibition of the non-target language. The results suggested that different subcomponents of language inhibition are involved during bilingual language production.
Collapse
Affiliation(s)
- Maria Borragan
- Basque Center on Cognition, Brain and Language, Donostia, Spain
| | - Clara D. Martin
- Basque Center on Cognition, Brain and Language, Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Angela de Bruin
- Basque Center on Cognition, Brain and Language, Donostia, Spain
| | - Jon Andoni Duñabeitia
- Basque Center on Cognition, Brain and Language, Donostia, Spain
- Facultad de Lenguas y Educación, Universidad Nebrija, Madrid, Spain
| |
Collapse
|
21
|
Scheerer NE, Jones JA. The Role of Auditory Feedback at Vocalization Onset and Mid-Utterance. Front Psychol 2018; 9:2019. [PMID: 30459679 PMCID: PMC6232907 DOI: 10.3389/fpsyg.2018.02019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022] Open
Abstract
Auditory feedback plays an important role in monitoring and correcting for errors during speech production. Previous research suggests that at vocalization onset, auditory feedback is compared to a sensory prediction generated by the motor system to ensure the desired fundamental frequency (F0) is produced. After vocalization onset, auditory feedback is compared to the most recently perceived F0 in order to stabilize the vocalization. This study aimed to further investigate whether after vocalization onset, auditory feedback is used strictly to stabilize speakers’ F0, or if it is also influenced by the sensory prediction generated by the motor system. Event-related potentials (ERP) were recorded while participants produced vocalizations and heard the F0 of their auditory feedback perturbed suddenly mid-utterance by half a semitone. For half of the vocalizations, at vocalization onset, participants’ F0 was also raised by half a semitone. Thus, half of the perturbations occurred while participants heard their unaltered auditory feedback, and the other half occurred in auditory feedback that had also been perturbed 50 cents at vocalization onset. If after vocalization onset auditory feedback is strictly used to stabilize speakers’ F0, then similarly sized vocal and ERP responses would be expected across all trials, regardless of whether the perturbation occurred while listening to altered or unaltered auditory feedback. Results indicate that the perturbations to the participants’ unaltered auditory feedback resulted in larger vocal and N1 and P2 ERP responses than perturbations to their altered auditory feedback. These results suggest that after vocalization onset auditory feedback is not strictly used to stabilize speakers’ F0, but is also used to ensure the desired F0 is produced.
Collapse
Affiliation(s)
- Nichole E Scheerer
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada.,Department of Psychology, Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Jeffery A Jones
- Department of Psychology, Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
22
|
Conde T, Gonçalves ÓF, Pinheiro AP. Stimulus complexity matters when you hear your own voice: Attention effects on self-generated voice processing. Int J Psychophysiol 2018; 133:66-78. [PMID: 30114437 DOI: 10.1016/j.ijpsycho.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/05/2018] [Accepted: 08/10/2018] [Indexed: 11/26/2022]
Abstract
The ability to discriminate self- and non-self voice cues is a fundamental aspect of self-awareness and subserves self-monitoring during verbal communication. Nonetheless, the neurofunctional underpinnings of self-voice perception and recognition are still poorly understood. Moreover, how attention and stimulus complexity influence the processing and recognition of one's own voice remains to be clarified. Using an oddball task, the current study investigated how self-relevance and stimulus type interact during selective attention to voices, and how they affect the representation of regularity during voice perception. Event-related potentials (ERPs) were recorded from 18 right-handed males. Pre-recorded self-generated (SGV) and non-self (NSV) voices, consisting of a nonverbal vocalization (vocalization condition) or disyllabic word (word condition), were presented as either standard or target stimuli in different experimental blocks. The results showed increased N2 amplitude to SGV relative to NSV stimuli. Stimulus type modulated later processing stages only: P3 amplitude was increased for SGV relative to NSV words, whereas no differences between SGV and NSV were observed in the case of vocalizations. Moreover, SGV standards elicited reduced N1 and P2 amplitude relative to NSV standards. These findings revealed that the self-voice grabs more attention when listeners are exposed to words but not vocalizations. Further, they indicate that detection of regularity in an auditory stream is facilitated for one's own voice at early processing stages. Together, they demonstrate that self-relevance affects attention to voices differently as a function of stimulus type.
Collapse
Affiliation(s)
- Tatiana Conde
- Faculdade de Psicologia, Universidade de Lisboa, Lisbon, Portugal; Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Óscar F Gonçalves
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal; Spaulding Center of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital & Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Ana P Pinheiro
- Faculdade de Psicologia, Universidade de Lisboa, Lisbon, Portugal; Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal; Cognitive Neuroscience Lab, Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Ning LH, Loucks TM, Shih C. Suppression of vocal responses to auditory perturbation with real-time visual feedback. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:3698. [PMID: 29960493 DOI: 10.1121/1.5043383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Speakers can adjust pitch using auditory feedback through a short-latency corrective response known as the pitch-shift response (PSR). Suppression of the PSR denotes on-line stabilization of pitch. In this paper, the hypothesis that pitch-shift responses can be suppressed with real-time visual feedback of vocal F0 is investigated. Mandarin speakers and naive speakers without tonal language experience were instructed to produce the sustained vowel /a/ and Mandarin tone /ma1/ in an audio-only condition and a separate audio-visual condition. Both Mandarin speakers and naive speakers suppressed pitch-shift responses in the audio-visual condition, regardless of task (/a/ or /ma1/) and stimulus magnitude (25 cents or 200 cents). These findings suggest that multisensory feedback (audio-visual) can improve the stability of voice F0. The benefit of audio-visual integration is independent of language experience.
Collapse
Affiliation(s)
- Li-Hsin Ning
- Department of English, National Taiwan Normal University, 162 Heping East Road, Daan District, Taipei City 106, Taiwan
| | - Torrey M Loucks
- Department of Communication Sciences and Disorders, University of Alberta, 8205 114 Saint Edmonton, Alberta, T6G 2G4, Canada
| | - Chilin Shih
- Department of Linguistics, University of Illinois Urbana-Champaign, 707 South Mathews Avenue, MC-168, Urbana, Illinois 61801, USA
| |
Collapse
|
24
|
Scheerer NE, Jones JA. Detecting our own vocal errors: An event-related study of the thresholds for perceiving and compensating for vocal pitch errors. Neuropsychologia 2018; 114:158-167. [DOI: 10.1016/j.neuropsychologia.2017.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 10/18/2022]
|
25
|
Martin CD, Niziolek CA, Duñabeitia JA, Perez A, Hernandez D, Carreiras M, Houde JF. Online Adaptation to Altered Auditory Feedback Is Predicted by Auditory Acuity and Not by Domain-General Executive Control Resources. Front Hum Neurosci 2018; 12:91. [PMID: 29593516 PMCID: PMC5857594 DOI: 10.3389/fnhum.2018.00091] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/23/2018] [Indexed: 11/13/2022] Open
Abstract
When a speaker's auditory feedback is altered, he adapts for the perturbation by altering his own production, which demonstrates the role of auditory feedback in speech motor control. In the present study, we explored the role of auditory acuity and executive control in this process. Based on the DIVA model and the major cognitive control models, we expected that higher auditory acuity, and better executive control skills would predict larger adaptation to the alteration. Thirty-six Spanish native speakers performed an altered auditory feedback experiment, executive control (numerical Stroop, Simon and Flanker) tasks, and auditory acuity tasks (loudness, pitch, and melody pattern discrimination). In the altered feedback experiment, participants had to produce the pseudoword “pep” (/pep/) while perceiving their auditory feedback in real time through earphones. The auditory feedback was first unaltered and then progressively altered in F1 and F2 dimensions until maximal alteration (F1 −150 Hz; F2 +300 Hz). The normalized distance of maximal adaptation ranged from 4 to 137 Hz (median of 75 ± 36). The different measures of auditory acuity were significant predictors of adaptation, while individual measures of cognitive function skills (obtained from the executive control tasks) were not. Better auditory discriminators adapted more to the alteration. We conclude that adaptation to altered auditory feedback is very well-predicted by general auditory acuity, as suggested by the DIVA model. In line with the framework of motor-control models, no specific claim on the implication of executive resources in speech motor control can be made.
Collapse
Affiliation(s)
- Clara D Martin
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Caroline A Niziolek
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
| | - Jon A Duñabeitia
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.,Facultad de Lenguas y Educación, Universidad Nebrija, Madrid, Spain
| | - Alejandro Perez
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| | - Doris Hernandez
- Department of Psychology, Center for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Manuel Carreiras
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Basque Language and Communication Department, University of the Basque Country, San Sebastian, Spain
| | - John F Houde
- Department of Otolaryngology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
26
|
Liu Y, Fan H, Li J, Jones JA, Liu P, Zhang B, Liu H. Auditory-Motor Control of Vocal Production during Divided Attention: Behavioral and ERP Correlates. Front Neurosci 2018. [PMID: 29535605 PMCID: PMC5835062 DOI: 10.3389/fnins.2018.00113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
When people hear unexpected perturbations in auditory feedback, they produce rapid compensatory adjustments of their vocal behavior. Recent evidence has shown enhanced vocal compensations and cortical event-related potentials (ERPs) in response to attended pitch feedback perturbations, suggesting that this reflex-like behavior is influenced by selective attention. Less is known, however, about auditory-motor integration for voice control during divided attention. The present cross-modal study investigated the behavioral and ERP correlates of auditory feedback control of vocal pitch production during divided attention. During the production of sustained vowels, 32 young adults were instructed to simultaneously attend to both pitch feedback perturbations they heard and flashing red lights they saw. The presentation rate of the visual stimuli was varied to produce a low, intermediate, and high attentional load. The behavioral results showed that the low-load condition elicited significantly smaller vocal compensations for pitch perturbations than the intermediate-load and high-load conditions. As well, the cortical processing of vocal pitch feedback was also modulated as a function of divided attention. When compared to the low-load and intermediate-load conditions, the high-load condition elicited significantly larger N1 responses and smaller P2 responses to pitch perturbations. These findings provide the first neurobehavioral evidence that divided attention can modulate auditory feedback control of vocal pitch production.
Collapse
Affiliation(s)
- Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Fan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baofeng Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Abur D, Lester-Smith RA, Daliri A, Lupiani AA, Guenther FH, Stepp CE. Sensorimotor adaptation of voice fundamental frequency in Parkinson's disease. PLoS One 2018; 13:e0191839. [PMID: 29373589 PMCID: PMC5786318 DOI: 10.1371/journal.pone.0191839] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/11/2018] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE This study examined adaptive responses to auditory perturbation of fundamental frequency (fo) in speakers with Parkinson's disease (PD) and control speakers. METHOD Sixteen speakers with PD and nineteen control speakers produced sustained vowels while they received perturbed auditory feedback (i.e., fo shifted upward or downward). Speakers' pitch acuity was quantified using a just-noticeable-difference (JND) paradigm. Twelve listeners provided estimates of the speech intelligibility for speakers with PD. RESULTS Fifteen responses from each speaker group for each shift direction were included in analyses. While control speakers generally showed consistent adaptive responses opposing the perturbation, speakers with PD showed no compensation on average, with individual PD speakers showing highly variable responses. In the PD group, the degree of compensation was not significantly correlated with age, disease progression, pitch acuity, or intelligibility. CONCLUSIONS These findings indicate reduced adaptation to sustained fo perturbation and higher variability in PD compared to control participants. No significant differences were seen in pitch acuity between groups, suggesting that the fo adaptation deficit in PD is not the result of purely perceptual mechanisms. SIGNIFICANCE These results suggest there is an impairment in vocal motor control in PD. Building on these results, contributions can be made to developing targeted voice treatments for PD.
Collapse
Affiliation(s)
- Defne Abur
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States of America
| | - Rosemary A. Lester-Smith
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States of America
| | - Ayoub Daliri
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States of America
| | - Ashling A. Lupiani
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States of America
| | - Frank H. Guenther
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States of America
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Cara E. Stepp
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States of America
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Department of Otolaryngology–Head and Neck Surgery, Boston University School of Medicine, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
28
|
Top-Down Modulation of Auditory-Motor Integration during Speech Production: The Role of Working Memory. J Neurosci 2017; 37:10323-10333. [PMID: 28951450 DOI: 10.1523/jneurosci.1329-17.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/06/2017] [Accepted: 09/13/2017] [Indexed: 11/21/2022] Open
Abstract
Although working memory (WM) is considered as an emergent property of the speech perception and production systems, the role of WM in sensorimotor integration during speech processing is largely unknown. We conducted two event-related potential experiments with female and male young adults to investigate the contribution of WM to the neurobehavioural processing of altered auditory feedback during vocal production. A delayed match-to-sample task that required participants to indicate whether the pitch feedback perturbations they heard during vocalizations in test and sample sequences matched, elicited significantly larger vocal compensations, larger N1 responses in the left middle and superior temporal gyrus, and smaller P2 responses in the left middle and superior temporal gyrus, inferior parietal lobule, somatosensory cortex, right inferior frontal gyrus, and insula compared with a control task that did not require memory retention of the sequence of pitch perturbations. On the other hand, participants who underwent extensive auditory WM training produced suppressed vocal compensations that were correlated with improved auditory WM capacity, and enhanced P2 responses in the left middle frontal gyrus, inferior parietal lobule, right inferior frontal gyrus, and insula that were predicted by pretraining auditory WM capacity. These findings indicate that WM can enhance the perception of voice auditory feedback errors while inhibiting compensatory vocal behavior to prevent voice control from being excessively influenced by auditory feedback. This study provides the first evidence that auditory-motor integration for voice control can be modulated by top-down influences arising from WM, rather than modulated exclusively by bottom-up and automatic processes.SIGNIFICANCE STATEMENT One outstanding question that remains unsolved in speech motor control is how the mismatch between predicted and actual voice auditory feedback is detected and corrected. The present study provides two lines of converging evidence, for the first time, that working memory cannot only enhance the perception of vocal feedback errors but also exert inhibitory control over vocal motor behavior. These findings represent a major advance in our understanding of the top-down modulatory mechanisms that support the detection and correction of prediction-feedback mismatches during sensorimotor control of speech production driven by working memory. Rather than being an exclusively bottom-up and automatic process, auditory-motor integration for voice control can be modulated by top-down influences arising from working memory.
Collapse
|
29
|
Scheerer NE, Tumber AK, Jones JA. Attentional demands modulate sensorimotor learning induced by persistent exposure to changes in auditory feedback. J Neurophysiol 2015; 115:826-32. [PMID: 26655821 DOI: 10.1152/jn.00799.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/19/2015] [Indexed: 11/22/2022] Open
Abstract
Hearing one's own voice is important for regulating ongoing speech and for mapping speech sounds onto articulator movements. However, it is currently unknown whether attention mediates changes in the relationship between motor commands and their acoustic output, which are necessary as growth and aging inevitably cause changes to the vocal tract. In this study, participants produced vocalizations while they heard their vocal pitch persistently shifted downward one semitone in both single- and dual-task conditions. During the single-task condition, participants vocalized while passively viewing a visual stream. During the dual-task condition, participants vocalized while also monitoring a visual stream for target letters, forcing participants to divide their attention. Participants' vocal pitch was measured across each vocalization, to index the extent to which their ongoing vocalization was modified as a result of the deviant auditory feedback. Smaller compensatory responses were recorded during the dual-task condition, suggesting that divided attention interfered with the use of auditory feedback for the regulation of ongoing vocalizations. Participants' vocal pitch was also measured at the beginning of each vocalization, before auditory feedback was available, to assess the extent to which the deviant auditory feedback was used to modify subsequent speech motor commands. Smaller changes in vocal pitch at vocalization onset were recorded during the dual-task condition, suggesting that divided attention diminished sensorimotor learning. Together, the results of this study suggest that attention is required for the speech motor control system to make optimal use of auditory feedback for the regulation and planning of speech motor commands.
Collapse
Affiliation(s)
- Nichole E Scheerer
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Anupreet K Tumber
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
30
|
Li W, Guo Z, Jones JA, Huang X, Chen X, Liu P, Chen S, Liu H. Training of Working Memory Impacts Neural Processing of Vocal Pitch Regulation. Sci Rep 2015; 5:16562. [PMID: 26553373 PMCID: PMC4639724 DOI: 10.1038/srep16562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 10/15/2015] [Indexed: 11/26/2022] Open
Abstract
Working memory training can improve the performance of tasks that were not trained. Whether auditory-motor integration for voice control can benefit from working memory training, however, remains unclear. The present event-related potential (ERP) study examined the impact of working memory training on the auditory-motor processing of vocal pitch. Trained participants underwent adaptive working memory training using a digit span backwards paradigm, while control participants did not receive any training. Before and after training, both trained and control participants were exposed to frequency-altered auditory feedback while producing vocalizations. After training, trained participants exhibited significantly decreased N1 amplitudes and increased P2 amplitudes in response to pitch errors in voice auditory feedback. In addition, there was a significant positive correlation between the degree of improvement in working memory capacity and the post-pre difference in P2 amplitudes. Training-related changes in the vocal compensation, however, were not observed. There was no systematic change in either vocal or cortical responses for control participants. These findings provide evidence that working memory training impacts the cortical processing of feedback errors in vocal pitch regulation. This enhanced cortical processing may be the result of increased neural efficiency in the detection of pitch errors between the intended and actual feedback.
Collapse
Affiliation(s)
- Weifeng Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Zhiqiang Guo
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, China, 510006
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Xiyan Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Shaozhen Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China.,Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, China, 510006
| |
Collapse
|
31
|
Liu Y, Hu H, Jones JA, Guo Z, Li W, Chen X, Liu P, Liu H. Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors. Eur J Neurosci 2015; 42:1895-904. [PMID: 25969928 DOI: 10.1111/ejn.12949] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/28/2015] [Accepted: 05/11/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Liu
- Department of Rehabilitation Medicine; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou 510080 China
| | - Huijing Hu
- Department of Rehabilitation Medicine; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou 510080 China
- Guangdong Provincial Work Injury Rehabilitation Center; Guangzhou China
| | - Jeffery A. Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience; Wilfrid Laurier University; Waterloo ON Canada
| | - Zhiqiang Guo
- Department of Biomedical Engineering; School of Engineering; Sun Yat-sen University; Guangzhou China
| | - Weifeng Li
- Department of Rehabilitation Medicine; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou 510080 China
| | - Xi Chen
- Department of Rehabilitation Medicine; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou 510080 China
| | - Peng Liu
- Department of Rehabilitation Medicine; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou 510080 China
| | - Hanjun Liu
- Department of Rehabilitation Medicine; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou 510080 China
- Department of Biomedical Engineering; School of Engineering; Sun Yat-sen University; Guangzhou China
| |
Collapse
|